Abstract
As in many branches of modern physics, scattering experiments are an important source of information in surface research. The scattering process on a surface is therefore a central topic among the various interactions of a solid. Like in bulk solid-state physics, elastic scattering can tell us something about the symmetry and the geometric arrangement of atoms near the surface, whereas inelastic scattering processes, where energy quanta are transferred to or from the topmost atomic layers of a solid, yield information about possible excitations of a surface or interface, both electronic and vibronic ones. In principle, all kinds of particles, X rays, electrons, atoms, molecules, ions, neutrons, etc. can be used as probes. The only prerequisite in surface and interface physics is the required surface sensitivity. The geometry and possible excitations of about 1015 surface atoms per cm2 must be studied against the background of about 1023 atoms present in a bulk volume of one cm3. In surface and interface physics the appropriate geometry for a scattering experiment is thus the reflection geometry. Furthermore, only particles that do not penetrate too deeply into the solid can be used. Neutron scattering, although it is applied in some studies, is not a very convenient technique because of the “weak” interaction with solid material. The same is true to some extent for X-ray scattering. X rays generally penetrate the whole crystal and the information carried by them about surface atoms is negligible. If used in surface analysis, X-ray scattering requires a special geometry and experimental arrangement. In this sense ideal probes for the surface are atoms, ions, molecules and low energy electrons [4.1]. Atoms and molecules with low energy interact only with the outermost atoms of a solid, and low-energy electrons generally penetrate only a few Ångstroms into the material. The mean-free path in the solid is, of course, dependent on the energy of the electrons, as may be inferred from Fig.4.1. In particular, for low-energy electrons, the “strong” interaction with matter — i.e. with the valence electrons of the solid — leads to considerable problems in the theoretical description; in contrast to X-ray and neutron scattering multiple-scattering events must be taken into account, and thus the simple analogy to an optical diffraction experiment breaks down. In quantum mechanical language, the Born approximation is not sufficient. The detailed treatment using the so-called dynamic theory (Sect.4.4) takes into account all these effects by considering the boundary problem of matching all possible electron waves outside and inside the solid in the correct way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
H. Raether: Excitation of Plasmon and Interband Transitions by Electrons. Springer Tracts Mod. Phys. Vol. 88 ( Springer, Berlin, Heidelberg 1980 )
H. Ibach, D.L. Mills: Electron Energy Loss Spectroscopy and Surface Vibrations ( Academic, New York 1982 )
H. Lath: Surf. Sci. 168, 773 (1986)
H. Ibach: Electron Energy Loss Spectrometers, Springer Ser. Opt. Sci. Vol. 63 ( Springer, Berlin, Heidelberg 1991 )
H. Ibach, M. Balden, D. Bruchmann, S. Lehwald: Surf. Sci. 269 /270, 94 (1992)
A. Spitzer, H. Luth: Surface Sci. 102, 29 (1981)
A. Rizzi, H. Moritz, H. Luth: J. Vac. Sci. Technol. A 9, 912 (1991)
J.E. Rowe, H. Ibach: Phys. Rev. Lett. 31, 102 (1973)
E. Colavita, M. De Creszenzi, L. Papagno, R. Scarmozzino, L.S. Caputi, R. Rosei, E. Tosatti: Phys. Rev. B 25, 2490 (1982)
G. Crecelius (ISI, Research Center Jülich): Priv. commun.
G. Ertl, J. Küppers: Low Energy Electrons and Surface Chemistry, 2nd edn. (VHC, Weinheim 1985)
M.P. Seah, W.A. Dench: Surf. Interf. Anal. I (1979). Compilation of experimental data determined with various electron energies for a large variety of materials
M.A. Van Hove, W.H. Weinberg, C.-M. Chan: Low-Energy Electron Diffraction, Springer Ser. Surf. Sci., Vol. 6 (Springer, Berlin, Heidelberg 1986)
K. Christmann, G. Ertl, O. Schober: Surf. Sci. 40, 61 (1973)
G. Ertl: In Molecular Processes on Solid Surfaces, ed. by E. Dranglis, R.D. Gretz, R.I. Jaffee (McGraw-Hill, New York 1969) p. 147
J.B. Pendry: Low Energy Electron Diffraction (Academic, New York 1974)
G. Capart: Surf. Sci. 13, 361 (1969)
E.G. McRae: J. Chem. Phys. 45, 3258 (1966)
R. Feder (ed.): Polarized Electrons in Surface Physics (World Scientific, Singapur 1985)
H. Ibach, D.L. Mills: Electron Energy Loss Spectroscopy and Surface Vibrations (Academic, New York 1982)
E. Fermi: Phys. Rev. 57, 485 (1940)
J. Hubbard: Proc. Phys. Soc. (London) A 68, 976 (1955)
H. Fröhlich, H. Petzer: Proc. Phys. Soc. (London) A 68, 525 (1955)
H. Ibach, H. Lath: Solid-State Physics (Springer, Berlin, Heidelberg 1991)
H. Liith: Surf. Sci. 126, 126 (1983)
R. Matz: Reine und gasbedeckte GaAs(I10) Spaltflächen in HREELS, Dissertation, RWTH Aachen (1982)
P. Grosse: Freie Elektronen in Festkörpern (Springer, Berlin, Heidelberg 1979)
Ph. Lambin, J.-P. Vigneron, A.A. Lucas: Solid State Commun. 54, 257 (1985)
A. Ritz, H. Lüth: Phys. Rev. B 32, 6596 (1985)
N. Bündgens: Elektronenspektroskopische Untersuchungen an Sn-Schichten auf III-V Halbleiteroberflächen, Diploma Thesis, RWTH Aachen (1984)
M. Mattere, H. Lüth: Surf. Sci. 126, 502 (1983)
A. Spitzer, H. Lath: Phys. Rev. B 30, 3098 (1984)
S. Lehwald, J.M. Szeftel, H. Ibach, T.S. Rahman, D.L. Mills: Phys. Rev. Lett. 50, 518 (1983)
R.F. Willis: Surf. Sci. 89, 457 (1979)
H. Lüth, R. Matz: Phys. Rev. Lett. 46, 1952 (1981)
R. Matz, H. Liith: Surf. Sci. 117, 362 (1982)
L.C. Feldman, J.W. Mayer: Fundamentals of Surface and Thin Film Analysis (North-Holland, New York 1986)
J.T. McKinney, M. Leys: 8th Nat’l Conf. on Electron Probe Analysis, New Orleans, LA (1973)
J.F. van der Veen: Ion beam crystallography of surfaces and interfaces. Surf. Sci. Rpts. 5, 199 (1985)
L.C. Feldman, J.W. Mayer, S.T. Picraux: Materials Analysis by Ion Channeling (Academic, New York 1982)
Priv. communication by S. Mantl, ISI, Research Center Jülich (1990)
J. Haskell, E. Rimini, J.W. Mayer: J. App1. Phys. 43, 3425 (1972)
J.U. Anderson, O. Andreason, J.A. Davis, E. Uggerhoj: Rad. Eff. 7, 25 (1971)
R.M. Tromp: The structure of silicon surfaces, Dissertation, University of Amsterdam (1982)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lüth, H. (1995). Scattering from Surfaces. In: Surfaces and Interfaces of Solid Materials. Springer Study Edition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03132-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-662-03132-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58576-3
Online ISBN: 978-3-662-03132-2
eBook Packages: Springer Book Archive