Skip to main content

Three-Dimensional Photon Beam Calculations

  • Chapter
Radiation Therapy Physics

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

In radiation treatment of cancer it is necessary to: (a) accurately define the extent of disease, (b) customize radiation treatment delivery of required dose to diseased tissues while minimizing dose to normal surrounding tissue, and (c) verify that the delivered dose is the amount planned. Attention to all these issues is essential to design a treatment regimen that controls the disease without causing serious complications to normal critical structures. In most clinical cases direct measurement of the dose delivered to the tumor and normal tissue is not possible.Thus the radiation oncologist depends on the calculated dose distribution to evaluate the appropriateness of a particular treatment plan. Clinical studies have documented that small changes of ±5% in the dose delivered can result in significant differences in complication-free local control of disease (ICRU Report 24,1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahnesjo A (1989) Collapsed cone convolution of radiation energy for photon dose calculation. Med Phys 16: 577–591

    Article  PubMed  CAS  Google Scholar 

  • Altschuler MD, Bloch P, Buhle EL Jr, Ayyalasomayajula S (1992) 3 D dose calculations for electron and photon beams. Phys Med Biol 37: 391–441

    Article  Google Scholar 

  • Bloch P (1988) A unified electron/photon dosimetry approach. Phys Med Biol 33: 373–379

    Article  PubMed  CAS  Google Scholar 

  • Bortfeld T, Schlegel W, Rhein B(1993) Decomposition of pencil beam kernels for fast dose calculations in three-dimensional treatment planning. Med Phys 20: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Boyer Al, Zhu Y, Wang L, Francois P (1989) Fast Fourier transform convolution calculations of x-ray isodose distributions in homogeneous media.Med Phys 16: 248–253

    Article  PubMed  CAS  Google Scholar 

  • Boyer AL, Desobry GE, Wells NH (1991f) Potential and limitations of invariant kernel conformal therapy. Med Phys 18: 703–712

    Article  PubMed  CAS  Google Scholar 

  • Brahme A (1988) Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 12: 129–140

    Article  PubMed  CAS  Google Scholar 

  • Clarkson JR(1941) A note on depth dose in fields of irregular shape. Br J Radiol 14: 265

    Article  Google Scholar 

  • Cunningham JR(1972) Scatter-ratio. Phys Med Biol 17: 43–51

    Article  Google Scholar 

  • Desobry GE, Wells NH, Boyer AL (1991) Rotational kernels for conformal therapy. Med Phys 18: 481–487

    Article  PubMed  CAS  Google Scholar 

  • Dutreix J, Bernard M(1966) Dosimetry at interfaces for high energy X and gamma rays. Br J Radio 10: 177–190

    CAS  Google Scholar 

  • Dutreix J, Dutreix A, Tubiana M (1965) Electronic equilibrium and transition stages. Phys Med Biol 10: 177–190

    Article  PubMed  CAS  Google Scholar 

  • Epp ER, Boyer AL, Dopple KP (1977) Underdosing of lesions resulting from lack of electronic equilibrium in upper respiratory air cavities irradiated by 10 MV X-ray beams. Int J Radiat Oncol Biol Phys 2:613–619

    Article  PubMed  CAS  Google Scholar 

  • Halbleib JA, Kansek RP, Mehlhorn TA, Valdez CD, Selter SM, Berger MJ (1992) ITS Version 3.0 the Integrated TIGER Server of Coupled Electron/Photon Monte Carlo Transport Codes”, SAND 91–1634

    Google Scholar 

  • ICRU, Report 33 (1980) International Commission on Radiation Units and Measurements Radiation Quantities and Unit ICRU Report 33, Washington, DC

    Google Scholar 

  • ICRU, Report 24 (1976) Determination of the absorbed dose in a patient irradiated by beams of X or gamma rays in radiation therapy procedures. International Commission on Radiation Units and Measurements, Washington, DC

    Google Scholar 

  • Johns HE, Cunningham JE(1983) The physics of radiology, 4th edn. Charles C. Thomas, Springfield, ILL., Chap 7

    Google Scholar 

  • Levy LB, Waggener RG, McDavid WD, Payne WH (1974) Experimental and calculated Bremsstrahlung spectra from a 25 MeV linear accelerator and a 19 MeV Betatron. Med Phys 1: 62–67

    Article  PubMed  CAS  Google Scholar 

  • Mackie TR, Scrimger JW, Battita JJ (1985) A convolution method of calculating dose for 15 MV X rays. Med Phys 12: 188–196

    Article  PubMed  CAS  Google Scholar 

  • Mackie TR, Bielajew AF, Rogers DWO, Battista JJ (1988) Generation of photon energy deposition kernels using the EGS4 Monte Carlo code. Phys Med Biol 33: 1–20

    Article  PubMed  CAS  Google Scholar 

  • Mijnheer BJ, Battermann JJ, Wambersie A (1987) What degree of accuracy is required and can be achieved in photon and neutron therapy? Radiother Oncol 8: 237–252

    Article  PubMed  CAS  Google Scholar 

  • Mohan R, Chui C, Lidolsky L (1985) Energy and angular distribution of photons from medical accelerators. Med Phys 12: 726–730

    Article  PubMed  CAS  Google Scholar 

  • Morrel JE (1987) Boltzmann-Fokker-Planck calculations using standard discrete ordinate codes. Los Alamos National Labs LA-UR Report 83–229

    Google Scholar 

  • Nelson WR, Hirayama H, Roger DWO (1985) The EGS code system Stanford linear accelerator center. Internal Report SLAC 265

    Google Scholar 

  • O’Connor JE (1956) The variation of scattered x-rays with density in an irradiated body. Phys Med Biol 1: 352–369

    Article  Google Scholar 

  • Purdy JA (1992) Photon dose calculations for three-dimensional radiation treatment planning. Semin Radiat Oncol 2: 235–245

    Article  PubMed  Google Scholar 

  • Sontag MR, Cunningham JR(1977) Corrections to absorbed dose calculations for tissue inhomogeneities. Med Phys 4: 431–436

    Article  PubMed  CAS  Google Scholar 

  • Werner BL, Das IJ, Khan FM, Meigooni AS (1987) Dose perturbations at interfaces in photon beams. Med Phys 14: 585–594

    Article  PubMed  CAS  Google Scholar 

  • Wong JW, Henkelman RM (1983) A new approach to CTpixel-based photon dose calculations in heterogeneous media. Med Phys 10: 199–208

    Article  PubMed  CAS  Google Scholar 

  • Wong JW, Henkelman RM, Andrews JW(1981) Effect of small inhomogeneities on dose in a Co-60 beam. Med Phys 8: 783–791

    Article  PubMed  CAS  Google Scholar 

  • Woo MK, Cunningham JR, Jezioranski JJ (1990) Extending the concept of primary and scatter separation to the condition of electronic disequilibrium. Med Phys 17: 588–595

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bloch, P., Altschuler, M.D. (1995). Three-Dimensional Photon Beam Calculations. In: Smith, A.R. (eds) Radiation Therapy Physics. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03107-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03107-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03109-4

  • Online ISBN: 978-3-662-03107-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics