Skip to main content

Apoptosis in Experimental Prostate Cancer

  • Conference paper
  • 44 Accesses

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 14))

Abstract

Metastatic prostate cancer is a disease with a high incidence and mortality rate despite advances in early diagnosis and therapeutic intervention (Carter et al. 1990; Schröder 1991). Androgen ablation therapy aiming at reducing tumor burden by inhibition of proliferative activity and inducing programmed cell death (apoptosis) in the tumor tissue is still the current frontline therapy for (advanced) prostate carcinoma (Walsh 1975; Menon and Walsh 1979; Szende et al. 1993). After an initial response, however, tumor relapse occurs due to the growth of androgen-independent prostate cancer cells. This relapse develops even if complete androgen blockade is used, and as a consequence androgen ablation is rarely curative.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aumiiller G, Gröschel-Stewart U, Altmannsberger M, Mannherz HG, Steinhoff M (1991) Basal cells of H-Dunning tumor are myoepithelial cells. Biochemistry 95: 341–349

    Google Scholar 

  • Buttyan R, Zakeri Z, Lockshin R, Wolgemuth D (1988) Cascade induction of c-fos, c-myc, and heat shock 70 K transcripts. Mol Endocrinol 2: 650–657

    Article  PubMed  CAS  Google Scholar 

  • Carter BS, Carter HB, Isaacs JT (1990) Epidemiologic evidence regarding predisposing factors to prostate cancer. Prostate 16: 187–197

    Article  PubMed  CAS  Google Scholar 

  • Colombel M, Olsson CA, Ng PY, Buttyan R (1992) Hormone-regulated apoptosis results from reentry of differentiated prostate cells onto a defective cell cycle. Cancer Res 52: 4313–4319

    PubMed  CAS  Google Scholar 

  • Day ML, Zhao X, Wu S, Swanson PE, Humphrey PA (1994) Phorbol ester-induced apoptosis is accompanied by NGFI-A and c-fos activation in androgen-sensitive prostate cancer cells. Cell Growth Differ 5: 735–741

    PubMed  CAS  Google Scholar 

  • Del Bino G, Skierski JS, Darzynkiewicz Z (1990) Diverse effects of camptothecin, and inhibitor of topoisomerase I on the cell cycle of lymphocytic (L1210, MOLT-4) and myelogeneous (HL-60, KG!) leukemia cells. Cancer Res 50: 5746–5750

    Google Scholar 

  • Dive C, Wyllie AH (1993) Apotosis and cancer chemotherapy. In: Hickman and Tritton (eds) Frontiers in pharmacology and therapeutics. Blackwell, Oxford, pp 21–56

    Google Scholar 

  • Gallee MPW, Van Steenbrugge GJ, Ten Kate FJVV, Schröder FH, Van der Kwast TH (1987) Determination of the proliferative fraction of a transplantable hormone dependent, human prostatic carcinoma (PC-82) by monoclonal antibody Ki-67: potential application for hormone therapy monitoring. J Natl Cancer Inst 79: 1333–1340

    PubMed  CAS  Google Scholar 

  • Hoehn W, Schroeder FH, Riemann JF, Joebsis AC, Hermanek P (1980) Human prostatic adenocarcinoma: some characteristics of a serially transplantable line in nude mice (PC-82). Prostate 1: 95–104

    Article  PubMed  CAS  Google Scholar 

  • Hoehn W, Wagner M, Riemann JF, Hermanek P, Williams E, Walther R, Schrueffer R (1984) Prostatic adenocarcinoma PC-EW, a new human tumor line transplantable in nude mice. Prostate 5: 445–452

    Article  PubMed  CAS  Google Scholar 

  • Horoszewicz JS, Leong SS, Kawinsky E, Karr JP, Rosenthal H, Ming Chu T, Mirand EA, Murphy GP (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43: 1809–1818

    PubMed  CAS  Google Scholar 

  • Isaacs JT (1984) Antagonistic effect of androgen on prostatic cell death. Prostate 5: 545–557

    Article  PubMed  CAS  Google Scholar 

  • Isaacs JT, Coffey DS (1981) Adaptation versus selection as the mechanism responsible for the relapse of prostatic cancer to androgen ablation therapy as studied in the Dunning R-3327-H adenocarcinoma. Cancer Res 41:5070— 5075

    Google Scholar 

  • Isaacs JT, Heston WDW, Weismann RM, Coffey DS (1978) Animal models of the hormone-sensitive and -insensitive prostatic adenocarcinomas, Dunning R332711, R3327HI and R3327AT. Cancer Res 38: 4353–4359

    PubMed  CAS  Google Scholar 

  • Isaacs JT, Lundmo PI, Berges R, Martikainen P, Kyprianou N, English HF (1992) Androgen regulation of programmed death of normal and malignant prostatic cells. J Androl 13: 457–464

    PubMed  CAS  Google Scholar 

  • Janssen PJ, Brinkmann AO, Boersma WJ, Van der Kwast (1994) Immunohistochemical detection of the androgen receptor with monoclonal antibody F39.4 in routinely processed, paraffin-embedded human tissues after microwave pre-treatment. J Histochem Cytochem 42: 1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Korsmeyer Si (1992) Bd-2: an antidote to programmed cell death. Cancer Surveys 15: 105–118

    Google Scholar 

  • Kyprianou N, Isaacs JT (1988) Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 122: 552–562

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, English HF, Isaacs JT (1990) Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 50: 3748–3753

    PubMed  CAS  Google Scholar 

  • Langeler EG, Van Uffelen CJC, Blankenstein MA, Van Steenbrugge GJ, Mulder E (1993) Effect of culture conditions on androgen sensitivity of the human prostatic cancer cell line LNCaP. Prostate 23: 213–223

    Article  PubMed  CAS  Google Scholar 

  • Lee C. (1981). Physiology of castration-induced regression in rat prostate. In: Murphy GP, Sandberg AA, Karr JP (eds) The prostate cell: structure and function, Part A. Liss, New York, pp 145–159

    Google Scholar 

  • McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LWK, Hsieh JT, Tu SM, Campbell ML (1992) Expression of the protooncogene Bc1–2 in the prostate and its associations with emergence of androgen-independent prostate cancer. Cancer Res 52: 6940–6944

    PubMed  CAS  Google Scholar 

  • Menon M, Walsh PC (1979) Hormonal therapy for prostatic cancer. In: Murphy GP (ed) Prostatic cancer. PSG Publishing, Littleton, pp 175–200

    Google Scholar 

  • Miyashita T, Krajewski S, Krajewski M, Gang Wang H, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bd-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805

    PubMed  CAS  Google Scholar 

  • Otto U, Wagner B, Klöppel G, Baisch H, Klosterhalfen H (1988) Animal models for prostate cancer. In: Klosterhalfen H (cd) Endocrine management of prostatic cancer. Walter de Gruyter, Berlin, pp 29–37 (New developments in biosciences, vol 4)

    Google Scholar 

  • Pollack A, Ciancio G (1991) Cell cycle phase-specific analysis of cell viability using Hoechst 33342 and propidium iodide after ethanol preservation. In: Darzynkiewicz Z, Crissman HA (eds) Flow cytometry. Academic, San Diego, CA, pp 19–24

    Google Scholar 

  • Ruizeveld de Winter JA, Trapman J, Vermey M, Mulder E, Zegers ND, van der Kwast TH (1991) Androgen receptor expression in human tissues: an immunohistochemical study. J Histochem Cytochem 39: 927–936

    Article  Google Scholar 

  • Ruizeveld de Winter JA, Van Weerden WM, Faber PW, Van Steenbrugge GJ, Trapman J, Brinkmann AO, Van der Kwast TH (1992) Regulation of androgen receptor expression in the human heterotransplantable prostate carcinoma PC-82. Endocrinology 131: 3045–3050

    Article  Google Scholar 

  • Rygaard K (1987) A rapid method for identification of murine cells in human malignant tumours grown in nude mice. In: Rygaard J, Brunner, Graen N, Spang-Thomsen M (eds) Immune-deficient animals in biomedical research. Karger, Basel, pp 268–272

    Google Scholar 

  • Schröder FH (1991) Endocrine therapy: where do we stand and where are we going? Cancer Surveys 11: 177–194

    PubMed  Google Scholar 

  • Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39: 741–748

    Article  PubMed  CAS  Google Scholar 

  • Szende B, Romics I (1993) Apoptosis in prostate cancer after hormonal treatment. Lancet 342: 1422

    Article  PubMed  CAS  Google Scholar 

  • Van der Kwast TH, Schalken J, Ruizeveld de Winter JA, Van Vroonhoven CCJ, Mulder E, Boersma W, Trapman J (1991) Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer 48: 189–193

    Article  PubMed  Google Scholar 

  • Van Steenbrugge GJ, Groen M, Romijn JC, Schröder FH (1984a) Biological effects of hormonal treatment regimens on a transplantable human prostatic tumor line (PC-82). J Urol 131: 812–817

    PubMed  Google Scholar 

  • Van Steenbrugge GJ, Groen M, de Jong FH, Schroeder FH (1984b) The use of steroid-containing silastic implants in male nude mice: plasma hormone levels and the effect of implantation on the weights of the ventral prostate and seminal vesicles. Prostate 5: 639–647

    Article  PubMed  Google Scholar 

  • Van Steenbrugge GJ, Groen M, Van Kreuningen A, De Jong FH, Gallee MWP, Schroeder FH (1988a) Transplantable human prostatic carcinoma (PC-82) in athymic nude mice: III. Effects of estrogens on the growth of the tumor. Prostate 12: 157–171

    Google Scholar 

  • Van Steenbrugge GJ, Bolt-de Vries J, Blankenstein MA, Brinkmann AO, Schroeder FH (1988b) Transplantable human prostatic carcinoma (PC-82) in athymic nude mice: II. Tumor growth and androgen receptors. Prostate 12: 145–156

    Google Scholar 

  • Van Steenbrugge (1988c) Transplantable human prostate cancer (PC-82) in athymic nude mice: a model for the study of androgen-regulated tumor growth. Doctoral Thesis, University of Rotterdam

    Google Scholar 

  • Van Steenbrugge GJ, Van Uffelen CJC, Bolt J, Schröder FH (1991) The human prostatic cancer cell line LNCaP and its derived sublines: an in vitro model for the study of androgen sensitivity. J Steroid Biochem Mol Biol 40: 207–214

    Article  PubMed  Google Scholar 

  • Van Weerden WM, Van Steenbrugge GJ, Van Kreuningen A, Moerings EPCM, De Jong FH, Schröder FH (1990) Effects of low testosterone levels and of adrenal androgens on growth of prostate tumor models in nude mice. J Steroid Biochem Mol Biol 37: 903–907

    Article  PubMed  Google Scholar 

  • Van Weerden WM (1991) Animal models in the study of progression of prostate cancer and breast cancer to endocrine independency. In: Berns PMJJ, Romijn JC, Schröder FH (eds) Mechanisms of progression to hormone-independent growth of breast and prostatic cancer. Parthenon, Carnforth, pp 55–70

    Google Scholar 

  • Van Weerden WM, Van Kreuningen A, Elissen NMJ, De Jong Fil, Van Steenbrugge GJ, Schröder FH (1992) Effects of adrenal androgens on the transplantable human prostate tumor PC-82. Endocrinology 131: 2909–2913

    Article  PubMed  Google Scholar 

  • Van Weerden WM, Van Kreuningen A, Elissen NMJ, Vermey M, De Jong FH, Van Steenbrugge GJ, Schröder FH (1993) Castration-induced changes in morphology, androgen levels and proliferative activity of human prostate cancer tissue grown in athymic nude mice. Prostate 23: 149–164

    Article  PubMed  Google Scholar 

  • Van Weerden WM, De Ridder CMA, Romijn JC, Van Steenbrugge GJ, Van der Kwast TH, Schröder FH (1994) Characterization of seven newly established human prostate tumor models in NMRI nude mice. Proc Am Assoc Cancer Res 35: 282

    Google Scholar 

  • Walsh PC (1975) Physiological basis for hormonal therapy in carcinoma of the prostate. Urol Clin North Am 2: 125–140

    PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1990) Cell death: the significance of apoptosis. Int Rev Cytol 86: 251–306

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Steenbrugge, G.J., van Weerden, W.M., Oomen, M.H.A., de Ridder, C.M.A., van der Kwast, T.H., Schröder, F.H. (1995). Apoptosis in Experimental Prostate Cancer. In: Tenniswood, M., Michna, H. (eds) Apoptosis in Hormone-Dependent Cancers. Ernst Schering Research Foundation Workshop, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03122-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03122-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03124-7

  • Online ISBN: 978-3-662-03122-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics