Three-Dimensional Photon Beam Calculations

  • Peter Bloch
  • Martin D. Altschuler
Part of the Medical Radiology book series (MEDRAD)


In radiation treatment of cancer it is necessary to: (a) accurately define the extent of disease, (b) customize radiation treatment delivery of required dose to diseased tissues while minimizing dose to normal surrounding tissue, and (c) verify that the delivered dose is the amount planned. Attention to all these issues is essential to design a treatment regimen that controls the disease without causing serious complications to normal critical structures. In most clinical cases direct measurement of the dose delivered to the tumor and normal tissue is not possible.Thus the radiation oncologist depends on the calculated dose distribution to evaluate the appropriateness of a particular treatment plan. Clinical studies have documented that small changes of ±5% in the dose delivered can result in significant differences in complication-free local control of disease (ICRU Report 24,1976).


Dose Distribution Energy Deposition Dose Calculation Scattered Photon Energy Fluence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahnesjo A (1989) Collapsed cone convolution of radiation energy for photon dose calculation. Med Phys 16: 577–591PubMedCrossRefGoogle Scholar
  2. Altschuler MD, Bloch P, Buhle EL Jr, Ayyalasomayajula S (1992) 3 D dose calculations for electron and photon beams. Phys Med Biol 37: 391–441CrossRefGoogle Scholar
  3. Bloch P (1988) A unified electron/photon dosimetry approach. Phys Med Biol 33: 373–379PubMedCrossRefGoogle Scholar
  4. Bortfeld T, Schlegel W, Rhein B(1993) Decomposition of pencil beam kernels for fast dose calculations in three-dimensional treatment planning. Med Phys 20: 311–318PubMedCrossRefGoogle Scholar
  5. Boyer Al, Zhu Y, Wang L, Francois P (1989) Fast Fourier transform convolution calculations of x-ray isodose distributions in homogeneous media.Med Phys 16: 248–253PubMedCrossRefGoogle Scholar
  6. Boyer AL, Desobry GE, Wells NH (1991f) Potential and limitations of invariant kernel conformal therapy. Med Phys 18: 703–712PubMedCrossRefGoogle Scholar
  7. Brahme A (1988) Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 12: 129–140PubMedCrossRefGoogle Scholar
  8. Clarkson JR(1941) A note on depth dose in fields of irregular shape. Br J Radiol 14: 265CrossRefGoogle Scholar
  9. Cunningham JR(1972) Scatter-ratio. Phys Med Biol 17: 43–51CrossRefGoogle Scholar
  10. Desobry GE, Wells NH, Boyer AL (1991) Rotational kernels for conformal therapy. Med Phys 18: 481–487PubMedCrossRefGoogle Scholar
  11. Dutreix J, Bernard M(1966) Dosimetry at interfaces for high energy X and gamma rays. Br J Radio 10: 177–190Google Scholar
  12. Dutreix J, Dutreix A, Tubiana M (1965) Electronic equilibrium and transition stages. Phys Med Biol 10: 177–190PubMedCrossRefGoogle Scholar
  13. Epp ER, Boyer AL, Dopple KP (1977) Underdosing of lesions resulting from lack of electronic equilibrium in upper respiratory air cavities irradiated by 10 MV X-ray beams. Int J Radiat Oncol Biol Phys 2:613–619PubMedCrossRefGoogle Scholar
  14. Halbleib JA, Kansek RP, Mehlhorn TA, Valdez CD, Selter SM, Berger MJ (1992) ITS Version 3.0 the Integrated TIGER Server of Coupled Electron/Photon Monte Carlo Transport Codes”, SAND 91–1634Google Scholar
  15. ICRU, Report 33 (1980) International Commission on Radiation Units and Measurements Radiation Quantities and Unit ICRU Report 33, Washington, DCGoogle Scholar
  16. ICRU, Report 24 (1976) Determination of the absorbed dose in a patient irradiated by beams of X or gamma rays in radiation therapy procedures. International Commission on Radiation Units and Measurements, Washington, DCGoogle Scholar
  17. Johns HE, Cunningham JE(1983) The physics of radiology, 4th edn. Charles C. Thomas, Springfield, ILL., Chap 7Google Scholar
  18. Levy LB, Waggener RG, McDavid WD, Payne WH (1974) Experimental and calculated Bremsstrahlung spectra from a 25 MeV linear accelerator and a 19 MeV Betatron. Med Phys 1: 62–67PubMedCrossRefGoogle Scholar
  19. Mackie TR, Scrimger JW, Battita JJ (1985) A convolution method of calculating dose for 15 MV X rays. Med Phys 12: 188–196PubMedCrossRefGoogle Scholar
  20. Mackie TR, Bielajew AF, Rogers DWO, Battista JJ (1988) Generation of photon energy deposition kernels using the EGS4 Monte Carlo code. Phys Med Biol 33: 1–20PubMedCrossRefGoogle Scholar
  21. Mijnheer BJ, Battermann JJ, Wambersie A (1987) What degree of accuracy is required and can be achieved in photon and neutron therapy? Radiother Oncol 8: 237–252PubMedCrossRefGoogle Scholar
  22. Mohan R, Chui C, Lidolsky L (1985) Energy and angular distribution of photons from medical accelerators. Med Phys 12: 726–730PubMedCrossRefGoogle Scholar
  23. Morrel JE (1987) Boltzmann-Fokker-Planck calculations using standard discrete ordinate codes. Los Alamos National Labs LA-UR Report 83–229Google Scholar
  24. Nelson WR, Hirayama H, Roger DWO (1985) The EGS code system Stanford linear accelerator center. Internal Report SLAC 265Google Scholar
  25. O’Connor JE (1956) The variation of scattered x-rays with density in an irradiated body. Phys Med Biol 1: 352–369CrossRefGoogle Scholar
  26. Purdy JA (1992) Photon dose calculations for three-dimensional radiation treatment planning. Semin Radiat Oncol 2: 235–245PubMedCrossRefGoogle Scholar
  27. Sontag MR, Cunningham JR(1977) Corrections to absorbed dose calculations for tissue inhomogeneities. Med Phys 4: 431–436PubMedCrossRefGoogle Scholar
  28. Werner BL, Das IJ, Khan FM, Meigooni AS (1987) Dose perturbations at interfaces in photon beams. Med Phys 14: 585–594PubMedCrossRefGoogle Scholar
  29. Wong JW, Henkelman RM (1983) A new approach to CTpixel-based photon dose calculations in heterogeneous media. Med Phys 10: 199–208PubMedCrossRefGoogle Scholar
  30. Wong JW, Henkelman RM, Andrews JW(1981) Effect of small inhomogeneities on dose in a Co-60 beam. Med Phys 8: 783–791PubMedCrossRefGoogle Scholar
  31. Woo MK, Cunningham JR, Jezioranski JJ (1990) Extending the concept of primary and scatter separation to the condition of electronic disequilibrium. Med Phys 17: 588–595PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Peter Bloch
    • 1
  • Martin D. Altschuler
    • 1
  1. 1.Department of Radiation OncologyHospital of The University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations