Hyperbolic Sets

  • D. V. Anosov
  • V. V. Solodov
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 66)


Hyperbolicity of a compact (two-sided) invariant set A (that is, a set consisting of entire trajectories) of a flow or cascade {g t } (t ∈ ℝ or t ∈ ℤ) given on a phase manifold M is defined in terms of the restriction over A of the tangent linear extension {Tg t } (see Anosov et al. 1985, Chap. 1, Sect. 2.2), that is, the properties of the DS {Tg t p −1 A}, where p : TMM is the natural projection. In other words, we are dealing with the behaviour of the solutions of the variational equations along the trajectories of our DS. (Speaking somewhat freely, we also have in mind not only “true” variational equations (and so on) for a flow, but also their analogues for a cascade {g k }. In the latter case, the role of the system of variational equations along the trajectory {g k x} is played by the representation of Tg k (x) in the form of the composite % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadE % gacaGGOaGaam4zamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGc % caWG4bGaaiykaiaad+gacqWIMaYscaWGVbGaamivaiaadEgacaGGOa % Gaam4zaiaadIhacaGGPaGaam4BaiaadsfacaWGNbGaaiikaiaadIha % caGGPaGaaiilaaaa!4B9A!\[Tg({g^{k - 1}}x)o \ldots oTg(gx)oTg(x),\] while the role of the solutions of this system (which is more important) is played by the function of discrete time kTg k (x)ς with ς ∈ TxM. The map Tg k (x) plays the role of the Cauchy matrix of the system of variational equations along the trajectory {g k x}.) It is worth recalling, in connection with the term “tangent linear extension”, that in (Anosov et al. 1985, Chap. 3, Sect. 5.2) the more general notion of a linear extension of a DS was introduced. In this terminology the tangent linear extension {Tg t } is, in fact, a linear extension of the DS {g t }, while its restriction to the closed invariant subset TMA = p −1 A, which is a vector bundle over A, is the linear extension of the DS {g t A}.2


Periodic Point Unstable Manifold Linear Extension Topological Entropy Periodic Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R., Weiss, B (1967): Entropy, a complete metric invariant for automorphisms of the torus. Proc. Natl. Acad. Sci. USA 57, No. 6, 1573–1576. Zbl. 177,80.Google Scholar
  2. Adler, R., Weiss, B. (1970): Similarity of Automorphisms of the Torus. Mem. Am. Math. Soc. 98, 1–43. Zbl. 195,61Google Scholar
  3. Alekseev, V.M. (1968/1969): Quasirandom dynamical systems I. Mat. Sb. Nov. Ser. 76 (1968), 72–134; II Mat. Sb. Nov. Ser. 77(1968), 545–601; III Mat. Sb. Nov. Ser. 79 (1969), 3–50. [English transi.: I. Math. USSR, Sb. 5, 73–128 (1969); II. Math. USSR, Sb. 6, 505–560 (1969); III. Math. USSR, Sb. 7, 1–43 (1970)] Zbl. 198,569–570Google Scholar
  4. Alekseev, V.M. (1969): Perron sets and topological Markov chains. Usp. Mat. Nauk 24, No. 5, 227–228. Zbl. 201,566Google Scholar
  5. Alekseev, V.M. (1976): Symbolic Dynamics (Eleventh Mathematical School). Akad. Nauk Ukr. SSR, Kiev.Google Scholar
  6. Alekseev, V.M. (1981): Final motions in the three body problem and symbolic dynamics. Usp. Mat. Nauk 36, No. 4, 161–176. [English transi.: Russ. Math. Surv. 36, No. 4, 181–200 (1981)] Zbl. 503.70006Google Scholar
  7. Alekseev, V.M., Katok, A.B., Kushnirenko, A.G. (1972): Smooth dynamical systems. Ninth Summer Mathematical School. Inst. Mat. Akad. Nauk Ukr. SSR, Kiev, 50–348Google Scholar
  8. Alekseev, V.M., Yakobson, M.V. (1979): Symbolic dynamics and hyperbolic dynamical systems. In (Bowen 1979), 196–240Google Scholar
  9. Anosov, D.V. (1962): Roughness of geodesic flows on compact Riemannian manifolds of negative curvature. Dokl. Akad. Nauk SSSR 145, No. 4, 707–709. [English transl.: Soy. Math., Dokl. 3, 1068–1070 (1962) Zbl. 135,404Google Scholar
  10. Anosov, D.V. (1967): Geodesic flows on closed Riemannian manifolds of negative curvature. Tr. Mat. Inst. Steklova 90 (209 pp.). [English transi.: Proc. Steklov Inst. Math. 90 (1969)] Zbl. 163,436Google Scholar
  11. Anosov, D.V. (1970): On a class of invariant sets of smooth dynamical systems. Tr. V Mezhdunar. Konf. po Nelineinym Kolebaniyam. Kachestvenny Metody. Inst. Mat. Akad. Nauk Ukr. SSR 2, Kiev, 39–45Google Scholar
  12. Anosov, D.V. (ed.) (1977a): Smooth Dynamical Systems. Mir, Moscow (Russian)Google Scholar
  13. Anosov, D.V. (1977b): Introductory article to the collection “Smooth Dynamical Systems”, in (Anosov 1977a), 7–31. [English transl.: Transl., II. Ser., Am. Math. Soc. 125, 1–20 (1985) Zbl. 569.58025Google Scholar
  14. Anosov, D.V. (1985): Structurally stable systems. Tr. Mat. Inst. Steklova 169, 59–93. [English transl.: Proc. Steklov Inst. Math. 169, 61–95(1985)] Zbl. 619.58027Google Scholar
  15. Anosov, D.V., Aranson S. Kh., Bronshtein, I.U., Grines, V.Z. (1985): Dynamical Systems I: Smooth Dynamical Systems. Itogi Nauki Teich., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 1, 151–242. [English transl. in: Encycl. Math. Sci. 1, 149–230. Springer-Verlag, Berlin Heidelberg New York 1988] Zbl. 605.58001Google Scholar
  16. Anosov, D.V., Sinai, Ya.G. (1967): Some smooth ergodic systems. Usp. Mat. Nauk 22, No. 5, 107–172. [English transi.: Russ. Math. Surv. 22, No. 5, 103–167 (1967)] Zbl. 177,420Google Scholar
  17. Arnol’d, V.I., Afraimovich, V.S., Il’yashenko, Yu.S., Shil’nikov, L.P. (1986): Dynamical Systems V: Bifurcation Theory. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Pandora. Napravleniya 5. [English transi. in: Encycl. Math. Sci. 5. Springer-Verlag, Berlin Heidelberg New York 1993]Google Scholar
  18. Arnol’d, V.I., Il’yashenko, Yu.S. (1985): Dynamical Systems I: Ordinary Differential Equations. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 1, 5–149. [English transi. in: Encycl. Math. Sci. 1, 1–148. Springer-Verlag, Berlin Heidelberg New York 1988] Zbl. 602.58020Google Scholar
  19. Arnol’d, V.I., Kozlov, V.V., Nejstadt, A.I. (1985): Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 3, 5–304. [English transi. in: Encycl. Math. Sci. 3, 1–291. Springer-Verlag, Berlin Heidelberg New York 1987] Zbl. 612.70002Google Scholar
  20. Barge, M. (1987): Homoclinic intersections and indecomposability. Proc. Am. Math. Soc. 101, 541–544. Zbl. 657.58022Google Scholar
  21. Benedicks, M., Carleson, L. (1991): The dynamics of the Hénon map. Ann. Math., II. Ser. 133, No. 1, 73–169. Zbl. 724.58042Google Scholar
  22. Benoist, Y., Foulon, P., Labourie, F. (1992): Flots d’Anosov à distributions stables et instables différentiables. J. Am. Math. Soc. 5, No. 1, 33–74. Zbl. 759.58035Google Scholar
  23. Birkhoff, G.D. (1936/1950): Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Novi Lincaei, III. Sér. 1, 85–216; Collected Math. Papers. Am. Math. Soc., New York, 530–661. Zbl. 16,234Google Scholar
  24. Bohl, P. (1900): On certain differential equations of a general nature applicable to mechanics. Yur’ev 1900; Collected Works. Zinnatne, Riga, 73–198. FdM 31,358Google Scholar
  25. Bohl, P. (1904): Über die Bewegung eines mechanischen Systems in der Nähe einer Gleichgewichtslage. J. Reine Angew. Math. 127, 179–276. FdM 35,720Google Scholar
  26. Bowen, R. (1970a): Topological entropy and Axiom A. Global Analysis. Proc. Symp. Pure Math. 14, 23–41. Zbl. 207,544Google Scholar
  27. Bowen, R. (1970b): Markov partitions for Axiom A diffeomorphisms Am. J. Math. 92, 725–747. Zbl. 208,259Google Scholar
  28. Bowen, R. (1970c): Markov partitions and minimal sets for Axiom A diffeomorphisms. Am. J. Math. 92, 907–918. Zbl. 212,291Google Scholar
  29. Bowen, R. (1971): Periodic points and measures for Axiom A diffeomorphisms. Trans. Am. Math. Soc. 154, 377–397. Zbl. Zbl. 212,291Google Scholar
  30. Bowen, R. (1972): Periodic orbits for hyperbolic flows. Am. J. Math. 94, 1–30. Zbl. 254.58005Google Scholar
  31. Bowen, R. (1973): Symbolic dynamics for hyperbolic flows. Am. J. Math. 95, 429460. Zbl. 282.58009Google Scholar
  32. Bowen, R. (1975a): A horseshoe with positive measure. Invent. Math. 29, 203–204. Zbl. 306.58013Google Scholar
  33. Bowen, R. (1975b): Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lect. Notes Math. 470. Zbl. 308.28010Google Scholar
  34. Bowen, R. (1978): Markov partitions are not smooth. Proc. Am. Math. Soc. 71, 130–132. Zbl. 417.58011Google Scholar
  35. Bowen, R. (1979): Methods of Symbolic Dynamics. Mir, Moscow (Russian)Google Scholar
  36. Bowen, R., Franks, J. (1977): Homology for zero-dimensional nonwandering sets. Ann. Math., II. Ser.106, No.1, 73–92. Zbl. 375.58018Google Scholar
  37. Bowen, R., Ruelle, D. (1975): The ergodic theory of Axiom A flows. Invent. Math. 29, No. 3, 181–202. Zbl. 311.58010Google Scholar
  38. Bronshtein, I.Yu. (1984): Non-Autonomous Dynamical Systems. Shtiintsa, Kichinev. (Russian). Zbl. 651.58001Google Scholar
  39. Brudno, A.A. (1983): Entropy and complexity of the trajectories of a dynamical system. Tr. Mosk. Mat. 0.-va 44, 124–149. [English transi.: Trans. Mosc. Math. Soc. No. 2, 127–151 (1983)] Zbl. 499.28017Google Scholar
  40. Brunella, M. (1992): On the topological equivalence between Anosov flows on 3-manifolds. Comment. Math. Hely. 67, 459–470. Zbl. 768.58037Google Scholar
  41. Bunimovich, L.A., Pesin, Ya.B., Sinai, Ya.G., Yakobson, M.V. (1985): Dynamical Systems II: Ergodic Theory of Smooth Dynamical Systems. Itogi Nauki Teich., Ser. Sovrem. Probi. Mat., Fundam. Napravleniya 2, 113–232. [English transi. in: Encycl. Math. Sci. 2, 99–206. Springer-Verlag, Berlin Heidelberg New York 1989]. Zbl. 781.58018Google Scholar
  42. Cartwright, M.L., Littlewood, J.E. (1945): On non-linear differential equations of the second order I: The equation ÿ - k(1 - y2)ÿ + y = bÀk cos(.1t + a), k large. J. Lond. Math. Soc. 20, 180–189. Zbl. 61,189Google Scholar
  43. Cartwright, M.L., Littlewood, J.E. (1947): On non-linear differential equations of the second order II: The equation ÿ + k f (y, ÿ) + g(y, k) = p(t) = pi (t) + kp2(t); k 0, f (y) 1. Ann. Math. 48, 472–494; (1949): Ann. Math. 50, 504–505. Zbl. 29,126; Zbl. 38,250Google Scholar
  44. Dankner, A. (1978): On Smale’s Axiom A dynamical systems. Ann. Math., II. Ser. 107, 517–533. Zbl. 366.58009Google Scholar
  45. Dankner, A. (1980): Axiom A dynamical systems, cycles, and stability. Topology 19, 163–177. Zbl. 458.58013Google Scholar
  46. Denker, M., Grillenberger, C., Sigmund, K. (1976): Ergodic Theory on Compact Spaces. Lect. Notes Math. 527. Zbl. 328.28008Google Scholar
  47. Farrell, F.T., Jones, L.E. (1977): Markov cell structures. Bull. Am. Math. Soc. 83, 739–740. Zbl. 417.58012Google Scholar
  48. Farrell, F.T., Jones, L.E. (1978): Anosov diffeomorphisms constructed from iri(DiffS“). Topology 17, 273–282. Zbl. 407.58031Google Scholar
  49. Farrell, F.T., Jones, L.E. (1980): New attractors in hyperbolic dynamics. J. Differ. Geom. 15, No. 1, 107–133. Zbl. 459.58010Google Scholar
  50. Farrell, F.T., Jones, L.E. (1993): Markov cell structures near a hyperbolic set. Mem. Am. Math. Soc. 103, No. 491. Zbl. 781.58031Google Scholar
  51. Fenichel, N. (1971): Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226. Zbl. 246.58015Google Scholar
  52. Fenichel, N. (1974/1977): Asymptotic stability with rate conditions. Indiana Univ.Google Scholar
  53. Math. J. 23, 1109–1137; II: 26, 81–93. Zbl. 284.58008; Zbl. 365.58012Google Scholar
  54. Foster, M.J. (1976): Fibre derivatives and stable manifolds: a note. Bull. Lond. Math. Soc. 8, 286–288. Zbl. 334.55016Google Scholar
  55. Franke, J., Selgrade, J. (1977): Hyperbolicity and chain recurrence. J. Differ. Equations 26, 27–36. Zbl. 329.58012Google Scholar
  56. Franks, J. (1970): Anosov diffeomorphisms. Global Analysis. Proc. Symp. Pure Math. 14, 61–94. Zbl. 207,543Google Scholar
  57. Franks, J. (1971): Necessary conditions for stability of diffeomorphisms. Trans. Am. Math. Soc. 158, 301–308. Zbl. 219.58005Google Scholar
  58. Franks, J. (1975): Morse inequalities for zeta functions. Ann. Math., II. Ser. 102, 143–157. Zbl. 307.58016Google Scholar
  59. Franks, J. (1977): Constructing structurally stable diffeomorphisms. Ann. Math., II. Ser. 105, 343–359. Zbl. 366.58007Google Scholar
  60. Franks, J (1978): A reduced zeta function for diffeomorphisms. Am. J. Math. 100, 217–243. Zbl. 405.58037Google Scholar
  61. Franks, J. (1981): Knots, links, and symbolic dynamics Ann. Math., II. Ser., 113, 529–552. Zbl. 469.58013Google Scholar
  62. Franks, J. (1985): Nonsingular Smale flows on S3. Topology 24, 265–282. Zbl. 609.58039Google Scholar
  63. Franks, J , Robinson, C. (1976): A quasi-Anosov diffeomorphism that is not Anosov. Trans. Am. Math. Soc. 223, 267–278. Zbl. 347.58008Google Scholar
  64. Franks, J , Williams, B. (1980): Anomalous Anosov flows. Global Theory of Dynamical Systems. Lect. Notes Math. 819, 158–174. Zbl. 463.58021Google Scholar
  65. Franks, J , Williams, R.F. (1985): Entropy and knots. Trans. Am. Math. Soc. 291, 241–253. Zbl. 587.58038Google Scholar
  66. Fried, D. (1980): Efficiency vs. hyperbolicity on tori. Global Theory of Dynamical Systems. Lect. Notes Math. 819, 175–189. Zbl. 455.58021Google Scholar
  67. Fried, D. (1983): Transitive Anosov flows and pseudo-Anosov maps. Topology 22, 299–303. Zbl. 516.58035Google Scholar
  68. Fried, D. (1986): Entropy and twisted cohomology. Topology 25, 455–470. Zbl. 611.58036Google Scholar
  69. Fried, D. (1987): Rationality for isolated expansive sets. Adv. Math. 65, No. 1, 35–38. Zbl. 641.58036Google Scholar
  70. Gallavotti, G. (1976): Funzioni zeta ed insiemi basilari. Atti. Accad. Naz. Lincei, VIII. Ser. 61, No. 5, 309–317. Zbl. 378.58007Google Scholar
  71. Gavrilov, N.K., Shil’nikov, L.P. (1972): On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. I: Mat. Sb., Nov. Ser. 88, 475–492. [English transl.: Math. USSR, Sb. 17, 467–485 (1972)] Zbl. 251.58005Google Scholar
  72. Gavrilov, N.K., Shil’nikov, L.P. (1973): On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II: Mat. Sb., Nov. Ser. 90, 139–156. [English transl.: Math. USSR, Sb. 19, 139–156 (1974)] Zbl. 258.58009Google Scholar
  73. Ghys, E. (1984): Flots d’Anosov sur les 3-variétés fibrées en cercles. Ergodic Theory Dyn. Syst. 4, No. 1, 67–80. Zbl. 527.58030Google Scholar
  74. Ghys, E. (1992): Déformations de flots d’Anosov et de groupes Fuchsiens. Ann. Inst. Fourier 42, No. 1–2, 209–247. Zbl. 759.58036Google Scholar
  75. Gromov, M. (1981): Groups of polynomial growth and expanding maps. Publ. Math., Inst. Hautes Etud. Sci. 53, 53–78. Zbl. 474.20018Google Scholar
  76. Guckenheimer, J. (1970): Endomorphisms of the Riemann sphere. Global Analysis. Proc. Symp. Pure Math. 14, 95–123. Zbl. 205,541Google Scholar
  77. Gurevich, B.M., Sinai, Ya.G. (1969): Algebraic automorphisms of the torus and Markov chains In Billingsley, P.: Ergodic Theory and Information. I. Mir, Moscow, 205–233. Zbl. 184,433Google Scholar
  78. Hamenstädt, U. (1990): Entropy-rigidity of locally symmetric spaces of negative curvature. Ann. Math., II. Ser. 131, 35–51. Zbl. 699.53049Google Scholar
  79. Handel, M., Thurston, W. (1980): Anosov flows on new 3-manifolds. Invent. Math. 59, No. 2, 95–103. Zbl. 435.58019Google Scholar
  80. Hartman, Ph. (1971): The stable manifold of a point of a hyperbolic map of a Banach space. J. Differ. Equations 9, 360–379. Zbl. 223.58008Google Scholar
  81. Hénon, M. (1976): A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, No. 1, 69–76. Zbl. 576.58018Google Scholar
  82. Hirsch, M., Palis J., Pugh., C.C., Shub, M. (1970): Neighbourhoods of hyperbolic sets. Invent. Math. 9, No. 2, 121–134. Zbl. 191,217Google Scholar
  83. Hirsch, M., and Pugh, C.C. (1970): Stable manifolds and hyperbolic sets. Global Analysis. Proc. Symp. Pure Math. 14, 133–163. Zbl. 215,530Google Scholar
  84. Hirsch, M., Pugh., C.C., Shub, M. (1970): Invariant manifolds. Bull. Am. Math. Soc. 76, 1015–1019. Zbl. 226.58009Google Scholar
  85. Hirsch, M., Pugh., C.C., Shub, M. (1977): Invariant Manifolds. Lect. Notes Math. 583. Zbl. 355.58009Google Scholar
  86. Hurder, S., Katok, A. (1990): Differentiability, rigidity and Goldbillon-Vey classes for Anosov flows. Publ. Math., Inst. Hautes Etud. Sci. 72, 5–61. Zbl. 725.58034 Irwin, M.O. (1970): On the stable manifold theorem. Bull. Lond. Math. Soc. 2, 196–198. Zbl. 198,568Google Scholar
  87. Irwin, M.O. (1972): On the smoothness of the composition map. Q. J. Math., Oxford, II. Ser. 23, 113–133. Zbl. 235.46067Google Scholar
  88. Jones, L. (1983): Locally strange hyperbolic sets. Trans. Am. Math. Soc. 275, No. 1, 153–162. Zbl. 508.58033Google Scholar
  89. Kamaev, D.A. (1977): On the topological indecomposability of certain invariant sets of A-diffeomorphisms. Usp. Mat. Nauk 32, No. 1, 158Google Scholar
  90. Kan, I., Yorke, J.A. (1990): Antimonotonicity: concurrent creation and annihilation of periodic orbits. Bull. Am. Math. Soc., New Ser. 23, 469–476. Zbl. 713.58026Google Scholar
  91. Katok, A. (1980): Lyapunov exponents, entropy and periodic orbits for diffeomor‑phisms. Publ. Math., Inst. Hautes Etud. Sci. 51, 137–173. Zbl. 445.58015Google Scholar
  92. Katok, A.B. (1970): Rotation numbers and U-flows. Usp. Mat. Nauk 25, No. 5, 243–244. Zbl. 207,227Google Scholar
  93. Katok, A.B. (1971): Local properties of hyperbolic sets. In the Russian translation of (Nitecki 1971), 214–232. Zbl. 311.58001Google Scholar
  94. Katok, A.B. (1977): The entropy conjecture. In (Anosov 1977a), 181–203. [English transi.: Transi., II. Ser., Am. Math. Soc. 133, 91–108 (1986)] Zbl. 628.58026Google Scholar
  95. Kolesov, A.Yu., Kolesov, Yu.S., Mishchenko, E.F., Rozov, N.Kh. (1989): On the phenomenon of chaos in three-dimensional relaxation systems. Mat. Zametki 46, 153–155. (Russian) Zbl. 714.34076Google Scholar
  96. Krieger, W. (1972): On unique ergodicity. Proc. 6th Berkeley Symp. Math. Stat. Prob., Berkeley 1970, 2, 327–345. Zbl. 262.28013Google Scholar
  97. Krzyzewski, K. (1978): Some results on expanding mappings. Astérisque 50 (1977), 205–218. Zbl. 413.58017Google Scholar
  98. Krzyzewski, K. (1979): A remark on expanding mappings. Colloq. Math. 41, No. 2, 291–295. Zbl. 446.58009Google Scholar
  99. Krzyzewski, K. (1982): On analytic invariant measures for expanding mappings Colloq. Math. 46, No. 1, 59–65. Zbl. 508.58028Google Scholar
  100. Kurata, M. (1977): Hartman’s theorem for hyperbolic sets. Nagoya Math. J. 67, 41–52. Zbl. 336.58008Google Scholar
  101. Kurata, M. (1978/1979): Hyperbolic nonwandering sets without dense periodic points. Proc. Japan Acad., Ser. A 54, No. 7, 206–211. Zbl. 438.58022; (1979) Nagoya Math. J. 74, 77–86. Zbl. 388.58017Google Scholar
  102. Kurata, M. (1979): Markov partitions of hyperbolic sets. J. Math. Soc. Japan 31, No. 1, 39–51. Zbl. 399.58008Google Scholar
  103. Kuratowski, K. (1969): Topology. Mir, Moscow, transl. from the English edition, Acad. Press, New York (1966). Zbl. 158,408Google Scholar
  104. Levi, M. (1981): Qualitative Analysis of Periodically Forced Relaxation Oscillations. Mem. Am. Math. Soc. 244. Zbl. 448.34032Google Scholar
  105. Levinson, N. (1949): A second order differential equation with singular solutions. Ann. Math., II. Ser. 50, 126–153. Zbl. 41,423Google Scholar
  106. Liao, S.T. (1980): On the stability conjecture. Chin. Ann. Math. 1, No. 1, 9–30. Zbl. 449.58013Google Scholar
  107. Littlewood, J.E. (1957a): On the non-linear differential equations of the second order: III. The equation ÿ - k(1 - y2)ÿ + y = bµk cos(µt + a) for large k, and its generalizations. Acta Math. 97, 267–308. Zbl. 81,84Google Scholar
  108. Littlewood, J.E. (1957b): On the non-linear differential equations of the second order: IV. The general equation ÿ + k f (y)ÿ + g(y) = bkp(ç), = t + a. Acta Math. 98, 1–110. Zbl. 81,84Google Scholar
  109. Littlewood, J.E. (1960): On the number of stable periods of a differential equation of the Van der Pol type. IEE Trans. Circuit Theory 7, 535–542Google Scholar
  110. Mailer, M., Shub, M. (1985): The integral homology of Smale diffeomorphisms. Topology 24, 153–164. Zbl. 595.58025Google Scholar
  111. Malta, I. (1980): Hyperbolic Birkhoff centers. Trans. Am. Math. Soc. 262, 181–193. Zbl. 458.58017Google Scholar
  112. Mahé, R. (1975): Expansive diffeomorphisms. Dynamical Systems. Proc. Symp. Univ. Warwick 1974. Lect. Notes Math. 468, 162–174. Zbl. 309.58016Google Scholar
  113. Marié, R. (1977): Quasi-Anosov diffeomorphisms and hyperbolic manifolds. Trans. Am. Math. Soc. 229, 351–370. Zbl. 356.58009Google Scholar
  114. Marié, R. (1978): Contributions to the stability conjecture. Topology 17, 383–396. Zbl. 405.58035Google Scholar
  115. Marié, R. (1982): An ergodic closing lemma. Ann. Math., II. Ser. 116, 503–540. Zbl. 511.58029Google Scholar
  116. Marié, R. (1988a): On the creation of homoclinic points. Publ. Math., Inst. Hautes Etud. Sci. 66, 139–159. Zbl. 699.58024Google Scholar
  117. Marié, R. (1988b): A proof of the C1-stability conjecture. Publ. Math., Inst. Hautes Etud. Sci. 66, 161–210. Zbl. 678.58022Google Scholar
  118. Marié, R., Pugh, C. (1975): Stability of endomorphisms. Dynamical Systems. Proc. Symp. Univ. Warwick 1974. Lect. Notes Math. 468, 175–184. Zbl. 315.58018Google Scholar
  119. Manning, A. (1973): Axiom A diffeomorphisms have rational zeta function. Bull. Lond. Math. Soc. 3, 215–220. Zbl. 219.58007Google Scholar
  120. Manning, A. (1974): There are no new Anosov diffeomorphisms on tori. Am. J. Math. 96, 422–429. Zbl. 242.58003Google Scholar
  121. Margulis, G.A. (1970): On certain measures associated with U-flows on compact manifolds. Funkts. Anal. Prilozh. 4, No. 1, 62–76. [English transi Funct. Anal Appl. 4, 55–67 (1970)] Zbl. 245.58003Google Scholar
  122. Martin, N.F.G., England, J.W. (1981): Mathematical Theory of Entropy. Addison-Wesley, Reading, Mass. Zbl. 456.28008Google Scholar
  123. Mather, J. (1968): Characterization of Anosov diffeomorphisms. Indagationes Math. 30, 479–483. Zbl. 165,570Google Scholar
  124. Mel’nikov, V.K. (1963): On the stability of the centre under time-periodic perturbations. Tr. Mosk. Mat. 0.-va 12, 3–52. [English transl.: Trans. Mosc. Math. Soc. 1963, 1–56 (1965)] Zbl. 135,310Google Scholar
  125. Meyer, K.R., Sell, G.R. (1989): Melnikov transforms, Bernoulli bundles and almost periodic perturbations. Trans. Am. Math. Soc. 314, 63–105. Zbl. 707.34041Google Scholar
  126. Mora, L., Viana, M. (1990): Abundance of Strange Attractors. Preprint IMPA, Rio de JaneiroGoogle Scholar
  127. Moser, J. (1973): Stable and random motions in dynamical systems. With special emphasis on celestial mechanics. Ann. Math. Stud. 77. Zbl. 271.70009Google Scholar
  128. Newhouse, S.E. (1970): On codimension one Anosov diffeomorphisms. Am. J. Math. 92, 761–770. Zbl. 204,569Google Scholar
  129. Newhouse, S.E. (1972): Hyperbolic limit sets. Trans. Am. Math. Soc. 167, 125–150. Zbl. 239.58009Google Scholar
  130. Newhouse, S.E. (1976): On homoclinic points. Proc. Am. Math. Soc. 60, 221–224. Zbl. 344.58015Google Scholar
  131. Newhouse, S.E. (1979): The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Publ. Math., Inst. Hautes Etud. Sci. 50, 101–152. Zbl. 445.58022Google Scholar
  132. Newhouse, S.E. (1980a): Dynamical properties of certain non-commutative skew products. Global Theory of Dynamical Systems. Lecture Notes Math. 819, 353363. Zbl. 477.58019Google Scholar
  133. Newhouse, S.E. (1980b): Lectures on dynamical systems. Dynamical Systems, C.I.M.E. Lect., Bressanone 1978. Prog. Math. 8, 1–114. Zbl. 444.58001Google Scholar
  134. Newhouse, S.E. (1988): Entropy and volume. Ergodic Theory Dyn. Syst. (Charles Conley memorial volume) 8, 283–299. Zbl. 638.58016Google Scholar
  135. Newhouse, S.E. (1989): Continuity properties of entropy. Ann. Math., II. Ser. 129, 215–235. Zbl. 676.58039Google Scholar
  136. Newhouse, S.E., Palis, J. (1973): Hyperbolic nonwandering sets on two-dimensional manifolds. Dynamical Systems, Proc. Symp. Univ. Bahia, Salvador 1971, 293–301. Zbl. 279.58010Google Scholar
  137. Newhouse, S.E., Young, L.S. (1983): Dynamics of certain skew products. Geometric Dynamics. Lect. Notes Math. 1007, 611–629. Zbl. 535.58036Google Scholar
  138. Nitecki, Z. (1971): Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms. MIT Press, Cambridge (Mass.) London. [Russian transi.: Mir, Moscow 1975] Zbl. 246.58012Google Scholar
  139. Nitecki, Z., Shub, M. (1976): Filtrations, decompositions and explosions. Am. J. Math. 97, 1029–1047. Zbl. 324.58015Google Scholar
  140. Oka, M. (1990): Expansiveness of real flows. Tsukuba J. Math. 14, No. 1, 1–8. Zbl. 733.54030Google Scholar
  141. Osipov, A.V. (1975): The hyperbolicity of a basic family for Levinson’s equation. Differ. Uravn. 11, 1795–1800. [English transi.: Differ. Equations 11, 1340–1344 (1976)] Zbl. 329.34036Google Scholar
  142. Osipov, A.V. (1976a): On the behaviour of solutions of the Levinson equation. Differ. Uravn. 12, 2000–2008. [English transi.: Differ. Equations 12, 1401–1407 (1977)] Zbl. 349.34024Google Scholar
  143. Osipov, A.V. (1976b): 0-stability of the Levinson equation. Vestn. Leningr. Univ. 1976, No. 7, 156–157. Zbl. 357.34054Google Scholar
  144. Palis, J. (1969): On Morse-Smale dynamical systems. Topology 8, 385–405. Zbl. 189,239Google Scholar
  145. Palis, J. (1970): A note on 0-stability. Global Analysis. Proc. Symp. Pure Math. 14, 221–222. Zbl. 214,508Google Scholar
  146. Palis, J. (1988): On the C 0-stability conjecture. Publ. Math., Inst. Hautes Etud. Sci. 66, 211–215. Zbl. 648.58019Google Scholar
  147. Palis, J., de Melo, W. (1982): Geometric Theory of Dynamical Systems. An Introduction. Springer-Verlag, New York Berlin Heidelberg. Zbl. 491.58001Google Scholar
  148. Palis, J., Smale, S. (1970): Structural stability theorems. Global Analysis. Proc. Symp. Pure Math. 14, 223–231. Zbl. 214,507Google Scholar
  149. Palis, J., Takens, F. (1985): Cycles and measure of bifurcation sets for two‑dimensional diffeomorphisms. Invent. Math. 82, 397–422. Zbl. 579.58005Google Scholar
  150. Palis, J., Takens, F. (1987): Hyperbolicity and the creation of homoclinic orbits. Ann. Math., II. Ser. 125, 337–374. Zbl. 641.58029Google Scholar
  151. Palis, J., Yoccoz, J.C. (1989): Rigidity of centralizers of diffeomorphisms. Ann. Sci. Ec. Norm. Super., IV. Ser. 22, No. 1, 81–98. Zbl. 709.58022Google Scholar
  152. Palmer, K.J. (1984): Exponential dichotomies and transversal homoclinic points. J. Differ. Equations 55, 225–256. Zbl. 508.58035Google Scholar
  153. Patterson, S., Robinson, C. (1988): Basins for general non-linear Hénon attracting sets. Proc. Am. Math. Soc. 103, 615–623. Zbl. 651.58028Google Scholar
  154. Plante, J.F. (1972): Anosov flows. Am. J. Math. 94, 729–754. Zbl. 257.58007Google Scholar
  155. Plante, J.F. (1981): Anosov flows, transversely affine foliations, and a conjecture of Verjovsky. J. Lond. Math. Soc., II. Ser. 23, No. 2, 359–362. Zbl. 465.58020Google Scholar
  156. Piss, V.A. (1964): Non-Local Problems of the Theory of Vibrations. Nauka, Moscow‑Leningrad. [English transl.: Acad. Press, New York 1966] Zbl. 123,58Google Scholar
  157. Piss, V.A. (1977): Integral Sets of Periodic Systems of Differential Equations. Nauka, Moscow. (Russian) Zbl. 463.34002Google Scholar
  158. Pollicott, M. (1987): Symbolic dynamics for Smale flows. Am. J. Math. 109, No. 1, 183–200. Zbl. 628.58042Google Scholar
  159. Przytycki, F. (1976): Anosov endomorphisms. Stud. Math. 58, No. 3, 249–285. Zbl. 357.58010Google Scholar
  160. Pugh, C.C., Robinson, R.C. (1982): The C1 closing lemma, including Hamiltonians. Preprint, Berkeley, Univ. of California. Appeared in: Ergodic Theory Dyn. Systems 3, 261–313 (1983). Zbl. 548.58012Google Scholar
  161. Pugh, C.C., Shub, M. (1970): The .fl-stability theorem for flows. Invent. Math. 11, No. 2, 150–158. Zbl. 212,291Google Scholar
  162. Pugh, C.C., Walker, R.B., Wilson, F.W., Jr. (1977): On Morse-Smale approximation —a counterexample. J. Differ. Equations 23, 173–182. Zbl. 346.58006Google Scholar
  163. Ratner, M.E. (1973): Markov partitions for Anosov flows on n-dimensional manifolds. Isr. J. Math. 15, No. 1, 92–114. Zbl. 269.58010Google Scholar
  164. Ratner, M.E. (1969a): Invariant measure with respect to an Anosov flow on a three-dimensional manifold. Dokl. Akad. Nauk SSSR 186, 261–263. [English transl.: Soy. Math., Dokl. 10, 586–588 (1969)] Zbl. 188,266Google Scholar
  165. Ratner, M.E. (1969b): Markov splitting for U-flows in three-dimensional manifolds. Mat. Zametki 6, 693–704. [English transl.: Math. Notes 6, 880–886 (1969)] Zbl. 198,568Google Scholar
  166. Robbin, J.W. (1971): A structural stability theorem. Ann. Math., II. Ser. 94, 447493. Zbl. 224.58005Google Scholar
  167. Robinson, R.C. (1975): Structural stability of C1 flows. Dynamical Systems. Proc. Symp. Univ. Warwick, 1974. Lect. Notes Math. 468, 262–277. Zbl. 307.58012Google Scholar
  168. Robinson, R.C. (1976): Structural stability of C1 diffeomorphisms. J. Differ. Equations 22, 28–73. Zbl. 343.58009Google Scholar
  169. Robinson, R.C. (1983): Bifurcation to infinitely many sinks. Commun. Math. Phys. 90, 433–459. Zbl. 531.58035Google Scholar
  170. Robinson, R.C. (1988): Horseshoes for autonomous Hamiltonian systems using the Melnikov integral. Ergodic Theory Dyn. Syst. (Charles Conley Memorial Volume) 8, 395–409. Zbl. 666.58039Google Scholar
  171. Ruelle, D. (1978): Thermodynamic Formalism. Addison-Wesley, Reading, Mass. Zbl. 401.28016Google Scholar
  172. Ruelle, D., Sullivan, D. (1975): Currents, flows and diffeomorphisms. Topology 14, 319–327. Zbl. 321.58019Google Scholar
  173. Säkai, K. (1987): Anosov maps on closed topological manifolds. J. Math. Soc. Japan 39, 505–519. Zbl. 647.58039Google Scholar
  174. Sanami, A. (1981/1983): The stability theorem for discrete dynamical systems on two-dimensional manifolds. Proc. Japan. Acad., Ser. A 57, 403–407. Zbl. 509.58028; Nagoya Math. J. 90, 1–55. Zbl. 515.58022Google Scholar
  175. Shil’nikov, L.P. (1967): On a problem of Poincaré and Birkhoff. Mat. Sb. 74, 378397. [English transl.: Math. USSR, Sb. 3, 353–371 (1969)] Zbl. 244.34033Google Scholar
  176. Shub, M. (1969): Endomorphisms of compact differentiable manifolds. Am. J. Math. 91, 175–199. Zbl. 201,563Google Scholar
  177. Shub, M. (1972): Structurally stable diffeomorphisms are dense. Bull. Am. Math. Soc. 78, 817–818. Zbl. 265.58003Google Scholar
  178. Shub, M. (1974): Dynamical systems, filtrations and entropy. Bull. Am. Math. Soc. 80, 27–41. Zbl. 305.58014Google Scholar
  179. Shub, M. (1978): Stabilité globale des systèmes dynamiques. Astérisque 56. Zbl. 396.58014Google Scholar
  180. Shub, M., Smale, S. (1972): Beyond hyperbolicity. Ann. Math., II. Ser. 96, 587–591. Zbl. 247.58008Google Scholar
  181. Shub, M., Sullivan, D. (1975): Homology theory and dynamical systems. Topology 14, 109–132. Zbl. 408.58023Google Scholar
  182. Sinai, Ya.G. (1968a): Markov partitions and C-diffeomorphisms. Funkts. Anal. Prilozh. 2, No. 1, 64–89. [English transl.: Funct. Anal. Appl. 2, 61–82 (1968)] Zbl. 182,550Google Scholar
  183. Sinai, Ya.G. (1968b): Construction of Markov partitions. Funkts. Anal. Prilozh. 2, No. 3, 70–80. [English transl.: Funct. Anal. Appl. 2, 245–253 (1968)] Zbl. 194,226Google Scholar
  184. Smale, S. (1963): A structurally stable differentiable homeomorphism with an infinite number of periodic points. Tr. Mezhdunar., Teor. Prikl. Mekh., Kiev 1961, 2, 365366. Zbl. 125,116Google Scholar
  185. Smale, S. (1965): Diffeomorphisms with many periodic points. Differential and Combinatorial Topology. Symp. honour M. Morse, Princeton Univ. Press. 27, 63–80. Zbl. 142,411Google Scholar
  186. Smale, S. (1967a): Dynamical systems on n-dimensional manifolds. Differential Equations and Dynamical Systems, Proc. Int. Puerto Rico 1965, 483–486. Zbl. 183,98Google Scholar
  187. Smale, S. (1967b): Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817. Zbl. 202,552Google Scholar
  188. Smale, S. (1970): The f-stability theorem. Global Analysis. Proc. Symp. Pure Math. 14, 289–297. Zbl. 205,541Google Scholar
  189. Smale, S. (1973): Stability and isotopy in discrete dynamical systems. In: Dynamical Systems, Proc. Symp. Univ. Bahia, Salvador 1971, 527–530. Zbl. 284.58013Google Scholar
  190. Smale, S. (1980): The Mathematics of Time. Essays on Dynamical Systems, Economic Processes, and Related Topics. Springer-Verlag, New York Berlin Heidelberg. Zbl. 451.58001Google Scholar
  191. Solodov, V.V. (1982): Homeomorphisms of the line and foliations. Izv. Akad. Nauk SSSR Ser. Mat. 46, 1047–1061. [English transi.: Math. USSR, Izv. 21, 341–354 (1982)] Zbl. 521.57022Google Scholar
  192. Solodov, V.V. (1991): Topological questions in the theory of dynamical systems. Usp. Mat. Nauk 46, No. 4, 93–114. [English transl.: Russ. Math. Surv. 46, No. 4, 107–134 (1991)] Zbl. 739.58049Google Scholar
  193. Steinlein, H., Walther, H.-O. (1990): Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for C1-maps in Banach spaces. J. Dyn. Differ. Equations 2, 325–365. Zbl. 702.58051Google Scholar
  194. Tedeschini-Lalli, L., Yorke, J.A. (1986): How often do simple dynamical processes have infinitely many coexisting sinks? Commun. Math. Phys. 106, 635–657. Zbl. 602.58036Google Scholar
  195. Tomter, P. (1975): On the classification of Anosov flows. Topology 14, 179–189. Zbl. 365.58013Google Scholar
  196. Tresser, Ch. (1983): Un théorème de Sil’nikov en C1’1. C. R. Acad. Sci., Paris, Ser. 1 296, No. 13, 545–548. Zbl. 522.58034Google Scholar
  197. Verjovsky, A. (1974): Codimension one Anosov flows. Bol. Soc. Mat. Mex., II. Ser. 19, No. 2, 49–77. Zbl. 323.58014Google Scholar
  198. Wagoner, J. (1986): Realizing symmetries of a subshift of finite type by homeomor‑phisms of spheres. Bull. Am. Math. Soc. 14, 301–303. Zbl. 603.58039Google Scholar
  199. Wang, X.-J. (1990): The Newhouse set has a positive Hausdorff dimension. Commun. Math. Phys. 131, 317–332. Zbl. 708.58017Google Scholar
  200. Wiggins, S. (1988): Global Bifurcations and Chaos. Analytical Methods. Appl. Mat. Sci. 73, Springer-Verlag, New York Berlin Heidelberg. Zbl. 661.58001Google Scholar
  201. Yakobson, M.V. (1976): On some proofs of Markov partitions. Dokl. Akad. Nauk SSSR 226, 1021–1024. [English transl.: Sov. Math., Dokl. 17, 247–251 (1976)) Zbl. 344.58016Google Scholar
  202. Yomdin, Y. (1987a): Volume growth and entropy. Isr. J. Math. 57, 285–301. Zbl. 641.58036Google Scholar
  203. Yomdin, Y. (1987b): Ck-resolution of semialgebraic mappings Addendum to “Volume growth, and entropy”. Isr. J. Math. 57, 301–317. Zbl. 641.54037Google Scholar
  204. Zeeman, E.C. (1975): Morse inequalities for diffeomorphisms with shoes and flows with solenoids. Dynamical Systems, Proc. Symp. Univ. Warwick 1974, Lect. Notes Math. 468, 44–47. Zbl. 308.58012Google Scholar
  205. Zizza, F. (1988): Automorphisms of hyperbolic dynamical systems and K2. Trans. Am. Math. Soc. 307, 773–797. Zbl. 672.34065Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • D. V. Anosov
  • V. V. Solodov

There are no affiliations available

Personalised recommendations