Skip to main content

Part of the book series: Springer Study Edition ((SSE))

  • 530 Accesses

Abstract

As in many branches of modern physics, scattering experiments are an important source of information in surface research. The scattering process on a surface is therefore a central topic among the various interactions of a solid. Like in bulk solid-state physics, elastic scattering can tell us something about the symmetry and the geometric arrangement of atoms near the surface, whereas inelastic scattering processes, where energy quanta are transferred to or from the topmost atomic layers of a solid, yield information about possible excitations of a surface or interface, both electronic and vibronic ones. In principle, all kinds of particles, X rays, electrons, atoms, molecules, ions, neutrons, etc. can be used as probes. The only prerequisite in surface and interface physics is the required surface sensitivity. The geometry and possible excitations of about 1015 surface atoms per cm2 must be studied against the background of about 1023 atoms present in a bulk volume of one cm3. In surface and interface physics the appropriate geometry for a scattering experiment is thus the reflection geometry. Furthermore, only particles that do not penetrate too deeply into the solid can be used. Neutron scattering, although it is applied in some studies, is not a very convenient technique because of the “weak” interaction with solid material. The same is true to some extent for X-ray scattering. X rays generally penetrate the whole crystal and the information carried by them about surface atoms is negligible. If used in surface analysis, X-ray scattering requires a special geometry and experimental arrangement. In this sense ideal probes for the surface are atoms, ions, molecules and low energy electrons [4.1]. Atoms and molecules with low energy interact only with the outermost atoms of a solid, and low-energy electrons generally penetrate only a few Ångstroms into the material. The mean-free path in the solid is, of course, dependent on the energy of the electrons, as may be inferred from Fig.4.1. In particular, for low-energy electrons, the “strong” interaction with matter — i.e. with the valence electrons of the solid — leads to considerable problems in the theoretical description; in contrast to X-ray and neutron scattering multiple-scattering events must be taken into account, and thus the simple analogy to an optical diffraction experiment breaks down. In quantum mechanical language, the Born approximation is not sufficient. The detailed treatment using the so-called dynamic theory (Sect.4.4) takes into account all these effects by considering the boundary problem of matching all possible electron waves outside and inside the solid in the correct way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Raether: Excitation of Plasmon and Interband Transitions by Electrons. Springer Tracts Mod. Phys. Vol. 88 ( Springer, Berlin, Heidelberg 1980 )

    Google Scholar 

  2. H. Ibach, D.L. Mills: Electron Energy Loss Spectroscopy and Surface Vibrations ( Academic, New York 1982 )

    Google Scholar 

  3. H. Lath: Surf. Sci. 168, 773 (1986)

    Article  Google Scholar 

  4. H. Ibach: Electron Energy Loss Spectrometers, Springer Ser. Opt. Sci. Vol. 63 ( Springer, Berlin, Heidelberg 1991 )

    Google Scholar 

  5. H. Ibach, M. Balden, D. Bruchmann, S. Lehwald: Surf. Sci. 269 /270, 94 (1992)

    Article  Google Scholar 

  6. A. Spitzer, H. Luth: Surface Sci. 102, 29 (1981)

    Article  CAS  Google Scholar 

  7. A. Rizzi, H. Moritz, H. Luth: J. Vac. Sci. Technol. A 9, 912 (1991)

    Article  CAS  Google Scholar 

  8. J.E. Rowe, H. Ibach: Phys. Rev. Lett. 31, 102 (1973)

    Article  CAS  Google Scholar 

  9. E. Colavita, M. De Creszenzi, L. Papagno, R. Scarmozzino, L.S. Caputi, R. Rosei, E. Tosatti: Phys. Rev. B 25, 2490 (1982)

    Google Scholar 

  10. G. Crecelius (ISI, Research Center Jülich): Priv. commun.

    Google Scholar 

  11. G. Ertl, J. Küppers: Low Energy Electrons and Surface Chemistry, 2nd edn. (VHC, Weinheim 1985)

    Google Scholar 

  12. M.P. Seah, W.A. Dench: Surf. Interf. Anal. I (1979). Compilation of experimental data determined with various electron energies for a large variety of materials

    Google Scholar 

  13. M.A. Van Hove, W.H. Weinberg, C.-M. Chan: Low-Energy Electron Diffraction, Springer Ser. Surf. Sci., Vol. 6 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  14. K. Christmann, G. Ertl, O. Schober: Surf. Sci. 40, 61 (1973)

    Article  CAS  Google Scholar 

  15. G. Ertl: In Molecular Processes on Solid Surfaces, ed. by E. Dranglis, R.D. Gretz, R.I. Jaffee (McGraw-Hill, New York 1969) p. 147

    Google Scholar 

  16. J.B. Pendry: Low Energy Electron Diffraction (Academic, New York 1974)

    Google Scholar 

  17. G. Capart: Surf. Sci. 13, 361 (1969)

    Article  Google Scholar 

  18. E.G. McRae: J. Chem. Phys. 45, 3258 (1966)

    Article  CAS  Google Scholar 

  19. R. Feder (ed.): Polarized Electrons in Surface Physics (World Scientific, Singapur 1985)

    Google Scholar 

  20. H. Ibach, D.L. Mills: Electron Energy Loss Spectroscopy and Surface Vibrations (Academic, New York 1982)

    Google Scholar 

  21. E. Fermi: Phys. Rev. 57, 485 (1940)

    Article  CAS  Google Scholar 

  22. J. Hubbard: Proc. Phys. Soc. (London) A 68, 976 (1955)

    Article  Google Scholar 

  23. H. Fröhlich, H. Petzer: Proc. Phys. Soc. (London) A 68, 525 (1955)

    Article  Google Scholar 

  24. H. Ibach, H. Lath: Solid-State Physics (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  25. H. Liith: Surf. Sci. 126, 126 (1983)

    Article  Google Scholar 

  26. R. Matz: Reine und gasbedeckte GaAs(I10) Spaltflächen in HREELS, Dissertation, RWTH Aachen (1982)

    Google Scholar 

  27. P. Grosse: Freie Elektronen in Festkörpern (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  28. Ph. Lambin, J.-P. Vigneron, A.A. Lucas: Solid State Commun. 54, 257 (1985)

    Article  CAS  Google Scholar 

  29. A. Ritz, H. Lüth: Phys. Rev. B 32, 6596 (1985)

    Article  CAS  Google Scholar 

  30. N. Bündgens: Elektronenspektroskopische Untersuchungen an Sn-Schichten auf III-V Halbleiteroberflächen, Diploma Thesis, RWTH Aachen (1984)

    Google Scholar 

  31. M. Mattere, H. Lüth: Surf. Sci. 126, 502 (1983)

    Article  Google Scholar 

  32. A. Spitzer, H. Lath: Phys. Rev. B 30, 3098 (1984)

    Article  CAS  Google Scholar 

  33. S. Lehwald, J.M. Szeftel, H. Ibach, T.S. Rahman, D.L. Mills: Phys. Rev. Lett. 50, 518 (1983)

    Article  CAS  Google Scholar 

  34. R.F. Willis: Surf. Sci. 89, 457 (1979)

    Article  CAS  Google Scholar 

  35. H. Lüth, R. Matz: Phys. Rev. Lett. 46, 1952 (1981)

    Article  Google Scholar 

  36. R. Matz, H. Liith: Surf. Sci. 117, 362 (1982)

    Article  CAS  Google Scholar 

  37. L.C. Feldman, J.W. Mayer: Fundamentals of Surface and Thin Film Analysis (North-Holland, New York 1986)

    Google Scholar 

  38. J.T. McKinney, M. Leys: 8th Nat’l Conf. on Electron Probe Analysis, New Orleans, LA (1973)

    Google Scholar 

  39. J.F. van der Veen: Ion beam crystallography of surfaces and interfaces. Surf. Sci. Rpts. 5, 199 (1985)

    Article  Google Scholar 

  40. L.C. Feldman, J.W. Mayer, S.T. Picraux: Materials Analysis by Ion Channeling (Academic, New York 1982)

    Google Scholar 

  41. Priv. communication by S. Mantl, ISI, Research Center Jülich (1990)

    Google Scholar 

  42. J. Haskell, E. Rimini, J.W. Mayer: J. App1. Phys. 43, 3425 (1972)

    Article  CAS  Google Scholar 

  43. J.U. Anderson, O. Andreason, J.A. Davis, E. Uggerhoj: Rad. Eff. 7, 25 (1971)

    Article  Google Scholar 

  44. R.M. Tromp: The structure of silicon surfaces, Dissertation, University of Amsterdam (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüth, H. (1995). Scattering from Surfaces. In: Surfaces and Interfaces of Solid Materials. Springer Study Edition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03132-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03132-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58576-3

  • Online ISBN: 978-3-662-03132-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics