Advertisement

Electron Beam Dose Calculations

  • David Jette
Chapter
  • 325 Downloads
Part of the Medical Radiology book series (MEDRAD)

Abstract

Electron beams are now in widespread use in the radi­ation treatment of cancer because their rapid dose falloff minimizes irradiation of critical healthy tis­sues beyond the treatment volume. Electron dosecalculation algorithms are required for clinical treat­ment planning, and in conjunction with computed tomography (CT) scan data they can potentially be made quite accurate. Unfortunately, it is not yet pos­sible to routinely calculate the absorbed dose distrib­ution accurately (to within 5% or, preferably, 3%) in many clinical situations, particularly in the presence of tissue inhomogeneities and body curvature. Much progress has been made in tackling this difficult prob­lem, however, and in this chapter we shall examine current electron dose-calculation methods and iden­tify the problems requiring further research.

Keywords

Electron Beam Dose Distribution Dose Calculation Primary Electron Electron Beam Radiotherapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou Mandour M, Harder D (1978) Calculation of the dose distribution of high energy electrons within and behind tis­sue inhomogeneities of any width. II. Influence of multiple scattering. Strahlentherapie 154: 546–553Google Scholar
  2. Abou Mandour M, Niisslin F, Harder D(1983) Characteristic functions of point monodirectional electron beams. Acta Radiol Suppl (Stockh) 364:43–48Google Scholar
  3. Al-Beteri AA, Raeside DE (1992a) A Monte Carlo electron transport code for the desktop computer. Comput Phys 6: 633–642CrossRefGoogle Scholar
  4. Al-Beteri AA, Raeside DE (1992b) Optimal electron-beam treatment planning for retinoblastoma using a new three-dimensional Monte Carlo-based treatment planning sys­tem. Med Phys 19: 125–135CrossRefPubMedGoogle Scholar
  5. Aim Carlsson G (1981) Absorbed dose equations: on the derivation of a general absorbed dose equation and equa­tions valid for different kinds of radiation equilibrium. Radiat Res 85: 219–237CrossRefGoogle Scholar
  6. Almond PR, Wright AE, Boone MLM (1967) High energy electron dose perturbations in regions of tissue heterogene­ity. Part II. Physical models of tissue heterogeneities. Radiology 88: 1146–1153PubMedGoogle Scholar
  7. Altschuler MD, Bloch P, Buhle EL, Ayyalasomayajula S (1992) 3d dose calculations for electron and photon beams. Phys Med Biol 37: 391–411CrossRefGoogle Scholar
  8. Anderson DW (1984) Absorption of ionizing radiation. University Park Press, Baltimore, Chaps. 3 and 4Google Scholar
  9. Anderson DW (1986) Comments on range energy relation­ships for a scanning beam electron linear accelerator. Phys Med Biol 31: 683–685CrossRefPubMedGoogle Scholar
  10. Anderson DW, St. George F (1985) Range energy relationship for a scanning beam electron linear accelerator. Phys Med Biol 30:461–465CrossRefGoogle Scholar
  11. Andreo P (1985a) Broad beam approaches to dose computa­tion and their limitations. In: Nahum AE (ed) The compu­tation of dose distributions in electron beam radiotherapy. Umea University, Sweden, pp 128–150Google Scholar
  12. Andreo P (1985b) The interaction of electrons with matter. II. Scattering. In: Nahum AE (ed) The computation of dose distributions in electron beam radiotherapy. Umea University, Sweden, pp 56–71Google Scholar
  13. Andreo P (1988) Electron pencil-beam calculations. In: Jenkins TM, Nelson WR, Rindi A (eds) Monte Carlo trans­port of electrons and photons. Plenum, New York, pp 437–452CrossRefGoogle Scholar
  14. Andreo P (1991) Monte Carlo techniques in medical radiation physics. Phys Med Biol 36: 861–920CrossRefPubMedGoogle Scholar
  15. Andreo P, Brahme A (1983) Fluence and absorbed dose in high energy electron beams. In: Brahme A (ed) Computed electron beam dose planning. Acta Radiol Suppl (Stockh) 364:25–33Google Scholar
  16. Andreo P, Fransson A (1989) Stopping-power ratios and their uncertainties for clinical electron beam dosimetry. Phys Med Biol 34: 1847–1861CrossRefGoogle Scholar
  17. Andreo P, Brahme A, Nahum A, Mattsson O (1989) Influence of energy and angular spread on stopping-power ratios for electron beams. Phys Med Biol 34: 751–768CrossRefGoogle Scholar
  18. Bagne F (1976) Electron beam treatment planning system. Med Phys 3: 31–38CrossRefPubMedGoogle Scholar
  19. Baily NA (1980) Electron backscattering. Med Phys 7: 514–519CrossRefPubMedGoogle Scholar
  20. Berger MU, Wang R (1988) Multiple-scattering angular deflections and energyloss straggling. In: Jenkins TM, Nelson WR, Rindi A (eds) Monte Carlo transport of elec­trons and photons. Plenum, New York, pp 21–56CrossRefGoogle Scholar
  21. Bethe HA (1953) Moliere’s theory of multiple scattering. Phys Rev 89:1256–1266CrossRefGoogle Scholar
  22. Bethe HA, Rose ME, Smith LP (1938) The multiple scattering of electrons. Proc Am Philos Soc 78: 573–585Google Scholar
  23. Bielajew AF, Rogers DWO (1987) PRESTA: The parameter reduced electron-step transport algorithm’ for electron Monte Carlo transport. Nucl Instr Meth B18:165–181Google Scholar
  24. Bielajew AF, Rogers DWO (1988a) Electron step-size arte­facts and PRESTA. In: Jenkins TM, Nelson WR, Rindi A (eds) Monte Carlo transport of electrons and photons. Plenum, New York, pp 115–137CrossRefGoogle Scholar
  25. Bielajew AF, Rogers DWO (1988b) Variance-reduction tech­niques. In: Jenkins TM, Nelson WR, Rindi A (eds) Monte Carlo transport of electrons and photons. Plenum, New York, pp 407–419CrossRefGoogle Scholar
  26. Bielajew AF, Rogers DWO (1992) A standard timing bench­mark for EGS4 Monte Carlo calculations. Med Phys 19:303–304CrossRefPubMedGoogle Scholar
  27. Bielajew AF, Rogers DWO, Cygler J, Battista J J (1987) A comparison of electron pencil beam and Monte Carlo calculational methods. In: Bruinvis IAD, van der Giessen PH, van Kleffens HJ, Wittkamper FW (eds) The use of computers in radiation therapy. Elsevier Science, Amsterdam, pp 65–68Google Scholar
  28. Biggs PJ (1984) The effect of beam angulation on central axis per cent depth dose for 4–29 MeV electrons. Phys Med Biol 29:1089–1096CrossRefPubMedGoogle Scholar
  29. Bloch P, Altschuler MD, Wallace RE, Baren J (1984) Three dimensional electron beam dose calculations. In: Cunningham JR, Ragan D, Van Dyk J (eds) Proceedings of the eighth international conference on the use of computers in radiation therapy. IEEE Computer Society Press, New York, pp 132–136Google Scholar
  30. Boone MLM, Jardine JH, Wright AE, Tapley ND (1967) High energy electron dose perturbations in regions of tissue heterogeneity. Part I. In vivo dosimetry. Radiology 88: 1136–1145PubMedGoogle Scholar
  31. Boyer AL (1984) Shortening the calculation time of photon dose distributions in an inhomogeneous medium. Med Phys 11:552–554CrossRefPubMedGoogle Scholar
  32. Brahme A (1971) Multiple scattering of relativistic electrons in air. The Royal Institute of Technology, Stockholm, Sweden (TRITA- EPP 71–22)Google Scholar
  33. Brahme A (1975) Simple relations for the penetration of high energy electron beams in matter. National Institute of Radiation Protection, Stockholm, Sweden (SSI: 1975–011)Google Scholar
  34. Brahme A (1982) Physics of electron beam penetration: fluence and absorbed dose. In: Paliwal B (ed) Proceedings of the symposium on electron dosimetry and arc therapy, University of Wisconsin, U.S.A. American Institute of Physics, New York, pp 45–68Google Scholar
  35. Brahme A (1983a) Geometric parameters of clinical electron beams. Acta Radiol Suppl (Stockh) 364:11–19Google Scholar
  36. Brahme A (1983b) Standard geometry for comparison of dosimetry and dose planning programs for electron beams. Acta Radiol Suppl (Stockh) 364: 101–102Google Scholar
  37. Brahme A (1985a) Brief review of current algorithms for elec­tron beam dose planning. In: Nashum AE (ed) The compu­tation of dose distributions in electron beam radiotherapy. Umea University, Sweden, pp 271–290Google Scholar
  38. Brahme A (1985b) Current algorithms for computed electron beam dose planning. Radiother Oncol 3: 347–362CrossRefPubMedGoogle Scholar
  39. Brahme A (1985c) Elements of electron transport theory. In: Nahum AE (ed) The computation of dose distributions in electron beam radiotherapy. Umea University, Sweden, pp 72–79Google Scholar
  40. Brahme A, Lax I (1983) Absorbed dose distribution of elec­tron beams in uniform and inhomogeneous media. Acta Radiol Suppl (Stockh) 364: 61–72Google Scholar
  41. Brahme A, Nilsson B (1984) Limitations of pencil beam algo­rithms in electron beam dose planning. In: Cunningham JR, Ragan D, Van Dyk J (eds) Proceedings of the eighth international conference on the use of computers in radia­tion therapy. IEEE Computer Society Press, New York, pp 157–160Google Scholar
  42. Brahme A, Lax I, Andreo P (1981) Electron beam dose plan­ning using discrete Gaussian beams: mathematical back­ground. Acta Radiol Oncol 20: 147–158CrossRefPubMedGoogle Scholar
  43. Bruinvis IAD (1987) Electron beams in radiation therapy: collimation, dosimetry and treatment planning. Doctoral dissertation, Drukkerij Elinkwijk BV, Utrecht, The NetherlandsGoogle Scholar
  44. Bruinvis IAD, Mathol WAF (1988) Calculation of electron beam depth-dose curves and output factors for arbitrary field shapes. Radiother Oncol 11: 395–404CrossRefPubMedGoogle Scholar
  45. Bruinvis IAD, Van Amstel A, Elevelt AJ, Van der Laarse R (1983a) Calculation of electron beam dose distributions for arbitrarily shaped fields. Phys Med Biol 28: 667–683CrossRefPubMedGoogle Scholar
  46. Bruinvis IAD, Van Amstel A, Elevelt AJ, Van der Laarse R (1983b) Dose calculations for arbitrarily shaped electron beams. Acta Radiol Suppl (Stockh) 364: 73–79Google Scholar
  47. Bruinvis IAD, Van der Laarse R, Mathol WAF, Nooman MF (1984) An electron beam dose planning method for arbitrary field shapes. In: Proceedings of the Eighth International Conference on the Use of Computers in Radiation Therapy. IEEE Computer Society Press, New York, pp 152–156Google Scholar
  48. Bruinvis IAD, Mathol WAF, Andreo P (1989) Inclusion of electron range straggling in the Fermi-Eyges multiple-scat­tering theory. Phys Med Biol 34:491–507CrossRefGoogle Scholar
  49. Cecatti ER, Goncalves JF, Cecatti SGP, da Penha Silva M (1983) Effect of the accelerator design on the position of the effective electron source. Med Phys 10: 683–686CrossRefPubMedGoogle Scholar
  50. Chen FS (1988a) An analytical equation of electron beams percentage depth ionization curve along the central axis. Med Phys 15:407–409CrossRefPubMedGoogle Scholar
  51. Chen FS (1988b) An empirical formula for calculating the out­put factors of electron beams from a Therac 20 linear accel­erator. Med Phys 15: 348–350CrossRefPubMedGoogle Scholar
  52. Chui CS, Mohan R (1988) Extraction of pencil beam kernels by the deconvolution method. Med Phys 15: 138–144CrossRefPubMedGoogle Scholar
  53. Cygler J, Ross J (1988) Electron dose distributions in an anthropomorphic phantom—verification of Theraplan treatment planning algorithm. Med Dosim 13: 155–158PubMedGoogle Scholar
  54. Cygler J, Battista JJ, Scrimger JW, Mah E, Antolak J (1987) Electron dose distributions in experimental phantoms: a comparison with 2D pencil beam calculations. Phys Med Biol 32:1073–1086CrossRefPubMedGoogle Scholar
  55. Deasy JO, Wilson D, Almond PR (1992) Direct measurements of electron flux angular distributions. Med Phys 19: 792 (abstract #G25)Google Scholar
  56. Dominiak GS (1991) Dose in spinal cord following electron irradiation. MSc thesis, University of Texas, HoustonGoogle Scholar
  57. Dominiak GS, Starkschall G, Shiu AS, Hogstrom KR (1991) Dose in spinal cord following electron irradiation. Med Phys 18: 848 (abstract #WP2–5)Google Scholar
  58. Dutreix A, Briot E (1985) The development of a pencil-beam algorithm for clinical use at the Institut Gustave Roussy. In: Nahum AE (ed) The computation of dose distributions in i electron beam radiotherapy. Umea University, Sweden, pp 242–270Google Scholar
  59. Edwards FH, Coffey II CW (1979) A cumulative normal dis­tribution model for simulation of electron beam profiles. Int J Radiat Oncol Biol Phys 5:127–133CrossRefPubMedGoogle Scholar
  60. Ekstrand KE, Dixon RL (1982) The problem of obliquely inci­dent beams in electron-beam treatment planning. Med Phys 9:276–278CrossRefPubMedGoogle Scholar
  61. El-Khatib EE, Scrimger J, Murray B (1991) Reduction of the bremsstrahlung component of clinical electron beams: implications for electron arc therapy and total skin electron iradiation. Phys Med Biol 36:111–118CrossRefPubMedGoogle Scholar
  62. Eyges L (1948) Multiple scattering with energy loss. Phys Rev 74:1534–1535CrossRefGoogle Scholar
  63. Gagnon WF, Cundiff JH (1980) Dose enhancement from backscattered radiation at tissue-metal interfaces irradiated with high energy electrons. Br J Radiol 53:466–470CrossRefPubMedGoogle Scholar
  64. Goitein M (1978) A technique for calculating the influence of thin inhomogeneities on charged particle beams. Med Phys 5:258–264CrossRefPubMedGoogle Scholar
  65. Goitein M, Chen GTY, Ting JY, Schneider RJ, Sisterson JM (1978) Measurements and calculations of the influence of thin inhomogeneities on charged particle beams. Med Phys 5:265–273CrossRefPubMedGoogle Scholar
  66. Grosswendt B, Roos M (1989) Electron beam absorption in solid and in water phantoms: depth scaling and energy-range relations. Phys Med Biol 34: 509–518CrossRefGoogle Scholar
  67. Gur D, Bukovitz AG, Serago C (1979) Photon contamination in 8–20 MeV electron beams from a linear accelerator. Med Phys 6:145–146CrossRefPubMedGoogle Scholar
  68. Halbleib J (1988) Structure and operation of the ITS code system. In: Jenkins TM, Nelson WR, Rindi A (eds) Monte Carlo transport of electrons and photons. Plenum, New York, pp 249–262CrossRefGoogle Scholar
  69. Haneman B, Jette D, Walker S (1993) Electron dose calcula­tions in a spine phantom using Gaussian multiple-scattering theory. Med Phys 20:934 (abstract #HH3)Google Scholar
  70. Henson PW, Fox RA (1984) The electron density of bone for inhomogeneity correction in radiotherapy planning using CT numbers. Phys Med Biol 29: 351–359CrossRefPubMedGoogle Scholar
  71. Hogstrom KR (1986) Evaluation of electron pencil beam dose calculation. In: Kereiakes JE, Elson HR, Born CG (eds) Radiation oncology physics. American Institute of Physics, New York, pp. 532–561 (Medical physics monograph no. 15)Google Scholar
  72. Hogstrom KR, Almond PR (1983) Comparison of experi­mental and calculated dose distributions. Acta Radiol Suppl (Stockh) 364: 89–99Google Scholar
  73. Hogstrom KR, Kurup RG (1987) A pencil-beam algorithm for arc electron dose distributions. In: Bruinvis IAD, van der Giessen PH, van Kleffens H J, Wittkamper FW (eds) The use of computers in radiation therapy. Elsevier Science, Amsterdam, pp 73–77Google Scholar
  74. Hogstrom KR, Mills MD, Almond PR (1981) Electron beam dose calculations. Phys Med Biol 26:445–459CrossRefPubMedGoogle Scholar
  75. Hogstrom KR, Mills MD, Meyer JA, Palta JR, Mellenberg DE, Meoz RT, Fields RS (1984) Dosimetric evaluation of a pencil-beam algorithm for electrons employing a two-dimensional heterogeneity correction. Int J Radiat Oncol Biol Phys 10: 561–569CrossRefPubMedGoogle Scholar
  76. Hogstrom KR, Kurup RG, Shiu AS, Starkschall G (1989) A two- dimensional pencil-beam algorithm for calculation of arc electron dose distributions. Phys Med Biol 34:315–341CrossRefPubMedGoogle Scholar
  77. Holmes M, Mackie TR, Sanders CA, Kubsad SS, Rogers DWO, Bielajew AF (1991 a) The Omega Project: calculation of inverse cumulative probability distribution functions for electron transport for fast Monte Carlo simulations. Med Phys 18: 608 (abstract #F20)Google Scholar
  78. Holmes M, Mackie TR, Sohn W, Bielajew AF, Rogers DWO (1991b) The Omega Project: variance reduction techniques for Monte Carlo simulations as applied to electron beam dosimetry. Med Phys 18:642 (abstract #P25)Google Scholar
  79. Holmes M, Mackie TR, Sohn W, Bielajew AF, Rogers DWO (1992). The Omega Project: the calculation of correction factors using correlated sampling and EGS4 Monte Carlo. Med Phys 19: 809 (abstract #P4)Google Scholar
  80. Holt JG, Mohan R, Caley R, Buffa A, Reid A, Simpson LD, Laughlin JS (1978) Memorial electron beam AET treatment planning system. In: Orton CG, Bagne F (eds) Practical aspects of electron beam treatment planning. Am. Inst. Phys., New York, pp 70–79 (Medical Physics Monograph No. 2)Google Scholar
  81. Huizenga H, Storchi PRM (1985) The use of computed tomography numbers in dose calculations for radiation therapy. Acta Radiol Oncol 24:509–519CrossRefPubMedGoogle Scholar
  82. Huizenga H, Storchi PRM (1987) The in-air scattering of clinical electron beams as produced by accelerators with scanning beams and diaphragm collimators. Phys Med Biol 32:1011–1029CrossRefPubMedGoogle Scholar
  83. Huizenga H, Storchi PRM (1989) Numerical calculation of energy deposition by broad high-energy electron beams. Phys Med Biol 34:1371–1396CrossRefPubMedGoogle Scholar
  84. Huizenga H, van Battum LJ (1992) On the initial angular variance s2 Qx of electron beams of various man­ufacturers’ accelerators. Med Phys 19: 729–793 (abstract #G26)Google Scholar
  85. Huizenga H, Morawska-Kaczyriska M, Riedeman D (1992) Feasibility of the phase-space-time-evolution model as 3D-electron beam dose calculation model in radiotherapy. Med Phys 19: 809 (abstract #P5)Google Scholar
  86. Hunt MA, Kutcher GJ, Buffa A (1988) Electron backscatter corrections for parallel-plate chambers. Med Phys 15: 96–103CrossRefPubMedGoogle Scholar
  87. Hyodynmaa S, Lax I, Israelsson A (1987) Array processor application of the generalized Gaussian pencil beam algo­rithm for electron dose computation. In: Bruinvis IAD, van der Giessen PH, van Kleffens H J, Wittkamper F W (eds) The use of computers in radiation therapy. Elsevier Science, Amsterdam, pp 79–81Google Scholar
  88. ICRU (1984a) Radiation dosimetry: electron beams with energies between 1 and 50 MeV. International Commission on Radiation Units and Measurements Report 35, BethesdaGoogle Scholar
  89. ICRU (1884b) Stopping powers for electrons and positrons. International Commission on Radiation Units and Measurements Report 37, BethesdaGoogle Scholar
  90. Jamshidi A, Kuchnir FT, Reft CS (1986) Determination of the source position for the electron beams from a high-energy linear accelerator. Med Phys 13: 942–948CrossRefPubMedGoogle Scholar
  91. Jette D (1982) Approximation formulas for least-squares fitting of functions of the form/[u(x x0)]. Med Phys 9: 106–109CrossRefPubMedGoogle Scholar
  92. Jette D (1984a) The problem of electron dose calculation. I. Multiple-scattering methods. J Am Assoc Med Dosim 9:6–13Google Scholar
  93. Jette D (1984b) The problem of electron dose calculation. II. Inhomogeneities and beam shaping. J Am Assoc Med Dosim 9:12–17Google Scholar
  94. Jette D (1985a) The problem of electron dose calculation. III. Homogeneous configurations. J Am Assoc Med Dosim 10: 11–15Google Scholar
  95. Jette D (1985b) Second-order multiple-scattering theory for charged-particle teletherapy beams. Med Phys 12: 178–182CrossRefPubMedGoogle Scholar
  96. Jette D (1986) Representative electron paths and straggling. Med Phys 13: 604 (abstract #R7)Google Scholar
  97. Jette D (1987) Electron energy- and range-straggling resulting from multiple scattering. Med Phys 14:464 (abstract #H7)Google Scholar
  98. Jette D (1988a) The effect of oblique incidence upon electron-beam dose distributions. Phys Med Biol 33 (Suppl 1): 137 (abstract #MP34–25)Google Scholar
  99. Jette D (1988b) Electron dose calculation using multiple-scat­tering theory: a. Gaussian multiple-scattering theory. Med Phys 15:123–137. Erratum: Med Phys 16: 920 (1989)CrossRefPubMedGoogle Scholar
  100. Jette D (1991) Electron dose calculation using multiple-scat­tering theory: localized inhomogeneities a new theory. MedPhys 18: 123–132Google Scholar
  101. Jette D, Bielajew A (1989) Electron dose calculation using multiple-scattering theory: second-order multiple-scatter­ing theory. Med Phys 16: 698–711CrossRefPubMedGoogle Scholar
  102. Jette D, Walker S (1991) Incorporation of oblique beam inci­dence into a developing model of electron dose calculation. Med Phys 18: 606–607 (abstract #F 14)CrossRefGoogle Scholar
  103. Jette D, Walker S (1992a) Electron dose calculation using mul­tiple-scattering theory: evaluation of a new model for inho­mogeneities. Med Phys 19:1241– 1254CrossRefPubMedGoogle Scholar
  104. Jette D, Walker S (1992b) Incorporation of Moliere scattering theory into the Fermi-Eyges theory for electron dose calcu­lation. Med Phys 19: 792 (abstract #G22)CrossRefGoogle Scholar
  105. Jette D, Lanzl LH, Rozenfeld M, Pagnamenta A (1981) Analytic representation of electron central-axis depth dose data. Med Phys 8: 877–881CrossRefPubMedGoogle Scholar
  106. Jette D, Pagnamenta A, Lanzl LH, Rozenfeld M (1983) The application of multiple scattering theory to therapeutic elec­tron dosimetry. Med Phys 10: 141–146CrossRefPubMedGoogle Scholar
  107. Jette D, Lanzl LH, Pagnamenta A, Rozenfeld M, Bernard D, Kao M, Sabbas AM (1989) Electron dose calculation using multiple-scattering theory: thin planar inhomogeneities. Med Phys 16: 712–725CrossRefPubMedGoogle Scholar
  108. Johnsen SW, LaRiviere PD, Tanabe E (1983) Electron depth-dose dependence on energy spectral quality. Phys Med Biol 28: 1401–1407CrossRefPubMedGoogle Scholar
  109. Jones D, Andre P, Washington JT, Hafermann MD (1990) A method for the assessment of the output of irregularly shaped electron fields. Br J Radiol 63: 59–64CrossRefPubMedGoogle Scholar
  110. Karlsson M (1985) Validity of dose calculation with the M.D.A.H. model at bolus edges. In: Nahum AE (ed) The computation of dose distribution in electron beam radio­therapy. Umea University, Sweden, pp 185–190Google Scholar
  111. Kawachi K (1975) Calculation of electron dose distribution for radiotherapy treatment planning. Phys Med Biol 20: 571–577CrossRefPubMedGoogle Scholar
  112. Kessaris ND (1966) Penetration of high-energy electron beams in water. Phys Rev 145: 164–178CrossRefGoogle Scholar
  113. Khan FM, Deibel FC, Soleimani-Meigooni A(1985) Obliquity correction for electron beams. Med Phys 12: 749–753CrossRefPubMedGoogle Scholar
  114. Khan FM, Doppke KP, Hogstrom KR, et al. (1991) Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group No. 25. Med Phys 18: 73–109CrossRefPubMedGoogle Scholar
  115. Kirsner SM, Hogstrom KR, Kurup RG, Moyers MF (1987) Dosimetric evaluation in heterogeneous tissue of anterior electron beam irradiation for treatment of retinoblastoma. Med Phys 14: 772–779CrossRefPubMedGoogle Scholar
  116. Klevenhagen SC (1985) Physics of electron beam therapy. Adam Hilger, Bristol Boston (Medical physics handbooks 13)Google Scholar
  117. Klevenhagen SC (1988) Current status of electron therapy -clinical and physical aspects. Br J Radiol (Suppl) 22: 34–51Google Scholar
  118. Klevenhagen SC (1991) Implication of electron backscatter-ing for electron dosimetry. Phys Med Biol 36: 1013–1018CrossRefGoogle Scholar
  119. Klevenhagen SC, Lambert GD, Arbabi A (1982) Back-scattering in electron beam therapy for energies between 3 and 35 MeV. Phys Med Biol 27: 363–373CrossRefPubMedGoogle Scholar
  120. Knoos T, Nilsson M, Ahlgren L (1986) A method for con­version of Hounsfield number to electron density and pre­diction of macroscopic pair production cross-sections. Radiother Oncol 5: 337–345CrossRefPubMedGoogle Scholar
  121. Kooy HM, Kijewski PK (1988) Quadtrees as a representation for irregularly shaped fields in radiotherapy applications. Int J Radiat Oncol Biol Phys 15:1251–1256CrossRefPubMedGoogle Scholar
  122. Kooy HM, Rashid H (1989) A three-dimensional electron pencil-beam algorithm. Phys Med Biol 34:229–243CrossRefPubMedGoogle Scholar
  123. Kovaf I (1989) Analytical approximation of depth-dose curves for electron beams. Phys Med Biol 34:939–948CrossRefGoogle Scholar
  124. Kozlov A, Shishov V (1982) Calculation of high-energy elec­tron dose distributions in tissue-equivalent media. I. Determination of the dose function of point unidirectional sources. Strahlentherapie 158: 298–304PubMedGoogle Scholar
  125. Krithivas G, Rao SN (1989) A study on the secondary elec­trons in a clinical electron beam. Phys Med Biol 34: 1021–1028CrossRefGoogle Scholar
  126. Kubo H (1990) Effects of electron cutouts on absorbed dose in and outside Varian-20 electron fields. Med Dosim 15: 61–66PubMedGoogle Scholar
  127. Kurup RG, Hogstrom KR, Otte VA, Moyers MF, Tung S, Shiu AS (1992) Dosimetric evaluation of a two-dimensional, arc electron, pencil-beam algorithm in water and PMMA. Phys Med Biol 37: 127–144CrossRefPubMedGoogle Scholar
  128. Lambert GD, Klevenhagen SC (1982) Penetration of backscattered electrons in polystyrene for energies between 1 and 25 MeV. Phys Med Biol 27: 721–725CrossRefGoogle Scholar
  129. Larsen EW (1993) A mathematical derivation of Fermi theory and higher-order corrections in electron dose calcu­lations. Med. Phys 20: 887 (abstract # L23)Google Scholar
  130. Laughlin JS (1965a) High energy electron treatment planning for inhomogeneities. Br J Radiol 38: 143–147CrossRefPubMedGoogle Scholar
  131. Laughlin JS (1965b) Studies of absorption of high energy elec­tron beams. In: Zuppinger A, Poretti G (eds) Symposium on high-energy electrons. Springer, Berlin Heidelberg New York, pp 11–16CrossRefGoogle Scholar
  132. Lax I (1985) A generalized Gaussian model for electron beam dose planning. In: Nahum AE (ed) The computation of dose distributions in electron beam radiotherapy. Umea University, Sweden, pp 191–210Google Scholar
  133. Lax I (1986a) Development of a generalized Gaussian model for absorbed dose calculation and dose planning in thera­peutic electron beams. Doctoral dissertation, University of Stockholm, JINAB, SwedenGoogle Scholar
  134. Lax I (1986b) Inhomogeneity corrections in electron-beam dose planning: limitations with the semi-infinite slab approximation. Phys Med Biol 31: 879–892CrossRefPubMedGoogle Scholar
  135. Lax I (1987) Accuracy in clinical electron beam dose planning using pencil beam algorithms. Radiother Oncol 10:307–319CrossRefPubMedGoogle Scholar
  136. Lax I, Brahme A (1980) Collimation of high energy electron beams. Acta Radiol Oncol 19: 199–207CrossRefPubMedGoogle Scholar
  137. Lax I, Brahme A (1985) Electron beam dose planning using Gaussian beams: energy and spatial scaling with inhomo­geneities. Acta Radiol Oncol 24: 75–85CrossRefPubMedGoogle Scholar
  138. Lax I, Brahme A, Andreo P (1983) Electron beam dose plan­ning using Gausian beams: improved radial dose profiles. Acta Radiol Suppl (Stockh) 364:49–59Google Scholar
  139. Lillicrap SC, Wilson P, Boag JW (1975) Dose distributions in high energy electron beams: production of broad beam dis­tributions from narrow beam data. Phys Med Biol 10:30–38CrossRefGoogle Scholar
  140. Low DA, Starkschall G, Bujinowski SW, Wang LL, Hogstrom KR (1992) Electron bolus design for radiothera­py treatment planning: bolus design algorithms. Med Phys 19:115–124CrossRefPubMedGoogle Scholar
  141. Luo ZM (1985a) Improved bipartition model of electron transport. I. A general formulation. Phys Rev B32: 812–823Google Scholar
  142. Luo ZM (1985b) Improved bipartition model of electron transport. II. Applications to inhomogeneous media. Phys Rev B32: 824–836Google Scholar
  143. Luo ZM, Brahme A (1990) MONKEY, a highly efficient microcomputer program for calculation of transport of high energy electrons in media. In: Proceedings of the tenth international conference on the use of computers in radia­tion therapy. IEEE Computer Society Press, New York, pp 29–32Google Scholar
  144. Luo ZM, Brahme A (1993a) High energy electron transport. Phys Rev B46:15739–15752Google Scholar
  145. Luo ZM, Brahme A (1993b) An overview of the trans­port theory of charged particles. Radiat Phys Chem 41: 673–703CrossRefGoogle Scholar
  146. Mackie TR (1987) Calculating electron dose using a convolu­tion/superposition method. In: Bruinvis IAD, van der Giessen PH, van Kleffens H J, Wittkamper FW (eds) The use of computers in radiation therapy. Elsevier Science, Amsterdam, pp 445–448Google Scholar
  147. Mackie TR (1990) Applications of the Monte Carlo method in radiotherapy. In: Kase KR, Bjarngard BE, Attix FH (eds) The dosimetry of ionizing radiation, vol III. Academic Press, San Diego, pp 541–620Google Scholar
  148. Mackie TR, Battista J J (1984) A macroscopic Monte Carlo method for electron beam dose calculation: a proposal. In: Cunningham JR, Ragan D, Van Dyk J (eds) Proceedings of the eighth international conference on the use of computers in radiation therapy. IEEE Computer Society Press, New York, pp 123–127Google Scholar
  149. Mackie TR, Kubsad SS, Rogers DWO, Bielajew AF (1990) The Omega Project: electron dose planning using Monte Carlo simulation. Med Phys 17: 732 (abstract #BBI)Google Scholar
  150. Mah E, Antolak J, Scrimger JW, Battista J J (1989) Experimental evaluation of a 2D and 3D electron pencil beam algorithm. Phys Med Biol 34:1179–1194CrossRefGoogle Scholar
  151. Markus B (1986) Range-energy relationship for a scanning beam electron linear accelerator. Phys Med Biol 31: 657–661CrossRefGoogle Scholar
  152. McCullough AC, Holmes TW (1985) Acceptance testing computerized radiation therapy treatment planning sys­tems: direct utilization of CT scan data. Med Phys 12: 237–242CrossRefPubMedGoogle Scholar
  153. McKenzie AL (1979) Air-gap correction in electron treatment planning. Phys Med Biol 24: 628–635CrossRefPubMedGoogle Scholar
  154. McLellan J, Sandison GA, Papiez L, Huda W (1991) A restricted angular scattering model for electron penetration in dense media. Med Phys 18: 1–6. Erratum: Med Phys 18: 328(1991)CrossRefPubMedGoogle Scholar
  155. McLellan J, Papiez L, Sandison GA, Huda W, Therrien P (1992a) A numerical method for electron transport calcula­tions. Phys Med Biol 37:1109–1124CrossRefPubMedGoogle Scholar
  156. McLellan J, Papiez L, Sandison G, Sawchuk S, Battista J (1992b) An improved method for the calculation of electron energy straggling distributions. Med Phys 19: 810 (abstract #P6)Google Scholar
  157. McParland BJ (1987) A parameterization of the electron beam output factors of a 25-MeV linear accelerator. Med Phys 14: 665–669CrossRefPubMedGoogle Scholar
  158. McParland BJ (1989a) A derivation of the electron mass scat­tering power for electron dose calculations. Nucl Instr Meth Phys Res A274: 592–596Google Scholar
  159. McParland BJ (1989b) A method of calculating the output factors of arbitrarily shaped electron fields. Med Phys 16: 88–92CrossRefPubMedGoogle Scholar
  160. McParland BJ (1989c) Methods of calculating the out­put factors of rectangular electron fields. Med Dosim 14: 17–21PubMedGoogle Scholar
  161. McParland BJ (1992) An analysis of equivalent fields for elec­tron beam central-axis dose calculations. Med Phys 19: 901–906CrossRefPubMedGoogle Scholar
  162. McParland BJ, Cunningham JR, Woo MK (1988) The opti­mization of pencil beam widths for use in an electron pencil beam algorithm. Med Phys 15:489–497CrossRefPubMedGoogle Scholar
  163. Meigooni AS, Das IJ (1987) Parametrisation of depth dose for electron beams. Phys Med Biol 32: 761–768CrossRefPubMedGoogle Scholar
  164. Millan PE, Millan S, Hernandez A, Andreo P (1979) Parametrisation of linear accelerator electron beam for computerised dosimetry calculations. Phys Med Biol 24: 825–827CrossRefPubMedGoogle Scholar
  165. Mills MD, Hogstrom KR, Almond PR (1982) Prediction of electron beam output factors. Med Phys 9:60–68CrossRefPubMedGoogle Scholar
  166. Mills MD, Hogstrom KR, Fields RS (1985) Determination of electron beam output factors for a 20-MeV linear accelera­tor. Med Phys 12:473–476CrossRefPubMedGoogle Scholar
  167. Mohan R, Chui CS, Fontenla D, Han K, Ballon D (1988) The effect of angular spread on the intensity distribution of arbi­trarily shaped electron beams. Med Phys 15:204–210CrossRefPubMedGoogle Scholar
  168. Morawska-Kaczyriska M, Huizenga H (1992) Numerical cal­culation of energy deposition by broad high-energy electron beam. II. Multi-layered geometry. Phys Med Biol 37:2103–2116CrossRefGoogle Scholar
  169. Mori T (1985) Tissue heterogeneity corrections for high energy electron treatment planning. Jpn J Radiol Technol 4: 282–286 (English translation from Jpn J Radiol Technol 40,1984)Google Scholar
  170. Muller-Runkel R (1993) Dosimetry of shaped electron fields using a radial integration method. Med Dosim 17: 207–211Google Scholar
  171. Mustafa AA, Jackson DF (1983) The relation between x-ray CT numbers and charged particle stopping powers and its significance for radiotherapy treatment planning. Phys Med Biol 28:169–176CrossRefPubMedGoogle Scholar
  172. Nahum AE (1985a) The M.D.A.H. pencil-beam algorithm. In: Nahum AE (ed) The computation of dose distributions in electron beam radiotherapy. Umea University, Sweden, pp 151–184Google Scholar
  173. Nahum AE (1985b) Monte-Carlo electron transport simulation. II. Application to dose planning. In: Nahum AE (ed) The computation of dose distributions in elec­tron beam radiotherapy. Umea University, Sweden, pp 319–340Google Scholar
  174. Nahum AE (1988) Overview of photon and electron Monte Carlo. In: Jenkins TM, Nelson WR, Rindi A (eds) Monte Carlo transport of electrons and photons. Plenum, New York, pp 3–20CrossRefGoogle Scholar
  175. Nahum AE, Brahme A (1985) The computational of dose dis­tribution in electron depth-dose distributions in uniform and non-uniform media. In: Nahum AE (ed) Electron beam radiotherapy. Umea University, Sweden, pp 98–127Google Scholar
  176. Nath R, Gignac CE, Agostinelli AG, Rothberg S, Schulz RJ (1980) A semi-empirical model for the generation of dose distributions produced by a scanning electron beam. Int J Radiat Oncol Biol Phys 6:67–73CrossRefPubMedGoogle Scholar
  177. Nelson CE, Haneman W, Young K, O’Foghludha F (1984) Analytic calculation of electron beam isodose distributions. Med Phys 11:242–246CrossRefPubMedGoogle Scholar
  178. Nelson WR, Rogers DWO (1988) Structure and operation of the EGS4 code system. In: Jenkins TM, Nelson WR, Rindi A (ed) Monte Carlo transport of electrons and photons. Plenum, New York, pp 287–305CrossRefGoogle Scholar
  179. Nelson WR, Hirayama H, Rogers DWO (1985) The EGS4 code system. Stanford Linear Accelerator Center Report 265, Stanford University, Stanford, Calif.Google Scholar
  180. Neuenschwander H, Born EJ (1992) A macro Monte Carlo method for electron beam dose calculations. Phys Med Biol 37:107–125CrossRefGoogle Scholar
  181. Niroomand-Rad A (1989) Film dosimetry of small elongated electron beams for treatment planning. Med Phys 16: 655–662CrossRefPubMedGoogle Scholar
  182. Nusslin F (1979) Computerized treatment planning in therapy with fast electrons: a review of procedures for calculating dose distribution. Medicamundi 24:112–118Google Scholar
  183. Nusslin F (1980) A simple model for calculating dose distribu­tions in high-energy electron therapy. J Eur Radiother 1: 193–197Google Scholar
  184. Nusslin F (1984) Characterization of elementary electron beams. In: Cunningham JR., Ragan D, Van Dyk J (eds) Proceedings of the eighth international conference on the use of computers in radiation therapy. IEEE Computer Society Press, New York, pp 137–139Google Scholar
  185. Nyerick CE, Ochran TG, Boyer AL, Hogstrom KR (1991) : Dosimetry characteristics of metallic cones for intraoperative radiotherapy. Int J Radiat Oncol Biol Phys 21: 501–510CrossRefPubMedGoogle Scholar
  186. Ogawa K, Nohara H, Yukawa Y, Okada T (1987) Absorption equivalent thickness (AET) method for electron beam treatment planning. Jpn J Radiol Technol 6:90–93Google Scholar
  187. Ozdemir A, Teng SP, Lindstrom DG, Anderson DW (1985) Calculations for distributions in water for 10-MeV electrons. Radiat Res 101:213–224CrossRefGoogle Scholar
  188. Papiez L, Sandison GA (1990) A diffusion model with loss of particles. Adv Appl Prob 22: 533–547CrossRefGoogle Scholar
  189. Perry DJ (1988) On the penetration of fast charged particles. Radiat Res 115:26–43CrossRefPubMedGoogle Scholar
  190. Perry DJ, Holt JG (1980) A model for calculating the effects of small inhomogeneities on electron beam dose distributions, Med Phys 7:207–215CrossRefPubMedGoogle Scholar
  191. Plane JH, Trevor MM (1992) Virtual source distances and field geometry independent output factors for 5–14 MeV electron beams from a Siemens Mevatron M7145. Br J Radiol 65: 717–719CrossRefPubMedGoogle Scholar
  192. Polman HLA, van der Linden PM (1987a) Description of the uncollimated electron beam in air by means of directional pencil beam model. Phys Med Biol 32: 355–363CrossRefPubMedGoogle Scholar
  193. Polman HLA, van der Linden PM (1987b) Determination of three parameters describing the uncollimated electron beam in air. Phys Med Biol 32: 345–353CrossRefPubMedGoogle Scholar
  194. Rashid H, Islam MK, Gaballa H, Rosenow UF, Ting JY (1990) Small-field electron dosimetry for the Philips SL25 linear accelerator. Med Phys 17: 710–714CrossRefPubMedGoogle Scholar
  195. Ritenour ER, Cacak RK, Hendee WR (1983) Ionization pro­duced by electron beams beneath curved surfaces. Med Phys 10:669–671CrossRefPubMedGoogle Scholar
  196. Roesch WC (1954) Age-diffusion theory for beta ray prob­lems. General Electric Company, Hanford Atomic Products Operation, Richland, Washington, Report HW-32121Google Scholar
  197. Rogers DWO (1991) The role of Monte Carlo simulation of electron transport in radiation dosimetry. Appl Radiat Isot 42:965–974CrossRefGoogle Scholar
  198. Rogers DWO, Bielajew AF (1990) Monte Carlo techniques of electron and photon transport for radiation dosimetry. In: Kase KR, Bjarngard BE, Attix FH (eds) The dosimetry of ionizing radiation, vol III. Academic Press, San Diego, pp 427–539Google Scholar
  199. Rogers DWO, Bielajew AF, Nahum AE (1984) Monte Carlo calculations of electron beams in standard dose planning geometries. In: Cunningham JR, Ragan D, van Dyk J (eds) Proceedings of the eighth international conference on the use of computers in radiation therapy. IEEE Computer Society Press, New York, pp 140–144Google Scholar
  200. Rogers DWO, Bielajew AF, Mackie TR, Kubsad SS (1990) The Omega Project: treatment planning for electron-beam radiotherapy using Monte Carlo techniques. Phys Med Biol 35: 285–286 (abstract)CrossRefGoogle Scholar
  201. Rossi B (1952) High-energy particles. Prentice-Hall, New York, pp 62–77Google Scholar
  202. Rossi B, Greisen K (1941) Cosmic-ray theory. Rev Mod Phys 13: 240–309 (Fermi’s work is given on pp 265–268)CrossRefGoogle Scholar
  203. Rozenfeld M, Lanzl LH, Newton CM, Skaggs LS (1969) Computation of distribution of absorbed dose and absorbed dose rate from a scanning electron beam. Strahlentherapie 138: 651–659PubMedGoogle Scholar
  204. Rustgi SN, Rodgers JE (1987) Analysis of the bremsstrahlung component in 6–18 MeV electron beams. Med Phys 14: 884–888CrossRefPubMedGoogle Scholar
  205. Sabbas AM, Jette D, Rozenfeld M, Pagnamenta A, Lanzl LH (1987) Collimated electron beams and their associated penumbra widths. Med Phys 14:996–1006CrossRefPubMedGoogle Scholar
  206. Sandison GA (1987) Application of Fermi-Eyges scattering theory to magnetically scanned therapeutic electron beams. Doctoral dissertation, University of Manitoba, Winnipeg, CanadaGoogle Scholar
  207. Sandison GA, Huda W (1988) Application of Fermi scattering theory to a magnetically scanned electron linear accelera­tor. Med Phys 15:498–510CrossRefPubMedGoogle Scholar
  208. Sandison GA, Huda W (1989) Is the ‘fictitious’ virtual source a redundant concept for scanned therapeutic electron beams? Phys Med Biol 34: 369–378CrossRefPubMedGoogle Scholar
  209. Sandison GA, Papiez L (1990) Dose computation applica­tions of the electron loss model. Phys Med Biol 35:979–997CrossRefGoogle Scholar
  210. Sandison GA, Huda W, Savoie D (1989) Comparison of methods to determine electron pencil beam spread in tissue-equivalent media. Med Phys 16:881–888CrossRefPubMedGoogle Scholar
  211. Scott W (1963) The theory ofsmall-angle multiple scattering of fast charged particles. Rev Mod Phys 35:231–313CrossRefGoogle Scholar
  212. Seltzer SM (1988) An overview of ETRAN Monte Carlo methods. In: Jenkins TM, Nelson WR, Rindi A (eds) Monte Carlo transport of electrons and photons. Plenum, New York, pp 153–181CrossRefGoogle Scholar
  213. Shackleton D (1984) A new shape-fitting method for computerised electron beam radiotherapy planning. In: Cunningham JR, Ragan D, Van Dyk J (eds) Proceedings of the eighth international conference on the use of computers in radiation therapy. IEEE Computer Society Press, New York, pp 130–131Google Scholar
  214. Sharma AK, Supe SS, Sathiya Narayanan VK, Subbarangaiah K (1992) Determination of virtual SSDs for elec­tron beams from a dual energy linear accelerator. StrahlentherOnkol 168:402–405Google Scholar
  215. Sharma SC, Johnson MW (1991) Electron beam effective source surface distances for a high energy linear accelerator. Med Dosim 16: 65–70PubMedGoogle Scholar
  216. Sharma SC, Wilson DL (1985) Depth dose characteristics of elongated fields for electron beams from a 20-MeV acceler­ator. Med Phys 12:419–423CrossRefPubMedGoogle Scholar
  217. Shiu AS, Hogstrom KR (1991 a) Dose in bone and tissue near bone-tissue interface from electron beam. Int J Radiat Oncol Biol Phys 21: 695–702CrossRefPubMedGoogle Scholar
  218. Shiu AS, Hogstrom KR (1991b) Pencil-beam redefinition algorithm for electron dose distributions. Med Phys 18: 7–18CrossRefPubMedGoogle Scholar
  219. Shiu AS, Tung S, Hogstrom KR, et al. (1992) Verification data for electron beam dose algorithms. Med Phys 19: 623–636CrossRefPubMedGoogle Scholar
  220. Shortt KR, Ross CK, Bielajew AF, Rogers DWO (1986) Electron beam dose distributions near standard inhomo-geneities. Phys Med Biol 31: 235–249CrossRefGoogle Scholar
  221. Starkschall G, Shiu AS, Bujinowski SW, Wang LL, Low DA, Hogstrom KR (1991) Effect of dimensionality of hetero­geneity corrections on the implementation of a three-dimensional electron pencil-beam algorithm. Phys Med Biol 36: 207–227CrossRefPubMedGoogle Scholar
  222. Steben JD, Ayyangar K, Suntharalingam N (1979) Betatron electron beam characterisation for dosimetry calculations. Phys Med Biol 24: 299–309CrossRefPubMedGoogle Scholar
  223. Sternick ES (1978) Algorithms for computerized treatment planning. In: Orton CG, Bagne F (eds) Practical aspects of electron beam treatment planning. Am Inst Phys, New York, pp 81–110 (Medical physics monograph no. 2)Google Scholar
  224. Storchi PRM, Huizenga H (1985) On a numerical approach of the pencil beam model. Phys Med Biol 30:467–473CrossRefGoogle Scholar
  225. Storchi P, van der Linden RJ (1989) A numerical method for the calculation of the diffusion of high energy electrons in a heterogeneous medium. J Computat Pljys 85: 417–433CrossRefGoogle Scholar
  226. Storchi P, van der Linden R, Huizenga H (1987) Mathe­matical generalization of the moment method for clinical electron beam dose calculation. In: Bruinvis IAD, van der Giessen PH, van Kleffens HJ, Wittkamper FW (eds) The use of computers in radiation therapy. Elsevier Science, Amsterdam, pp 145–148Google Scholar
  227. Strydom WJ (1984) An analytical expression for central axis depth-dose of electrons. Phys Med Biol 29: 267–269. Erratum: Phys Med Biol 29: 605 (1984)CrossRefPubMedGoogle Scholar
  228. Strydom WJ (1991) Central axis depth dose curve for electron beams. Med Phys 18: 1254–1255CrossRefPubMedGoogle Scholar
  229. Suntharalingam N, Ayyangar K (1984) 3-dimensional dose calculations. In: Bagne F (ed) Computerized treatment planning systems. U.S. DHHS, Bethesda, MD (FDA 84–8223), pp 124–135Google Scholar
  230. Tabata T (1993) Semiempirical models for depth-dose curves of electrons in matter: An introductory review. Bulletin of University of Osaka Prefecture 41: 103–118Google Scholar
  231. Tabata T, Ito R (1991) Electron-beam backscattering at media interfaces and a depth-dose algorithm. Proc. RadTech Asia ’91, Osaka, 15–18 April 1991. RadTech Jpn, Tokyo, pp 528–533Google Scholar
  232. Tabata T, Ito R (1992) Simple calculation of the electron-backscatter factor. Med Phys 19: 1423–1426CrossRefPubMedGoogle Scholar
  233. Tabata T, Andreo P, Ito R (1991) Analytic fits to Monte Carlo calculated depth-dose curves of1- to 50-MeV electrons in water. Nucl Instr Meth Phys Res B58: 205–210CrossRefGoogle Scholar
  234. Thomas SJ (1988) Virtual source distances for electron beams between 5 and 20 MeV. Phys Med Biol 33:1325–1328CrossRefGoogle Scholar
  235. Udale M (1988) A Monte Carlo investigation of surface doses for broad electron beams. Phys Med Biol 33:939–953.CrossRefGoogle Scholar
  236. Udale-Smith M (1992) Monte Carlo calculations of electron beam parameters for three Philips linear accelerators. Phys Med Biol 37: 85–105CrossRefGoogle Scholar
  237. Ulin K, Sternick ES (1989) An isodose shift technique for obliquely incident electron beams. Med Phys 16: 905–910CrossRefPubMedGoogle Scholar
  238. van de Geijn J, Chin B, Pochobradsky J, Miller RW (1987) A new model for computerized clinical electron beam dosime­try. Med Phys 14: 577–584CrossRefPubMedGoogle Scholar
  239. van der Linden P, Bouwer W, van Gasteren H (1984) Implementation of an electron pencil beam algorithm in the TP-11 planning system. In: Cunningham JR, Ragan D, Van Dyk J (eds) Proceedings of the eighth international conference on the use of computers in radiation therapy. IEEE Computer Society Press, New York, pp 119–122Google Scholar
  240. van Gasteren JM (1984) Pencilbeam parameters of clinical electron beams. In: Cunningham JR, Ragan D, Van Dyk (eds) Proceedings of the eighth international conference on the use of computers in radiation therapy. IEEE Computer Society Press, New York, pp 161–166Google Scholar
  241. van Gasteren JM (1987) The influence of primary electron loss on the pencilbeam width in the calculation of electron beam dose distributions. In: Bruinvis IAD, van der Giessen PH, van Kleffens HJ, Wittkamper FW (eds) The use of comput­ers in radiation therapy. Elsevier Science, Amsterdam, pp 137–140Google Scholar
  242. Walker S, Bielajew A, Hale ME, Jette D (1992) Installation of EGS4 Monte Carlo code on an 80386-based microcomput­er. Med Phys 19: 305–306CrossRefPubMedGoogle Scholar
  243. Werner BL (1983) Comparison of broad beam central axis depth dose curves from different accelerators using the uni­versal depth dose curve model. Acta Radiol Suppl (Stockh) 364:35–41Google Scholar
  244. Werner BL (1985) The perturbation of electron beam dose dis­tributions at medium interfaces. Med Phys 12: 754–763. Erratum: Med Phys 13:966(1986)CrossRefPubMedGoogle Scholar
  245. Werner BL (1987) Dose distributions in regions containing beta sources: small scale nonuniformities. Med Phys 14: 807–808CrossRefPubMedGoogle Scholar
  246. Werner BL (1991) Dose distributions in regions containing beta sources: irregularly shaped source distributions in homogeneous media. Med Phys 18: 1192–1194CrossRefPubMedGoogle Scholar
  247. Werner BL, Das IJ (1987) Dose distributions in regions con­taining beta sources: plane interface in a homogeneous medium. Med Phys 14: 797–806CrossRefPubMedGoogle Scholar
  248. Werner BL, Khan FM, Deibel FC (1982) A model for calcu­lating electron beam scattering in treatment planning. Med Phys 9: 180–187. Erratum: Med Phys 9: 784 (1982)CrossRefPubMedGoogle Scholar
  249. Werner BL, Khan FM, Deibel FC (1987) Model for calculat­ing depth dose distributions for broad electron beams. Med Phys 10:582–588CrossRefGoogle Scholar
  250. Werner BL, Das I J, Khan FM (1987) The production of sec­ondary electrons in an electron beam. Med Phys 14: 992–995CrossRefPubMedGoogle Scholar
  251. Werner BL, Kwok CS, Das IJ (1988) Dose distributions in regions containing beta sources: large spherical source regions in a homogeneous medium. Med Phys 15: 358–363CrossRefPubMedGoogle Scholar
  252. Werner BL, Rahman M, Salk WN, Kwok CS (1991) Dose dis­tributions in regions containing beta sources: uniform spherical source region in homogeneous media. Med Phys 18:1181–1191CrossRefPubMedGoogle Scholar
  253. Wilson DL, Almond PR (1991) Dose calculations for a laterally translated electron beam. Med Phys 18: 614 (abstract #15)Google Scholar
  254. Wu RK, Wang W, El-Mahdi AM (1987) Irregular field output factors for electron beams. In: Bruinvis IAD, van der Giessen PH, van Kleffens HJ, Wittkamper FW (eds) The use of computers in radiation therapy. Elsevier Science, Amsterdam, pp 73–77Google Scholar
  255. Yang C (1951) Actual path length of electrons in foils. Phys Rev 84: 599–600CrossRefGoogle Scholar
  256. Yu CX, Ge WS, Wong JW (1988) A multiray model for calculating electron pencil beam distribution. Med Phys 15:662–671CrossRefPubMedGoogle Scholar
  257. Yu H (1983) The applicability of the method of equivalent squares for photon and electron beams. Phys Med Biol 28:1279–1287CrossRefGoogle Scholar
  258. Zerby CD, Keller FL (1967) Electron transport theory, calcu­lations, and experiments. Nucl Sci Eng 27: 190–218Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • David Jette
    • 1
    • 2
  1. 1.The Lawrence H. Lanzl Institute of Medical PhysicsSeattleUSA
  2. 2.Rush-Presbyterian-St. Luke’s Medical CenterChicagoUSA

Personalised recommendations