Skip to main content

Tenascin and Extracellular Matrix: Possible Biological Implications During Regression and Carcinogenesis of the Prostate

  • Conference paper
Apoptosis in Hormone-Dependent Cancers

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 14))

  • 42 Accesses

Abstract

The role of extracellular matrices (ECM) in normal prostate function during the regression of the prostate and in carcinogenesis of this organ has only recently attracted the attention of various research groups. Histologically, the most prominent structure of the ECM in the prostate is the basement membrane (BM). This structure deserves particular attention, since it exhibits unique features in the prostate, not observable in other organs. In the fetal and adult prostate and in various hyperplastic conditions the BM was found to be continuous with local thickenings and therefore rather inconspicious compared to the BM of other organs (Bonkhoff et al. 1991). However, whereas adenocarcinoma cells of most other organs degrade and invade the BM after having acquired their invasive phenotype, prostatic tumor cells, independent of their degree of differentiation, persist with their pronounced BM (Bonkhoff et al. 1991, 1992). Even highly malignant anaplastic and small cell carcinomas, irradiated and/or hormonally treated tumors, as well as lymphatic or hematogenous mestastases showed distinct BM formations in contact with the stroma (Bonkhoff et al. 1992). These observations suggest a close association and a strong dependency of the normal and carcinogenic prostatic epithelium for BM anchoring. Experimental evidence in favor of this assumption has been delineated from in vitro findings in cultured primary human prostatic epithelial cells. For these cells it has been demonstrated that a reconstituted BM (Matrigel) promotes morphological and functional differentiation in vitro (Fong et al. 1991). In vitro experiments further suggested that this reconstituted BM is able to stimulate the growth of human prostatic carcinoma in athymic mice and to control the migration of these tumor cells in cell culture (Passaniti et al. 1992). In this context it is important to mention that highly metastatic prostate tumor cells could be selected out of a wild-type tumor cell line using a Matrigel invasion assay. Analysis of the cell surface integrins showed that the metastatic phenotype exhibited down-regulation of the α3β1 integrin and an overexpression of the α6β4 integrin. Further, whereas the α6-subunit was complexed to β1 subunit in wild-type cells (Dedhar et al. 1993), it was predominantly associated with β4 in the metastatic cells. Alterations in the expression of the α3β1 and α6β4 integrins may thus allow these cells to become more invasive and lead to an increased propensity for metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aufderheide E, Ekblom P (1988) Tenascin in gut development: appearance in the mesenchyme, shift in molecular forms, and dependence on epithelial mesenchymal interactions. J Cell Biol 107: 2341–2349

    Article  PubMed  CAS  Google Scholar 

  • Aufderheide E, Chiquet-Ehrismann R, Ekblom P (1987) Epithelial-mesenchymal interactions in the developing kidney lead to expression of tenascin in the mesenchyme. J Cell Biol 105: 599–608

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff H, Wernert N, Dhom G, Remberger K (1991) Basement membranes in fetal, adult normal, hyperplastic and neoplastic human prostate. Virchows Arch [A] 418: 375–381

    CAS  Google Scholar 

  • Bonkhoff H, Wernert N, Dhom G, Remberger K (1992) Distribution of basement membranes in primary and metastatic carcinomas of the prostate. Hum Pathol 23: 923–939

    Article  Google Scholar 

  • Castellucci M, Classen-Linke I, Mühlhauser J, Kaufmann P, Zardi L, ChiquetEhrismann R (1991) The human placenta: a model for tenascin expression. Histochemistry 95: 449–458

    Article  PubMed  CAS  Google Scholar 

  • Chiquet-Ehrismann R, Mackie EJ, Pearson CA, Sakakura T (1986) Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenensis. Cell 47: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Chiquet-Ehrismann R, Kalla P, Pearson CA (1989) Participation of tenascin and transforming growth factor beta in reciprocal epithelial-mesenchymal interactions of MCF-7 cells and fibroblasts. Cancer Res 49: 4322–4325

    PubMed  CAS  Google Scholar 

  • Crabb JW, Armes LG, Can SA, Johnson CM, Roberts GD, Bordoli RS, McKeehan WL (1986a) Complete primary structure of prostatropin, a prostate epithelial cell growth factor. Biochemistry 25: 4988–4993

    Article  PubMed  CAS  Google Scholar 

  • Crabb JW, Armes LG, Johnson CM, McKeehan WL (1986b) Characterization of multiple forms of prostatropin (prostate epithelial growth factor) from bovine brain. Biochem Biophys Res Commun 136: 1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Cunha GR, Donjacour A (1987) Stromal-epithelial interactions in normal and abnormal prostatic development. In: Coffey DS, Bruchovsky N, Gardner WA, Resnick MI, Karr JP (eds) Current concepts and approaches to the study of prostate cancer. Liss, New York, pp 251–272

    Google Scholar 

  • Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins Si, Sugimura J (1987) The endocrinology and developmental biology of the prostate. Endocr Rev 8: 338–362

    Article  PubMed  CAS  Google Scholar 

  • Dedhar S, Saulnier R, Nagle R, Overall CM (1993) Specific alterations in the expression of alpha 3 beta 1 and alpha 6 beta 4 integrins in the highly invasive and metastatic variants of human prostate carcinoma cells selected by in vitro invasion through reconstituted basement membrane. Clin Exp Metastasis 11: 391–400

    Article  PubMed  CAS  Google Scholar 

  • Ekblom P, Aufderheide E (1989) Stimulation of tenascin expression in mesen- chyme by epithelial-mesenchymal interactions. Int J Dey Biol 33: 71–79

    CAS  Google Scholar 

  • Erickson HP, Bourdon MA (1989) Tenascin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. Annu Rev Cell Biol 5: 71–92

    Article  PubMed  CAS  Google Scholar 

  • Erickson HP, Lightner VA (1988) Hexabrachion protein (tenascin, cytotactin, brachionectin) in connective tissues, embryonic brain, and tumors. In: Miller KR (ed) Advances in cell biology, vol 2. JAI, London, pp 55–90

    Google Scholar 

  • Fadok VA, Savill JS, Haslett C, Bratton DL, Doherty DE, Campbell PA, Henson PM (1992) Different populations of macrophages use either the vitronectin receptor or the posphatidylserine receptor to recognize and remove apototic cells. J Immunol 149: 4029–4035

    PubMed  CAS  Google Scholar 

  • Ferguson JE, Schor AM, Howell A, Ferguson MW (1990) Tenascin distribution in the normal breast is altered during the menstrual cycle and in carcinomas. Differentiation 42: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Fong CJ, Sherwood ER, Sutkowski DM, Abu-Jawdeh GM, Yokoo H, Bauer KD, Kozlowski JM, Lee C (1991) Reconstituted basement membrane promotes morphological and functional differentiation of primary human prostatic epithelial cells. Prostate 19: 221–235

    Article  PubMed  CAS  Google Scholar 

  • Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124: 619–626

    Article  PubMed  CAS  Google Scholar 

  • Herlin M, Graeven U, Speicher D, Sela BA, Bennicelli JL, Kath R, DuPont Guerry IV (1991) Characterization of tenascin secreted by human melanoma cells. Cancer Res 51: 4853–4858

    Google Scholar 

  • Howeedy AA, Virtanen I, Laitinen L, Gould NS, Koukoulis GK, Gould VE (1990) Differential distribution of tenascin in the normal, hyperplastic, and neoplastic breast. Lab Invest 63: 798–806

    PubMed  CAS  Google Scholar 

  • Ibrahim SN, Lightner VA, Ventimiglia JB, Ibrahim GK, Walther PJ, Bigner DD, Humphrey PA (1993) Tenascin expression in prostatic hyperplasia, intraepithelial neoplasia, and carcinoma. Hum Pathol 24: 982–989

    Article  PubMed  CAS  Google Scholar 

  • Inaguma Y, Kusakabe M, Mackie, EJ, Pearson CA, Chiquet-Ehrismann R, Sakakura T (1988) Epithelial induction of stromal tenascin in mouse mammary gland: from embryogenesis to carcinogenesis. Dey Biol 128: 245–255

    Article  CAS  Google Scholar 

  • Koch M, Wehrle-Haller B, Baumgartner S, Spring J, Brubacher D, Chiquet M (1991) Epithelial synthesis of tenascin at tips of growing bronchi and graded accumulation in basement membrane and mesenchyme. Exp Cell Res 194: 297–300

    Article  PubMed  CAS  Google Scholar 

  • Koukoulis GK, Virtanen I, Korhonen M, Laitinen L, Quaranta V, Gould VE (1991) Immunohistochemical localization of integrins in the normal, hyper-plastic and neoplastic breast. Am J Pathol 139: 787–799

    PubMed  CAS  Google Scholar 

  • Lightner VA, Gumkowski F, Bigner DD, Erickson HP (1989) Tenascin/hexabrachion in human skin: biochemical identification and localization by light and electron microscopy. J Cell Biol 108: 2483–2493

    Article  PubMed  CAS  Google Scholar 

  • Lightner VA, Marks JR, McCachren SS (1994) Epithelial cells are an important source of tenascin in normal and malignant human breast tissue. Exp Cell Res 210: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Mackie EJ, Halfter W, Liverani D (1988) Induction of tenascin in healing wounds. J Cell Biol 107: 2757–2767

    Article  PubMed  CAS  Google Scholar 

  • Mackie EJ, Scott-Burdon T, Hahn AW, Kern F, Bernhardt J, Regenas S. Weller A, Biihler FR (1992) Expression of tenascin by vascular smooth muscle cells. Alterations in hypertensive rats and stimulation by angiotensin IL Am J Pathol 141: 377–388

    CAS  Google Scholar 

  • McCachren SS, Lightner VA (1992) Expression of tenascin in synovitis and its regulation by interleukin-1. Arthritis Rheum 35: 1185–1196

    Article  PubMed  CAS  Google Scholar 

  • McKeehan WL (1991) Growth factor receptors and prostate cell growth. In: Isaacs JT, Franks LM (eds) Prostate cancer: cell and molecular mechanisms in diagnosis and treatment. Cold Spring Harbor Press, Cold Spring Harbor, pp 165–175

    Google Scholar 

  • Meredith JE Jr, Fazeli B, Schwartz MA (1993) The extracellular matrix as a survival factor. Mol Biol Cell 4: 953–961

    PubMed  CAS  Google Scholar 

  • Passaniti A, Isaacs JT, Haney JA, Adler SW, Cujdik TJ, Long PV, Kleinman HK (1992) Stimulation of human prostatic carcinoma tumor growth in athymic nude mice and control of migration in culture by extracellular matrix. Int J Cancer 51: 318–324

    Article  PubMed  CAS  Google Scholar 

  • Pearson CA, Pearson D, Shibahara S, Hofsteenge J, Chiquet-Ehrismann R (1988) Tenascin: cDNA cloning and induction by TGF-bega. EMBO J 7: 2977–2982

    PubMed  CAS  Google Scholar 

  • Ramadori G, Schwögler S, Veit T, Rieder H, Chiquet-Ehrismann R, Mackie EJ, Meyer zum Btischenfelde K-H (1991) Tenascin gene expression in rat liver and rat liver cells. In vivo and in vitro studies. Virchows Arch [B] 60: 145–153

    Google Scholar 

  • Reed J (1994) Bd-2 and the regulation of programmed cell death. J Cell Biol 124: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Reid DM, Perry VH, Andersson PB, Gordon S (1993) Mitosis and apoptosis of microglia in vivo induced by an anti-CR3 antibody which crosses the blood-brain barrier. Neuroscience 56: 529–533

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E, Reed JC (1994) Anchorage dependence, integrins, and apoptosis. Cell 77: 477–478

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343: 170–173

    Article  PubMed  CAS  Google Scholar 

  • Schalwijk J, Steijlen PM, van Vlijmen-Willems IMJJ, Oosterling B, Mackie EJ, Verstaeten AA (1991) Tenascin expression in human dermis is related to epidermal proliferation. Am J Pathol 139: 1143–1150

    Google Scholar 

  • Schwogler S, Odenthal M, Meyer zum Burschenfelde KH, Ramadori G (1992) Alternative splicing products from arterial smooth muscle cells and skin fibroblasts. Biochem Biophys Res Commun

    Google Scholar 

  • Story MT (1991) Polypeptide modulators of prostatic growth and development. In: Isaacs JT, Franks LM (eds) Prostate cancer: cell and molecular mechanisms in diagnosis and treatment. Cold Spring Harbor Press, Cold Spring Harbor, pp 123–146

    Google Scholar 

  • Tenniswood MP, Guenette RS, Lakins J, Mooibroek M, Wong P, Welsh J-E (1992) Active cell death in hormone-dependent tissues. Cancer Metastasis Rev 11: 197–220

    Article  PubMed  CAS  Google Scholar 

  • Tucker RP, Hammarback JA, Jenrath DA, Mackie EJ, Xu Y (1993) Tenascin expression in the mouse: in situ localization and induction by bFGF. J Cell Sci 104: 69–76

    PubMed  CAS  Google Scholar 

  • Vollmer G, Siegal GP, Chiquet-Ehrismann R, Lightner VA, Arnholdt H, Knuppen R (1990) Tenascin expression in the human endometrium and in endometrial adenocarcinomas. Lab Invest 62: 725–730

    PubMed  CAS  Google Scholar 

  • Vollmer G, Deerberg F, Siegal GP, Knuppen R (1991) Altered tenascin expression during spontaneous endometrial carcinogenesis in the BDII/Han rat. Virchows Arch [13] 60: 83–89

    CAS  Google Scholar 

  • Vollmer G, Michna H, Ebert K, Knuppen R (1992) Down-regulation of tenascin expression by antiprogestins during terminal differentiation of rat mammary tumors. Cancer Res 52: 4642–4648

    PubMed  CAS  Google Scholar 

  • Washizu K, Kimura S, Hiraiwa H, Matsunaga K, Kuwabara M, Ariyoshi Y, Kato K, Takeuchi K (1993) Development and application of an enzyme immunoassay for tenascin. Clin Chim Acta 219: 15–22

    Article  PubMed  CAS  Google Scholar 

  • Wilding G (1991) Response of prostate cancer cells to peptide growth factors: transforming growth factor-B. In: Isaacs JT, Franks LM (eds) Prostate cancer: cell and molecular mechanisms in diagnosis and treatment. Cold Spring Harbor Press, Cold Spring Harbor, pp 147–163

    Google Scholar 

  • Yavin E, Gabai A, Gil S (1991) Nerve growth factor mediates monosialoganglioside induced release of fibronectin and Jl/tenascin. J Neurochem 56: 105–112

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vollmer, G., Schenk, S., Michna, H. (1995). Tenascin and Extracellular Matrix: Possible Biological Implications During Regression and Carcinogenesis of the Prostate. In: Tenniswood, M., Michna, H. (eds) Apoptosis in Hormone-Dependent Cancers. Ernst Schering Research Foundation Workshop, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03122-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03122-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03124-7

  • Online ISBN: 978-3-662-03122-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics