Advertisement

Advances in Radiation Dosimetry

  • Ravinder Nath
  • M. Saiful Huq
Chapter
  • 322 Downloads
Part of the Medical Radiology book series (MEDRAD)

Abstract

Radiation dosimetry plays a central role in the physics of radiation oncology because potentially lethal amounts of radiation are necessary for the successful eradication of malignant tumors in humans. It has been estimated that an accuracy of ± 5% for dose delivered in the entire irradiated volume is necessary. Some of the steps in the radiation therapy procedure that influence the accuracy of dose delivered to tumor and healthy tissues are: (a) diagnosis, staging, localization of tumor volume, dose prescription, and fractionation schedule; (b) calculation of dose distributions resulting from an optimum geometric arrangement of radiation beams; (c) simulation and execution of the treatment plan; and (d) recording and verification of dose delivered. In this long chain of events, the dosimetry calibration of radiation fields used under reference conditions is the starting point for the accurate delivery of prescribed dose.

Keywords

International Atomic Energy Agency Radiation Dosimetry Wall Correction Factor Stop Power Ratio Absorb Dose Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AAPM, American Association of Physicists in Medicine (1966) Protocol for the dosimetry of high energy electrons. Phys Med Biol 11:505–520Google Scholar
  2. AAPM, American Association of Physicists in Medicine (1971) Protocol for the dosimetry of X- and gamma-ray beams with maximum energies between 0.6 and 50 MeV. Phys Med Biol 16: 379–396Google Scholar
  3. AAPM, American Association of Physicists in Medicine, Task Group No. 10, Radiation Therapy Committee (1975) Code of practice for x-ray therapy linear accelerators. Med Phys 2: 110–121Google Scholar
  4. AAPM, American Association of Physicists in Medicine, Task Group No. 21, Radiation Therapy Committee (1983) A protocol for the determination of absorbed dose from high-energy photon and electron beams. Med Phys 10: 741–771Google Scholar
  5. AAPM, American Association of Physicists in Medicine, Task Group 21, Radiation Therapy Committee (1984) Erratum: a protocol for the determination of absorbed dose from high-energy photon and electron beams. [Med. Phys. 10:741 (1983)]. Med Phys 11: 213Google Scholar
  6. AAPM, American Association of Physicists in Medicine, Task Group 25, Radiation Therapy Committee (1991) Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group no. 25. Med Phys 18: 73–109Google Scholar
  7. Aget H, Rosenwald JC (1991) Polarity effect for various ionization chambers with multiple irradiation conditions in electron beams. Med Phys 18: 67–72PubMedGoogle Scholar
  8. Almond PR (1967) The physical measurement of electron beams from 6 to 18 MeV: absrobed dose and energy calibrations. Phys Med Biol 12: 13–24PubMedGoogle Scholar
  9. Almond PR (1985) A comparison of x-ray dose calibration using different phantom materials. Radiother Oncol 4: 319–323PubMedGoogle Scholar
  10. Almond PR, Svensson H (1977) Ionization chamber dosimetry for photon and electron beams. Acta Radiol Ther Phys Biol 16: 177–186PubMedGoogle Scholar
  11. Almond PR, Mendez A, Behmardf M (1978) In: National and international standardization of radiation dosimetry, vol II. STI/PUB/471, IAEA, Vienna, pp 271–289Google Scholar
  12. Andreo P (1983) DOSIS: a computer program for the calculation of absorbed dose in photon and electron beams from ionization measurements in a phantom. Nucl Instrum Methods 211: 481Google Scholar
  13. Andreo P, Brahme A (1981) Mean energy in electron beams. Med Phys 8: 682–687PubMedGoogle Scholar
  14. Andreo P, Brahme A (1984) Restricted energy-loss straggling and multiple scattering of electrons in mixed Monte Carlo procedures. Radiat Res 100: 16–29Google Scholar
  15. Andreo P, Brahme A (1986) Stopping power data for high-energy photon beams. Phys Med Biol 31: 839–858PubMedGoogle Scholar
  16. Andreo P, Nahum AE (1985) Stopping-power ratio for a photon spectrum as a weighted sum of the values for monoenergetic photon beams. Phys Med Biol 30: 1055–1065PubMedGoogle Scholar
  17. Andreo P, Nahum AE, Brahme A (1986) Chamber-dependent wall correction factors in dosimetry. Phys Med Biol 31:1189–1199PubMedGoogle Scholar
  18. Andreo P, Nahum AE, Svensson H (1987) Recent developments in basic dosimetry. Radiother Oncol 10: 117–126PubMedGoogle Scholar
  19. Andreo P, Brahme A, Nahum A, Mattsson O (1989) Influence of energy and angular spread on stopping-power ratios for electron beams. Phys Med Biol 34: 751–768Google Scholar
  20. Andreo P, Lindborg L, Medin J (1991) On the calibration of plane-parallel ion chambers using 60Co beams. Med Phys 18: 326–327PubMedGoogle Scholar
  21. Andreo P, Lindborg L, Medin J (1992) Comments to “Chamber replacement correction in absorbed dose calibrations,” by J.E. Burns. Med Phys 19:211Google Scholar
  22. Appleby A, Leghrouz A (1991) Imaging of radiation dose by visible color development in ferrous-agarose-xylenol orange gels. Med Phys 18: 309–321PubMedGoogle Scholar
  23. Appleby A, Christman E A, Leghrouz A (1987) Imaging of spatial radiation dose distribution in agarose gels using magnetic resonance. Med Phys 14: 382–384PubMedGoogle Scholar
  24. Ashley JC (1982a) Density effect in liquid water. Radiat Res 89: 32–37Google Scholar
  25. Ashley JC (1982b) Stopping power of liquid water for low-energy electrons. Radiat Res 89: 25–31Google Scholar
  26. Attix FH (1984a) Presentation of nominal accelerating potential as a function of the ionization ratio in the new AAPM dosimetry protocol. Med Phys 11: 565–566Google Scholar
  27. Attix FH (1984b) Determination of Aion and Pion in the new AAPM radiotherapy dosimetry protocol. Med Phys 11: 714–716PubMedGoogle Scholar
  28. Attix FH (1984c) A simple derivation of Ngas, a correction in Awall, and other comments on the AAPM Task Group 21 protocol. Med Phys 11: 725–728PubMedGoogle Scholar
  29. Attix FH (1989) Equations for Ngas and Nair in terms of Nx and Nk. Med Phys 16: 803–806PubMedGoogle Scholar
  30. Attix FH (1990) A proposal for the calibration of plane-parallel ion chambers by accredited dosimetry calibration laboratories. Med Phys 17: 931–933PubMedGoogle Scholar
  31. Austerlitz C, Sibata CH, de Almeida CE (1987) A graphite transmission ionization chamber. Med Phys 14: 1056–1059PubMedGoogle Scholar
  32. Awschalom M, Rosenberg I, Ten Haken RK (1983) A new look at displacement factor and point of measurement corrections in ionization chamber dosimetry. Med Phys 10: 307–313PubMedGoogle Scholar
  33. Barish RJ (1984) Thermal characteristics of a common polystyrene phantom. Med Phys 11: 214–215PubMedGoogle Scholar
  34. Barish RJ, Lerch IA (1992) Long-term use of an isotope check source or verification of ion chamber calibration. Med Phys 19: 203–205PubMedGoogle Scholar
  35. Barnard GP (1964) Dose-exposure conversion factors for mega-voltage x-ray dosimetry. Phys Med Biol 9: 321–332Google Scholar
  36. Barnard GP, Axton EJ, Marsh ARS (1959) A study of cavity ion chambers for use with 2 M V x-rays: equilibrium wall thickness wall absorption correction. Phys Med Biol 3: 366PubMedGoogle Scholar
  37. Berger M J, Seltzer SM (1964) Studies in penetration of charge particles in matter. National Research Council Publication 1133, Washington National Academy of SciencesGoogle Scholar
  38. Berger MJ, Seltzer SM (1982) Stopping powers and ranges o electrons and positrons. NBS Report IR 82–2550. US Dept. of Commerce, Gaithersburg, MDGoogle Scholar
  39. Berger M J, Domen SR, Lamperti PJ (1975) Stopping power ratios for electron dosimetry with ionization chambers. In: Biomedica dosimetry. IAEA Vienna, pp 589–609Google Scholar
  40. Berkley LW, Gagnon WF, Hanson WF, Weaver KA, Shalek RJ (1980) A review of the discrepancy between the in-air and in-water calibration of cobalt-60 machines. Med Phys 7: 520–524PubMedGoogle Scholar
  41. Bewley DK (1963) The measurement of locally absorbed dose of megavoltage x-rays by means of a carbon calorimeter. Br J Radiol 36: 865–878PubMedGoogle Scholar
  42. Bielajew AF (1985) The effect of free electrons on ionization chamber saturation curves. Med Phys 12: 197–200PubMedGoogle Scholar
  43. Bielajew AF (1990a) Correction factors for thick-walled ionisation chambers in point-source photon beams. Phys Med Biol 35: 501–516Google Scholar
  44. Bielajew AF (1990b) An analytic theory of the point-source non-uniformity correction factor for thick-walled ionisation chambers in photon beams. Phys Med Biol 35: 517–538Google Scholar
  45. Bielajew AF (1990c) On the technique of extrapolation to obtain wall correction factors for ion chambers irradiated by photon beams. Med Phys 17: 583–587PubMedGoogle Scholar
  46. Bielajew AF, Rogers DWO, Nahum AE (1985) The Monte Carlo simualtion of ion chamber response to 60Co resolution of anomalies associated with interfaces. Phys Med Biol 30: 419–427Google Scholar
  47. Bistrovic M, Viculin T (1987) Comments on the comparison of the new and old CE factors listed in the 1985 HPA code. Phys Med Biol 32: 905–906PubMedGoogle Scholar
  48. Bjärngard BE (1987) On Fano’s and O’Connor’s theorems. Radiat Res 109: 184–189PubMedGoogle Scholar
  49. Bjärngard BE, Kase KR (1985) Replacement correction factors for photon and electron dose measurements. Med Phys 12: 785–787PubMedGoogle Scholar
  50. Bjärngard BE, Tsai J-S, Rice RK (1989) Attenuation in very narrow photon beams. Radiat Res 118: 195–200PubMedGoogle Scholar
  51. Bloch P (1988) A unified electron/photon dosimetry approach. Phys Med Biol 33: 373–377PubMedGoogle Scholar
  52. Boag JW (1982) The recombination correction for an ionization chamber exposed to pulsed radiation in a ‘swept beam’ technique. Phys Med Biol 27: 201–211PubMedGoogle Scholar
  53. Boag JW (1984) Dosimetry in a magnetically swept electron beam. Radiother Oncol 2: 37–40PubMedGoogle Scholar
  54. Boag JW (1987) Ionization chambers. In: Kase KR, Bjärngard BE, Attix FH (eds) The dosimetry of ionizing radiation, vol II. Academic Press, 169–244Google Scholar
  55. Boese HR, Cormack DV (1985) Detection of a leak in a “sealed” monitor chamber. Med Phys 12: 377–378PubMedGoogle Scholar
  56. Böhm J (1980) The perturbation correction factor of ionisation chambers in β-radiation fields. Phys Med Biol 25: 65–75PubMedGoogle Scholar
  57. Boutillon M (November 1977) Some remarks concerning the measurement of kerma with a cavity ionization chamber. Bureau International des Poids et Mesurer (CCEMRI (I))/ 77–114Google Scholar
  58. Boutillon M (1983) Perturbation correction for the ionometric determination of absorbed dose in a graphite phantom for 60Co gamma rays. Phys Med Biol 28: 375–388Google Scholar
  59. Boutillon M (1989) Gap correction for the calorimetric measurement of absorbed dose in graphite with a 60Co beam. Phys Med Biol 34: 1809–1821Google Scholar
  60. Boutillon M, Perroche-Roux AM (1987) Re-evaluation of the W value for electrons in dry air. Phys Med Biol 32: 213–219Google Scholar
  61. Brahme A, Andreo P (1986) Dosimetry and quality specification of high energy photon beams. Acta Radiol Oncol 25: 213–223PubMedGoogle Scholar
  62. Bruinvis IAD, Heukelom S, Mijnheer BJ (1985) Comparison of ionisation measurements in water and polystyrene for electron beam dosimetry. Phys Med Biol 30: 1043–1053PubMedGoogle Scholar
  63. Burns JE (1992) Chamber replacement correction in absorbed dose calibration. Med Phys 19: 209–211PubMedGoogle Scholar
  64. Burns JE, Rosser KE (1990) Saturation correction for the NE 2560/1 dosemeter in photon dosimetry. Phys Med Biol 35: 687–693Google Scholar
  65. Burns JE, Dale JWG, DuSautoy AR, Owen B, Pritchard DH (1988) New calibration service for high-energy x-radiation at NPL. In: Proceedings of sympium on dosimetry in radiotherapy, vol 2. IAEA, Vienna, pp 125–132Google Scholar
  66. Campos LL, Caldas L VE (1991) Absorbed dose dependence of the correction factors for ionization chamber cable irradiation effects. Phys Med Biol 36: 339–344PubMedGoogle Scholar
  67. Carlsson GA (1985) Theoretical basis for dosimetry. In: Kase KR, Bjärngard BE, Attix TM (eds) The dosimetry of ionizing radiation, vol I. Academic Press, London, pp 2–77Google Scholar
  68. Casson H, Kiley JP (1987) Replacement correction factors for electron measurements with a parallel-plate chamber. Med Phys 14: 216–217PubMedGoogle Scholar
  69. Comité de Dosimetria en Radioterapia, Sociedad Espanola de Fisica Médica, Brosed A, Andreo P, Gómez D, Gultresa J, Mincholé JL, Serrano C, Vivanco J (1985) The Spanish dosimetry protocol. Radiother Oncol 4: 305–308PubMedGoogle Scholar
  70. Conere TJ (1986a) Some dosimetric discrepancies obtained using a guarded parallel-plate ion chamber with a high input impedance electrometer in measurements involving a pulsed and magnetically swept electron beam. Phys Med Biol 31:1157–1160PubMedGoogle Scholar
  71. Conere TJ (1986b) Variation in collection efficiency of two ion chambers of the same model type. Radiother Oncol 6: 77–78PubMedGoogle Scholar
  72. Conere TJ, Boag JW (1984) The collection efficiency of an ionization chamber in a pulsed and magnetically swept electron beam: limits of validity of the two-voltage technique Med Phys 11: 465–468PubMedGoogle Scholar
  73. Constantinou C (1982) Phantom materials for radiation dosimetry. I. Liquids and gels. Br J Radiol 55: 217–224PubMedGoogle Scholar
  74. Constantinou C, Attix FH, Paliwal BR (1982) A solid water phantom material for radiotherapy x-ray and γ-ray beam calibrations. Med Phys 9: 436–441PubMedGoogle Scholar
  75. Cottens E, Janssens A, Eggermont G, Buysse J (1982) Study of the effect of chloride ion on the ferric ion yield of the Fricke dosemeter in the absense of impurities. Phys Med Biol 27: 597–602Google Scholar
  76. Cunningham JR, Johns HE (1980) Calculations of the average energy absorbed in photon interactions. Med Phys 7: 51–54PubMedGoogle Scholar
  77. Cunningham JR, Schulz RJ (1984) On the selection of stoppingpower and mass energy-absorption coefficient ratios for highenergy x-ray dosimetry. Med Phys 11: 618–623PubMedGoogle Scholar
  78. Cunningham JR, Sontag MR (1980) Displacement corrections used in absorbed dose determinations. Med Phys 7: 672–676PubMedGoogle Scholar
  79. Cunningham JR, Woo M, Rogers DWO, Bielajew AF (1986) The dependence of mass energy absorption coefficient ratios on beam size and depth in a phantom. Med Phys 13: 496–502PubMedGoogle Scholar
  80. Davies JV, Greene D, Keene JP, Law J, Massey JB (1963) A comparison of ionization, calorimetric and ferrous sulphate dosimetry. Phys Med Biol 8: 97–102PubMedGoogle Scholar
  81. Day MJ (1990) Radiation dosimetry using nuclear magnetic resonance: an introductory review. Phys Med Biol 35: 1605–1609PubMedGoogle Scholar
  82. de Almeida CE, Perroche-Roux A-M, Boutillon M (1989) Perturbation correction of a cylindrical thimble-type chamber in a graphite phantom for 60Co gamma rays. Phys Med Biol 34: 1443–1449Google Scholar
  83. Domen SR (1980a) Absorbed dose water calorimeter. Med Phys 7: 157–159PubMedGoogle Scholar
  84. Domen SR (1980b) Thermal diffusivity, specific heat, and thermal conductivity of A-150 plastic. Phys Med Biol 25: 93–102PubMedGoogle Scholar
  85. Domen SR (1982) An absorbed dose water calorimeter: therapy, design, and performance. J Res Natl Bur Stand 87: 211–235Google Scholar
  86. Domen SR (1983) A polystyrene-water calorimeter. Int J Appl Radiat Isot 34: 643–644Google Scholar
  87. Domen SR (1986) Comment on ‘convection current in a water calorimeter.’ Phys Med Biol 31: 1166–69Google Scholar
  88. Domen SR (1988) Further comments on convection currents in a water calorimeter. Phys Med Biol 33: 1083–1086Google Scholar
  89. Domen SR (1990) Advances in calorimetry for radiation dosimetry. In: Kase KR, Bjärngard BE, Attix FH (eds.) The dosimetry of ionizing radiation, vol II. Academic Press, London, pp 245–320Google Scholar
  90. Dutreix A (1985) The French dosimetry protocol. Radiother Oncol 4: 301–304PubMedGoogle Scholar
  91. Dutreix A, Bridier A (1985) Dosimetry for external beams of photon and electron radiation. In: Kase KR, Bjärngard BE, Attix FH (eds) The dosimetry of ionizing radiation, vol I. Academic Press, London, pp 164–229Google Scholar
  92. Dutreix J, Dutreix A (1966) Etude comparée d’une série de chambres d’ionisation dans des faisceaux d’électrons de 20 et 10 MeV. Biophysik 3: 249–258PubMedGoogle Scholar
  93. Dutreix A, Mijnheer B, Svensson H (1985) New protocols for the dosimetry of high-energy photon and electron beams (introduction). Radiother Oncol 4: 289–290PubMedGoogle Scholar
  94. Engler M J, Jones GL (1984) Small-beam calibration by 0.6- and 0.2-cm3 ionization chambers. Med Phys 11: 822–826PubMedGoogle Scholar
  95. Fallone BG, Podgorsak EB (1983) Saturation curves of parallel-plate ionization chambers. Med Phys 10: 191–196PubMedGoogle Scholar
  96. Freyer JP, Schillaci ME, Raju MR (1989) Measurement of the Gvalue for 1.5 keV X-rays. Int J Radiat Biol 56: 885–892PubMedGoogle Scholar
  97. Fricke H, Hart EJ (1966) Chemical dosimetry, in Radiation Dosimetry vol II edited by FH Attix and WC Roesch, Academic Press 1966, p. 167–240Google Scholar
  98. Gajewski R, Izewska J (1987) Perturbation correction factors for the plane-parallel chamber NE 2534. In: Proc. dosimetry in radiotherapy IAEA-SM-298/82, vol 1. IAEA, Vienna, pp 187–193Google Scholar
  99. Galbraith DM, Rawlinson JA, Munro P (1984) Dose errors due to charge storage in electron irradiated plastic phantoms. Med Phys 11:197–203PubMedGoogle Scholar
  100. Galloway G, Greening JR, Williams JR (1986) A water calorimeter for neutron dosimetry. Phys Med Biol 31: 397–406PubMedGoogle Scholar
  101. Gastorf RJ, Hanson WF, Shalel RJ, Berkley LW (1984) The implementation of the AAPM Task Group 21 protocol by the Radiological Physics Center and its implications. Med Phys 11: 547–551PubMedGoogle Scholar
  102. Gastorf RJ, Humphries L, Rozenfeld M (1986) Cylindrical chamber dimensions and the corresponding values of Awall and Ngas/(NxAion). Med Phys 13: 751–754PubMedGoogle Scholar
  103. Gerbi BJ, Khan FM (1987) The polarity effect for commercially available plane-parallel ionization chambers. Med Phys 14: 210–215PubMedGoogle Scholar
  104. Gerbi BJ, Khan FM (1990) Measurement of dose in the buildup region using fixed-separation plane-parallel ionization chambers. Med Phys 17: 17–26PubMedGoogle Scholar
  105. German Standard Association (1975a, draft) Procedures in dosimetry; principles of photon and electron dosimetry with probe-type detectors. In: DIN 6800/1Google Scholar
  106. German Standard Association (1975b, draft) Procedures in dosimetry; ionization dosimetry. In: DIN 6800/2Google Scholar
  107. German Standard Association (1976) Clinical dosimetry; therapeutical application of x-ray, gamma-ray and electron beams. In: DIN 6809/1Google Scholar
  108. Gillin MT, Kline RW, Niroomand-Rad A, Grimm DF (1985) The effect of thickness of the waterproofing sheath on the calibration of photon and electron beams. Med Phys 12: 234–236PubMedGoogle Scholar
  109. Goodman LJ (1978) Density and composition uniformity of A150 tissue-equivalent plastic. Phys Med Biol 23: 753–758PubMedGoogle Scholar
  110. Gore JC, Kang YS, Schulz RJ (1984) Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol 29: 1189–1197PubMedGoogle Scholar
  111. Goswami GC, Kase KR (1989) Measurement of replacement factors for a parallel-plate chamber. Med Phys 16: 791–793PubMedGoogle Scholar
  112. Greene D (1962) The use of an ethylene-filled polythene chamber for dosimetry of megavoltage x-rays. Phys Med Biol 7: 213–224PubMedGoogle Scholar
  113. Greene D, Massey JB (1966) The use of Farmer-Baldwin and Victrometer ionization chambers for dosimetry of high energy x-radiation. Phys Med Biol 11: 569–575PubMedGoogle Scholar
  114. Greene D, Massey JB (1967) The use of Farmer-Baldwin and Victrometer ionization chambers for dosimetry of high energy x-radiation. Phys Med Biol 12: 257–258PubMedGoogle Scholar
  115. Greene D, Massey JB (1968) The use of Farmer-Baldwin and Victrometer ionization chambers for dosimetry of high energy x-radiation. Phys Med Biol 13: 287–288PubMedGoogle Scholar
  116. Hanson WF, Tinoco JAD (1985) Effects of plastic protective caps on the calibration of therapy beams in water. Med Phys 12: 243–248PubMedGoogle Scholar
  117. Hanson WF, Arnold DJ, Shalek RJ, Humphrines LJ (1988) Contamination of ionization chambers by talcum powder. Med Phys 15: 776–777PubMedGoogle Scholar
  118. Harder D (1965) Berechnung der Energiedosis aus Ionisationsmessungen bei Sekundärelektronen-gleichgewicht. In: Zuppinger A, Poretti G (eds) Symposium on high-energy electrons. Springer, Berlin Heidelberg New York, pp 260Google Scholar
  119. Harder D (1968) Einfluss der Vielfachstreuung von Elektronen auf die Ionisation in gasgefüllten Hohlräumen. Biophysik 5: 157–164PubMedGoogle Scholar
  120. Hayakama Y, Schechtman H (1988) Comments on the value of the average energy expended per ion pair formed in air for a proton beam recommended by the American Association of Physicists in Medicine. Med Phys 15: 778Google Scholar
  121. Hayakama Y, Loch CP, Tada J, Inada T (1989) Compensation for beam intensity fluctuation in determination of Pion, the ion-recombination correction factor for ionization chambers, by the two-voltage technique. Med Phys 16: 346–351Google Scholar
  122. Hazle JD, Hefner L, Nyerick CE, Wilson L, Boyer AL (1991) Dose-response characteristics of a ferrous-sulphate-doped gelatin system for determining radiation absorbed dose distributions by magnetic resonance imaging (FeMRI). Phys Med Biol 36: 1117–1125PubMedGoogle Scholar
  123. Hermann K-P, Geworski L, Hatzky T, Lietz R, Harder D (1986) Muscle- and fat-equivalent polyethylene-based phantom materials for x-ray dosimetry at tube voltages below 100 kV. Phys Med Biol 31: 1041–1046PubMedGoogle Scholar
  124. Heese RN, Podgorsak EB, Fallone BG (1986) Approximations to saturation curves in gas-filled parallel-plate ionization chambers. Med Phys 13: 93–98PubMedGoogle Scholar
  125. Hettinger G, Pettersson C, Svensson H (1967a) Displacement effect of thimble chambers exposed to a photon or electron beam from a betatron. Acta Radiol Ther 6: 61–64Google Scholar
  126. Hettinger G, Pettersson C, Svensson H (1967b) Calibration of thimble chambers in a 34 M V roentgen beam. Acta Radiol Ther 6: 214–218Google Scholar
  127. Heukelom S, Lanson JH, Mijnheer BJ (1991) Comparison of entrance and exit dose measurements using ionization chambers and silicon diodes. Phys Med Biol 36: 47–59PubMedGoogle Scholar
  128. Ho AK, Paliwal BR (1986) Stopping-power and mass energy-absorption coefficient ratios for solid water. Med Phys 13: 403–404PubMedGoogle Scholar
  129. Hochhäuser E, Balk O A (1986) The influence of unattached electrons on the collection efficiency of ionisation chambers for the measurement of radiation pulses of high dose rate. Phys Med Biol 31: 223–233Google Scholar
  130. Hogstrom KR, Almond PR (1982) The effect of electron multiple scattering on dose measured in non-water phantoms (abstract). Med Phys 9: 607Google Scholar
  131. Holt JG, Kessaris ND (1977) Discrepancy between C and CE. Phys Med Biol 22: 538–540PubMedGoogle Scholar
  132. Hoshi M, Uehara S, Yamamoto O, et al. (1992) Iron (II) sulphate (Ficke solution) oxidation yields for 8.9 and 13.6 keV X-rays from synchrotron radiation. Int J Radiat Biol 61: 21–27PubMedGoogle Scholar
  133. Houdek PV (1983) Dosimetry of small radiation fields for 10-MV x-rays. Med Phys 10: 333–336PubMedGoogle Scholar
  134. HPA, Hospital Physicists’ Association (1960) A code of practice for x-ray measurements. Br J Radiol 33: 55–59Google Scholar
  135. HPA, Hospital Physicists’ Association (1964) A code of practice for the dosimetry of 2 to 8 MV X-ray and caesium-137 and cobalt-60 γ-ray beams. Phys Med Biol 9: 457–463Google Scholar
  136. HPA, Hospital Physicists’ Association (1969) A code of practice for the dosimetry of 2 to 35 MV X-ray and caesium-137 and cobalt-60 gamma-ray beams. Phys Med Biol 14: 1–8Google Scholar
  137. HPA, Hospital Physicists’ Association (1971) A practical guide to electron dosimetry 5–35 MeV. In: HPA Report Series No. 4Google Scholar
  138. HPA, Hospital Physicists’ Association (1975) A practical guide to electron dosimetry below 5 MeV for radiotherapy purposes. In: HPA Report Series No. 13Google Scholar
  139. HPA, Hospital Physicists’ Association (1983) Revised code of practice for the dosimetry of 2 to 25 MV x-ray, and of caesium-137 and cobalt-60 gamma-ray beams. Phys Med Biol 28: 1097–1104Google Scholar
  140. HPA, Hospital Physicists’ Association (1985) Code of practice for electron beam dosimetry in radiotherapy. Phys Med Biol 30: 1169–1194Google Scholar
  141. HPA, Hospital Physicists’ Association (1990) Code of practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service. Phys Med Biol 35: 1355–1360Google Scholar
  142. Hubbell JH (1977) Photon mass attenuation and mass energyabsorption coefficients for H, C, N, O, Ar and seven mixtures from 0.1 keV to 20 MeV. Radiat Res 70: 58–81PubMedGoogle Scholar
  143. Hubbell JH (1982) Photon mass attenuation and energyabsorption coefficients for 1 keV to 20 MeV. Int J Appl Radiat Isot 33: 1269–1290Google Scholar
  144. Hunt MA, Malik S, Thomason C, Masterson ME (1984) A comparison of the AAPM “Protocol for the determination of absorbed dose from high-energy photon and electron beams” with currently used protocols. Med Phys 11: 806–813PubMedGoogle Scholar
  145. Hunt MA, Kutcher GJ, Buffa A (1988) Electron backscatter corrections for parallel-plate chambers. Med Phys 15: 96–103PubMedGoogle Scholar
  146. IAEA, International Atomic Energy Agency (1962) Single field isodose charts: an international guide.Google Scholar
  147. IAEA, Vienna IAEA, International Atomic Energy Agency (1987) Absorbed dose determination in photon and electron beams: an international code of practice. Technical Reports Series No. 277, IAEA, Vienna, pp 1–98Google Scholar
  148. ICRU, International Commission on Radiation Units and Measurements (1969) Radiation dosimetry: x-rays and gamma rays with maximum photon energies between 0.6 and 50 MeV. ICRU Report No. 14, Washington, DCGoogle Scholar
  149. ICRU, International Commission on Radiation Units and Measurements (1972) Radiation dosimetry: electrons with initial energies between 1 and 50 MeV. Report No. 21, ICRU, Washington, DCGoogle Scholar
  150. ICRU, International Commission on Radiation Units and Measurements (1973) Measurement of absorbed dose in a phantom irradiated by a single beam of X or gamma rays. Report No. 23, ICRU, Washington, DCGoogle Scholar
  151. ICRU, International Commission on Radiation Units and Measurements (1979) Average energy required to produce an ion pair. Report No. 31, ICRU, Washington, DCGoogle Scholar
  152. ICRU, International Commission on Radiation Units and Measurements (1984a) Stopping powers for electrons and positrons. Report No. 37, ICRU, Bethesda, MDGoogle Scholar
  153. ICRU, International Commission on Radiation Units and Measurements (1984b) Radiation dosimetry: electron beams with energies between 1 and 50 MeV. Report No. 35, ICRU, Bethesda, MDGoogle Scholar
  154. IPSM, Institute of Physical Sciences in Medicine (1990) Code of practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service. Phys Med Biol 35: 1355–1360Google Scholar
  155. IPSM, Institute of Physical Sciences in Medicine (1991) Report of the IPSM working party on low- and medium-energy x-ray dosimetry. Phys Med Biol 36: 1027–1038Google Scholar
  156. Janssens A (1984) The fundamental constraint of cavity theory. Phys Med Biol 1157–1158Google Scholar
  157. Jayaraman S, Rozenfeld M, Lanzl LH, Chung-Bin A (1985) Can the AAPM Task Group 21 protocol lead to optimum ion chamber designs? Med Phys 12: 373–376PubMedGoogle Scholar
  158. Johansson K-A, Svensson H (1982) Liquid ionization chamber for absorbed dose determinations in photon and electron beams. Acta Radiol Oncol 21: 359–367PubMedGoogle Scholar
  159. Johansson K-A, Mattsson LO, Lindborg L, Svesson H (1978) Absorbed dose determination with ionization chambers in electron and photon beams having energies between 1 and 50 MeV. In: Proceedings of international symposium on national and international standardization of radiation dosimetry 2. IAEA, Vienna, pp 243–270Google Scholar
  160. Johansson K-A, Horiot JC, Van Dam J, Lepinoy D, Sentenac I, Sernbo G (1986) Quality assurance control in the EORTC cooperative group of radiotherapy. 2. Dosimetric intercom-parison. Radiother Oncol 7: 269–279PubMedGoogle Scholar
  161. Johns HE, Epp ER, Cormack DV, Fedoruk SO (1952) II. Depth dose data and diaphragm design for the Saskatchewan 1000 Curie cobalt unit. Br J Radiol 25: 302PubMedGoogle Scholar
  162. Jones D (1981) Comparison of the perturbation correction in a parallel plate and a cylindrical ion chamber. Med Phys 8: 239–241PubMedGoogle Scholar
  163. Kase KR, Adler GJ, Bjärngard BE (1982) Comparisons of electron beam dose measurements in water and polystyrene using various dosimeters. Med Phys 9: 13–19PubMedGoogle Scholar
  164. Kearsley E (1984) A new general cavity theory. Phys Med Biol 29: 1179–1187Google Scholar
  165. Kemp LAW (1972) The NPL secondary standard therapy-level x-ray exposure meter. Br J Radiol 45: 775–778PubMedGoogle Scholar
  166. Kessaris ND (1970) Absorbed dose and cavity ionization for high-energy electron beams. Radiat Res 43: 288–301PubMedGoogle Scholar
  167. Khan FM, Doppke KP, Hogstrom DR, et al. (1991) Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group No. 25. Med Phys 18: 73–109PubMedGoogle Scholar
  168. Klevenhagen SC (1991) Determination of absorbed dose in high-energy electron and photon radiation by means of an uncalibrated ionization chamber. Phys Med Biol 36: 239–253PubMedGoogle Scholar
  169. Kooy HM, Simpson LD, McFaul JA (1988) Parallel-plate ionization chamber response in cobalt-60 irradiated transition zones. Med Phys 15: 199–203PubMedGoogle Scholar
  170. Kristensen M (1983) Measured influence of the central electrode diameter and material on the response of a graphite ionisation chamber to cobalt-60 gamma rays. Phys Med Biol 28: 1269–1278Google Scholar
  171. Crithivas G (1984) A study of the efficacy of a single voltage electrometer-chamber system in determining the ion collection efficiency. Phys Med Biol 29: 1265–1269Google Scholar
  172. Krithivas G, Rao SN (1986) Ngas determination for a parallel-plate ion chamber. Med Phys 13: 674–677PubMedGoogle Scholar
  173. Kubo H (1985) Estimate of the amount of thermal diffusion from a polystyrene-water calorimeter detector to surrounding water during irradiation. Phys Med Biol 30: 785–798Google Scholar
  174. Kubo H (1990) Reply to ‘Comments on construction of a calorimeter prototype with a high sensitivity pulsed signal detection circuit.’ Phys Med Biol 35: 1029–1030Google Scholar
  175. Kubo H, Cheng P (1988) Absorbed dose comparison among commercial ionization chambers in polystyrene and acrylic phantoms. Med Phys 15: 269–272PubMedGoogle Scholar
  176. Kubo H, Brown DE, Russell MD (1985) A thermoregulated enclosure for controlling thermal drift in a radiation calorimeter. Med Phys 12: 344–346PubMedGoogle Scholar
  177. Kubo H, Kent LJ, Krithivas G (1986) Determinations of Ngas and Prepl factors from commercially available parallel-plate chambers: AAPM Task Group 21 protocol. Med Phys 13: 908–912PubMedGoogle Scholar
  178. Kubo H, Kageyama Y, Lo KK (1989) Construction of a calorimeter prototype with a high sensitivity pulsed signal detection circuit. Phys Med Biol 34: 1119–1123PubMedGoogle Scholar
  179. Kwa W, Kornelson RO (1990) Comparison of ferrous sulfate (Fricke) and ionization dosimetry for high-energy photon and electron beams. Med Phys 17: 602–606PubMedGoogle Scholar
  180. Laurence GC (1937) Comparison of ferrous sulfate (Fricke) and ionization dosimetry for high-energy photon and electron beams Can J Res A 15: 67, as cited in: Principles of radiation dosimetry by GN Whyte, John Wiley, New York (1959) pp 71Google Scholar
  181. Law J, Foster CJ (1987) Calibration of radiotherapy dosemeters against secondary standard dosemeters: an anomalous result. Phys Med Biol 32: 1039–1043PubMedGoogle Scholar
  182. Law J, Naylor GP (1984) Ferrous sulphate G-values for mega-voltage photons and electrons derived from ionisation dosimetry using Cλ and CE values. Phys Med Biol 29: 749–750Google Scholar
  183. Liu P, Kruger RA (1984) Comments on “quantum noise in detectors.” Med Phys 11: 561Google Scholar
  184. Loevinger R (1981) A formalism for calculation of absorbed dose to a medium from photon and electron beams. Med Phys 8: 1–12PubMedGoogle Scholar
  185. Loevinger R (1985) The new AAPM protocol. Radiother Oncol 4: 295–296PubMedGoogle Scholar
  186. Ma CM, Nahum AE (1991) Bragg-Gray theory and ion chamber dosimetry for photon beams. Phys Med Biol 36: 413–428PubMedGoogle Scholar
  187. Mach H, Rogers DWO (1983) An absolutely calibrated source of 6.13 MeV gamma-rays. IEEE Trans Nucl Sci NS-30: 1514Google Scholar
  188. Mach H, Rogers DWO (1984) A measurement of absorbed dose to water per unit incident 7 MeV photon fluence. Phys Med Biol 29: 1555–1570Google Scholar
  189. Majenka I, Rostkowska J, Derezinski M, Paz N (1982) The recombination correction for an ionization chamber exposed to pulsed radiation in a ‘swept beam’ technique. II. Experimental. Phys Med Biol 27: 213–221PubMedGoogle Scholar
  190. Markus B (1964) Beiträge zur Entwicklung der Dosimetrie Schneller Elecktronen, Teil III. Strahlentherapie 124: 33PubMedGoogle Scholar
  191. Marinello G, Valero M, Delplanque JM (1986a) The study of a swept electron beam in order to apply Boag’s theory for calculation of the collection efficiency. I. Beam and swept area characteristics. Phys Med Biol 31: 859–868PubMedGoogle Scholar
  192. Marinello G, Valero M, Bellec-Pollack J (1986b) The study of a swept electron beam in order to apply Boag’s theory for calculation of the collection efficiency. II. Application to different ionisation chambers and comparison with other methods. Phys Med Biol 31: 869–878PubMedGoogle Scholar
  193. Mattsson O (1985) Comparison of different protocols for the dosimetry of high-energy photon and electron beams. Radiother Oncol 4: 313–318PubMedGoogle Scholar
  194. Mattsson O (1990) Comparison of absorbed dose determinations using the IAEA dosimetry protocol and the ferrous sulphate dosimeter. Med Phys World 6Google Scholar
  195. Mattsson O, Svensson H (1984) Charge build-up effects in insulating phantom materials. Acta Radiol Oncol 23: 393–399PubMedGoogle Scholar
  196. Mattsson O, Johansson K-A, Svensson H (1981) Calibration and use of plane-parallel ionization chambers for the determination of absorbed dose in electron beams. Acta Radiol Oncol 20: 385–399PubMedGoogle Scholar
  197. Mattsson O, Johansson K-A, Svensson H (1982) Ferrous sulphate dosimeter for control of ionization chamber dosimetry of electron and 60Co gamma beams. Acta Radiol Oncol 21: 139–144PubMedGoogle Scholar
  198. Mattsson O, Svensson H, Wickman G, Domen SR, Pruitt JS, Loevinger R (1990) Absorbed dose in water. Acta Oncol 29: 235–240PubMedGoogle Scholar
  199. Mayo CS, Gottschalk(1992) Temperature coefficient of open thimble chambers. Phys Med Biol 37: 289–291Google Scholar
  200. McEwan AC (1980) A theoretical study of cavity chamber correction factors for photon beam absorbed dose determination. Phys Med Biol 25: 39–50PubMedGoogle Scholar
  201. McEwan AC, Smyth VG (1984) Comments on “calculated response and wall correction factors for ionization chambers exposed to 60Co gamma-rays.” Med Phys 11: 216–218PubMedGoogle Scholar
  202. Meli JA, Weinhous MS (1986) Collection efficiency of an ionisation chamber in a pulsed swept beam: chamber size effects. Phys Med Biol 31: 1139–1146PubMedGoogle Scholar
  203. Mellenberg DE Jr (1990) Determination of build-up region over-response corrections for a Markus-type chamber. Med Phys 17: 1041–1044PubMedGoogle Scholar
  204. Mijnheer BJ (1985a) Variations in response to radiation of a nylon-walled ionization chamber induced by humidity changes. Med Phys 12:625–626PubMedGoogle Scholar
  205. Mijnheer BJ (1985b) Summary of the discussion on the practical use and comparison of new protocols for the dosimetry of high-energy photon and electron beams. Radiother Oncol 4:325–328PubMedGoogle Scholar
  206. Mijnheer BJ, Chin LM (1989) The effect of differences in data base on the determination of absorbed dose in high-energy photon beams using the American Association of Physicists in Medicine protocol. Med Phys 16: 119–122PubMedGoogle Scholar
  207. Mijnheer BJ, Williams JR (1985) Comments on dry air or humid air values for physical parameters using in AAPM protocol for photon and electron dosimetry. Med Phys 12: 656–658PubMedGoogle Scholar
  208. Mijnheer BJ, Wittämper FW (1986) Comparison of recent codes of practice for high-energy photon dosimetry. Phys Med Biol 31: 407–416PubMedGoogle Scholar
  209. Mijnheer BJ, Aalbers AHL, Visser AG, Wittämper FW (1986) Consistency and simplicity in the determination of absorbed dose to water in high-energy photon beams: a new code of practice. Radiother Oncol 7: 371–384PubMedGoogle Scholar
  210. Mijnheer BJ, Wittämper FW, Aalbers AHL, van Dijk E (1987) Experimental verification of the air kerma to absorbed dose conversion factor Cw.u, Radiother Oncol 8: 49–56PubMedGoogle Scholar
  211. Morris WT, Owen B (1975) An ionisation chamber for therapy-level dosimetry of electron beams. Phys Med Biol 20: 718–727PubMedGoogle Scholar
  212. Mosse D, Cance M, Steinschaden K, Chartier M, Ostrowsky A, Simoen JP (1982) Détermination du rendement du dosimètre au sulfate ferreux dans un faisceau d’électrons de 35 MeV. Phys Med Biol 27: 583–596Google Scholar
  213. Müller-Sievers K, Kober B (1989) Considerations on recombination losses in ionization chambers using pulsed electron beams with beam scanning. Int J Radiat Oncol Biol Phys 17: 1323–1325PubMedGoogle Scholar
  214. NACP, Nordic Association of Clinical Physics (1972) Procedures in radiation therapy dosimetry with 5 to 50 MeV electrons and roentgen and gamma rays with maximum photon energies between 1 and 50 MeV. Acta Radiat Ther 11: 603–624Google Scholar
  215. NACP, Nordic Association of Clincial Physics (1980) Procedures in external radiation therapy dosimetry with electron and photon beams with maximum energies between 1 and 50 MeV. Acta Radiol Oncol 19: 55–79Google Scholar
  216. NACP, Nordic Association of Clinical Physics (1981) Electron beams with mean energies at the phantom surface below 1 MeV. Acta Radiol Oncol 20: 401–415Google Scholar
  217. Nahum AE (1975) Ph.D. Thesis. University of Edinburgh, Univ Micofilm Int. Order No. 77–70,006Google Scholar
  218. Nahum AE (1978) Water/air mass stopping power ratios fo megavoltage photon and electron beams. Phys Med Biol 23 24–38PubMedGoogle Scholar
  219. Nahum AE, Greening JR (1976) Inconsistencies in derivation of Cλ and CE. Phys Med Biol 21: 862–864PubMedGoogle Scholar
  220. Nahum AE, Greening JR (1978) A detailed re-evaluation of Cλ and CE with application to ferrous sulphate G-values. Phys Mec Biol 23: 894–908Google Scholar
  221. Nahum AE, Kristensen M (1982) Calculated response and wal correction factors for ionization chambers exposed to 60Co gamma rays. Med Phys 9: 925–927PubMedGoogle Scholar
  222. Nahum AE, Svensson H, Brahme A (1980) The ferrous sulfate G-value for electron and photon beams: a semi-empirical analysis and its experimental support. In: Proceedings of the seventh symposium on microdosimetry. Harwood, New York, pp 841–851Google Scholar
  223. Nahum AE, Thwaites DI, Andreo P (1988) An analysis oi the revised HPA dosimetry protocols. Phys Med Biol 33: 923–938Google Scholar
  224. Nath R, Schulz RJ (1981) Calculated response and wall correction factors for ionization chambers exposed to 60Co gamma-rays. Med Phys 8: 85–93PubMedGoogle Scholar
  225. NCRP, National Council on Radiation Protection and Measurements (1981) Dosimetry of x-ray and gamma-ray beams for radiation therapy in the energy range 10 keV to 50 MeV. Report No. 69, Washington, DCGoogle Scholar
  226. Niatel M-T (1983) On the location of a flat ionisation chamber for absorbed dose determination. Phys Med Biol 28: 407–410Google Scholar
  227. Niatel MT, Perroche-Roux AM, Boutillon M (1985) Two determinations of W for electrons in dry air. Phys Med Biol 30: 67–75Google Scholar
  228. Nilsson B, Brahme A (1983) Relation between kerma and absorbed dose in photon beams. Acta Radiol Oncol 22: 77–85PubMedGoogle Scholar
  229. Nilsson B, Montenlius A (1986) Fluence perturbation in photon beams under nonequilibrium conditions. Med Phys 13:191–195PubMedGoogle Scholar
  230. O’Connor JE, Malone DE (1987) A method of measuring the wall contribution of an ionisation chamber. Phys Med Biol 32: 1603–1607Google Scholar
  231. Olsson LE, Petersson S, Ahlgren L, Mattsson S (1989) Ferrous sulphate gels for determination of absorbed dose distributions using MRI technique: basic studies. Phys Med Biol 34: 43–52PubMedGoogle Scholar
  232. Olsson LE, Fransson A, Ericsson A, Mattsson S (1990) MR imaging of absorbed dose distributions for radiotherapy using ferrous sulpate gels. Phys Med Biol 35: 1623–1631PubMedGoogle Scholar
  233. Owen B, DuSautoy AR (1991) Correction for the effect of the gaps around the core of an absorbed dose in graphite calorimeter in high energy photon radiation. Phys Med Biol 36: 1699–1704Google Scholar
  234. Paul JM, Koch RF, Philip PC (1985) AAPM Task Group 21 protocol: dosimetric evaluation. Med Phys 12: 424–430PubMedGoogle Scholar
  235. Pearson DW, Attix FH, DeLuca PM Jr, Goetsch SJ, Torti RP (1980) Ionisation error due to porosity in graphite ionisation chambers. Phys Med Biol 25: 333–338PubMedGoogle Scholar
  236. Perris A, Zarris G (1989) Specific primary ionisation for electrons, protons and alpha particles incident on water. Phys Med Biol 34: 1113–1118Google Scholar
  237. Pitchford WG (1985) The HPA photon protocol and proposed electron protocol. Radiother Oncol 4: 297–300PubMedGoogle Scholar
  238. Prasad PV, Nalcioglu O, Rabbani B (1991) Measurement of three-dimensional radiation dose distributions using MRI1. Radiat Res 128: 1–13PubMedGoogle Scholar
  239. Pruitt JS, Loevinger R (1982) The photon-fluence scaling theorem for Compton-scattered radiation. Med Phys 9: 176–179PubMedGoogle Scholar
  240. Pruitt JS, Domen SR, Loevinger R (1981) The graphite calorimeter as a standard of absorbed dose for cobalt-60 gamma radiation. J Res Nat Bur Stand (U.S.) 86: 495–502Google Scholar
  241. Rao ISS, Naik SB (1980) Graphite calorimeter in water phantom and calibration of ionization chamber in dose to water for 60Co gamma radiation. Med Phys 7: 196–201Google Scholar
  242. Rawlinson JA, Bielajew AF, Munro P, Galbraith DM (1984) Theoretical and experimental investigation of dose enhancement due to charge storage in electron-irradiated phantoms. Med Phys 11:814–821PubMedGoogle Scholar
  243. Reft CS (1989) Output calibration in solid water for high energy photon beams. Med Phys 16: 299–301PubMedGoogle Scholar
  244. Reich H (1979) Choice of the measuring quantity for therapy-level dosemeters. Phys Med Biol 24: 895–900PubMedGoogle Scholar
  245. Rogers DWO (1984) Fluence to dose equivalent conversion factors calculated with EGS3 for electrons from 100 keV to 20 GeV and photons from 11 keV to 20 GeV. Health Phys 46: 891–914PubMedGoogle Scholar
  246. Rogers DWO (1989) Fundamentals of the AAPM’s TG-21 dosimetry protocol. Refresher course RC-9, 26 July 1989, AAPM Annual Meeting, Memphis, Tenn., PIRSO 198Google Scholar
  247. Rogers DWO (1991) Fundamentals of high energy x-ray and electron dosimetry protocols and new dosimetry standards. In: Purdy J (ed) Advances in Radiation Oncology Physics. AAPM, New York, pp 181–223Google Scholar
  248. Rogers DWO, Bielajew AF (1990) Wall attenuation and scatter corrections for ion chambers: measurements versus calculations. Phys Med Biol 35: 1065–1078Google Scholar
  249. Rogers DWO, Ross CK (1988) The role of humidity and other correction factors in the AAPM TG-21 dosimetry protocol. Med Phys 15:40–48PubMedGoogle Scholar
  250. Rogers DWO, Bielajew AF, Nahum AE (1985) Ion chamber response and Awall correction factors in a 60 Co beam by Monte Carlo simulation. Phys Med Biol 30: 429–443Google Scholar
  251. Ross CK, Klassen NY, Smith GD (1984) The effect of various dissolved gases on the heat defect of water. Med Phys 11: 635–658Google Scholar
  252. Ross CK, Klassen NV, Shortt KR, Smith GD (1989) A direct comparison of water calorimetry and Fricke dosimetry. Phys Med Biol 34: 23–42PubMedGoogle Scholar
  253. Roy SC, Apfel RE (1984) Semi-empirical formula for the stopping power of ions. Nucl Instrum Meth Phys Res B4: 20–22Google Scholar
  254. Rubach A, Conrad F, Bichsel H (1986) Dose build-up curves for cobalt-60 irradiation: a systematic error occurring with pancake chamber measurements. Phys Med Biol 31: 441–448PubMedGoogle Scholar
  255. Scharf K (1971) Spectrophotometric measurement of ferric ion concentration in the ferrous sulphate (Fricke) dosemeter. Phys Med Biol 16: 77–86PubMedGoogle Scholar
  256. Schulz RJ (1982) Concerning the perturbation correction in electron-beam dosimetry. Med Phys 9: 131PubMedGoogle Scholar
  257. Schulz RJ (1986) Reply to comments of Rogers et al. Med Phys 13: 965–966Google Scholar
  258. Schulz RJ (1990) Comments on construction of a calorimeter prototype with a high sensitivity pulsed signal detection circuit. Phys Med Biol 35: 467–469Google Scholar
  259. Schulz RJ, Meli JA (1984) Reply to comments of Wu et al. Med Phys 11:872–874Google Scholar
  260. Schulz RJ, Weinhous MS (1985) Calorimeteric determination of the cavity-gas calibration factor Ngas. Med Phys 12: 166–168PubMedGoogle Scholar
  261. Schulz RJ, Almond PR, Kutcher G, et al. (1986) Clarification of the AAPM Task Group 21 protocol. Med Phys 13: 755–759PubMedGoogle Scholar
  262. Schulz RJ, Wuu CS, Weinhous MS (1987) The direct determination of dose-to-water using a water calorimeter. Med Phys 14: 790–796PubMedGoogle Scholar
  263. Schulz RJ, deGuzman AF, Nguyen DB, Gore JC (1990a) Dose-response curves for Fricke-infused agarose gels as obtained by nuclear magnetic resonance. Phys Med Biol 35: 1611–1622PubMedGoogle Scholar
  264. Schulz RJ, Venkataramanan N, Huq MS (1990b) The thermal defect of A-150 plastic and graphite for low-energy protons. Phys Med Biol 35: 1563–1574PubMedGoogle Scholar
  265. Schulz RJ, Huq MS, Venkataramanan N, Motakabbir KA (1991) A comparison of ionization chamber and water calorimeter dosimetry for high energy x rays. Med Phys 18: 1229–1233PubMedGoogle Scholar
  266. SCR AD, Sub-Committee of Radiation Dosimetry of the American Association of Physicists in Medicine (1966) Protocol for the dosimetry of high energy electrons. Phys Med Biol 11: 505–520Google Scholar
  267. SCRAD, Sub-Committee on Radiation Dosimetry of the American Association of Physicists in Medicine (1971) Protocol for the dosimetry of x- and gamma-ray beams with maximum energies between 0.6 and 50 MeV. Phys Med Biol 16: 379–396Google Scholar
  268. SEFM, Sociedad Espanola de Fisica Medica (1984) Procedimien-tos recomendados para la dosimettria de fotones y electrones de energias comprendidas entre 1 MeV y 50 MeV en radioterapia de haces externos. Publication No. 1–1984, Madrid, SpainGoogle Scholar
  269. Seuntjens J, Thierens H, Van der Plaetsen A, Segaert O (1987) Conversion factor — for x-ray beam qualities, specified by peak tube potential and HVL value. Phys Med Biol 32: 595–603PubMedGoogle Scholar
  270. Seuntjens J, Thierens H, Van der Plaetsen A, Segaert O (1988) Determination of absorbed dose to water with ionisation chambers calibrated in free air for medium-energy x-rays. Phys Med Biol 33: 1171–1185Google Scholar
  271. Shiragai A (1978) A proposal concerning the absorbed dose conversion factor. Phys Med Biol 23: 245–252PubMedGoogle Scholar
  272. Shiragai A (1984) A comment on a modification of Burlin’s general cavity theory. Phys Med Biol 29: 427–432Google Scholar
  273. Shiragai A (1991) A formulation for high-energy photon and electron beam dosimetry. Phys Med Biol 36: 633–642PubMedGoogle Scholar
  274. Shortt KR (1989) The temperature dependence of G (Fe3+) for the Fricke dosemeter. Phys Med Biol 34: 1923–1926Google Scholar
  275. Smathers JB, Otte VA, Smith AR, et al. (1977) Composition of A-150 tissue-equivalent plastic. Med Phys 4: 74–77PubMedGoogle Scholar
  276. Smyth VG, McEwan AC (1984) Verification of a result of Kristensen by Monte Carlo modelling. Phys Med Biol 29: 1279–1282Google Scholar
  277. Spokas JJ, Meeker RD (1980) Investigation of cables for ionization chambers. Med Phys 7: 135–140PubMedGoogle Scholar
  278. Sternheimer RM, Peierls RF (1971) General expression for the density effect for the ionization loss of charged particles. Phys Rev B3: 3681Google Scholar
  279. Sternheimer RM, Berger MJ, Seltzer SM (1984) Density effect for the ionization loss of charged particles in various substances. Atomic Data Nucl Data Tables 30: 261–271Google Scholar
  280. Svensson H (1971) Dosimetric measurements at the Nordic Medical Accelerators. II. Absorbed dose measurements. Acta Radiol Ther Phys Biol 10: 631–654PubMedGoogle Scholar
  281. Svensson H (1985) The new NACP- and ICRU-dosimetry protocols for dosimetry of high-energy photon and electron radiation. Radiother Oncol 85: 291–294Google Scholar
  282. Svensson H (1990) Presentation of TRS No. 277 “Absorbed dose determination in photon and electron beams. An international code of practice.” Med Phys World 6Google Scholar
  283. Svensson H, Brahme A (1979) Ferrous sulfate dosimetry for electrons. A re-evaluation. Acta Radiol Oncol 18: 326–36Google Scholar
  284. Svensson H, Hettinger G (1971) Dosimetric measurements at the Nordic medical accelerators. I. Characteristics of the radiation beam. Acta Radiol Ther Phys Biol 10: 369–384PubMedGoogle Scholar
  285. Svensson H, Petersson S (1967) Absorbed dose calibration of thimble chambers with high-energy electrons at different phantom depths. Ark Fys 34: 377–384Google Scholar
  286. Svensson H, Andreo P, Cunningham J, Hohlfeld K (1987) Code of practice for absorbed dose determination in photon and electron beams. In: Radiotherapy in developing countries. IAEA, Vienna, p 333Google Scholar
  287. Takata N, Matiullah(1991) Dependence of the value of m on the lifetime of ions in parallel-plate ionization chambers. Phys Med Biol 36: 449–459Google Scholar
  288. Takata N, Sakihara K (1989) The dependence of the m value on applied voltage in the collection efficiency of ionisation chambers. Phys Med Biol 34: 589–597Google Scholar
  289. Thomas SJ, Palmer N (1989) The use of carbon-loaded thermoluminescent dosimeters for the measurement of surface doses in megavoltage x-ray beams. Med Phys 16: 902–904PubMedGoogle Scholar
  290. Thwaites DI (1984) Charge storage effect on dose in insulating phantoms irradiated with electrons. Phys Med Biol 29: 1153–1156PubMedGoogle Scholar
  291. Thwaites DI (1985) Measurements of ionisation in water, polystyrene and a ‘solid water’ phantom material for electron beams. Phys Med Biol 30: 41–53PubMedGoogle Scholar
  292. Van Dam J, Rijnders A, Ang KK, Mellaerts M, Grobet P (1985) Determination of ionisation chamber collection efficiency in a swept electron beam by means of thermoluminescent detectors and the “two-voltage” method. Radiother Oncol 3: 363–370PubMedGoogle Scholar
  293. van der Giessen PH (1986) About the rate of temperature changes in a thimble chamber. Radiother Oncol 7: 287–291PubMedGoogle Scholar
  294. Vandyk J, Macdonald JCF (1972) Charge desposition from high energy electron beams. Radiat Res 50: 20–32PubMedGoogle Scholar
  295. Waiter GD, Lerski RA (1991) The variation of proton density in agarose gels used as NMR test substances through the use of glass beads. Phys Med Biol 36: 541–546PubMedGoogle Scholar
  296. Weinhous MS, Meli JA (1984) Determining Pion, the correction factor for recombination losses in an ionization chamber. Med Phys 11: 846–849PubMedGoogle Scholar
  297. Weinhous MS, Meli JA (1988) Collection efficiency of an ionisation chamber in a pulsed swept beam: collimator scattered effects. Phys Med Biol 31: 1147–1155Google Scholar
  298. White GA, Gibbs GL (1985) Comments on “A protocol for the determination of absorbed dose from high-energy photon and electron beams.” Med Phys 12: 114PubMedGoogle Scholar
  299. Whyte GN (1954) Nucleonics 12: 18, as cited in: Principles of radiation dosimetry by G.N. Whyte, John Wiley, New York (1959), pp 71Google Scholar
  300. Wielopolski L, Pai S, Mlyn M (1991) Semianalytical expressions for L/P and Prepl for electron beams. Med Phys 18: 559–564PubMedGoogle Scholar
  301. Williams JR (1987) Dosimetry with a water calorimeter in a p(62) + Be neutron beam. Phys Med Biol 32: 403–406PubMedGoogle Scholar
  302. Williams PC (1977) Discrepancy between Cλ and CE. Phys Med Biol 22: 535–538PubMedGoogle Scholar
  303. Williams PC (1985) The selection of stopping power and mass energy absorption coefficient data for the HPA Code of Practice for dosimetry. Phys Med Biol 30: 707–708PubMedGoogle Scholar
  304. Williams PC, Jordan TJ (1984) Extra-cameral volume effects in ionisation chambers for electron beam dosimetry. Phys Med Biol 29: 277–286PubMedGoogle Scholar
  305. Wittkämper FW, Mijnheer BJ (1990) Experimental determination of wall correction factors. Part I. Cylindrical ionisation chambers. Phys Med Biol 35: 835–846Google Scholar
  306. Wittkämper FW, Mijnheer BJ, van Kleffens HJ (1987) Dose intercomparison at the radiotherapy centers in the Netherlands. 1. Photon beams under reference conditions and for prostatic cancer treatment. Radiother Oncol 9: 33–44PubMedGoogle Scholar
  307. Wittkämper FW, Mijnheer BJ, van Kleffens HJ (1988) Dose intercomparison at the radiotherapy centers in the Netherlands. 2. Accuracy of locally applied computer planning systems for external photon beams. Radiother Oncol 11: 405–414PubMedGoogle Scholar
  308. Wittkämper FW, Thierens H, Van der Plaetsen A, de Wagter C, Mijnheer BJ (1991) Perturbation correction factors for some ionization chambers commonly applied electron beams. Phys Med Biol 36: 1639–1652Google Scholar
  309. Woo MK, Cunningham JR (1988) Comments on a unified electron/photon dosimetry approach. Phys Med Biol 33: 981–982Google Scholar
  310. Woo MK, Cunningham JR, Jezioranski JJ (1990) Extending the concept of primary and scatter separation to the condition of electronic disequilibrium. Med Phys 17: 588–595PubMedGoogle Scholar
  311. Wu A, Kalend AM, Zwicker RD, Sternick ES (1984) Comments on the method of energy determination for electron beams in TG-21 protocol. Med Phys 11: 871–872PubMedGoogle Scholar
  312. Zeitz L and Laughlin JS (1982) “Nonisolated-sensor” solid polystyrene absorbed dose measurements. Med Phys 9: 763–768PubMedGoogle Scholar
  313. Zeitz L (1989) Design of apparatus for precise x-ray dose chamber calibrations. Med Phys 16: 644–647PubMedGoogle Scholar
  314. Zeitz L, Ulin K, Caley R (1986) Improved “nonisolatedsensor” solid polystyrene calorimeter. Med Phys 13: 399–402PubMedGoogle Scholar
  315. Zoetelief J, Engels AC, Broerse JJ (1980) Effective measuring point of ion chambers for photon dosimetry in phantoms. Br J Radiol 53: 580–583PubMedGoogle Scholar
  316. Zoetelief J, Eisenhauer CM, Coyne JJ (1990) Calculations of displacement corrections for in-phantom measurements with ionisation chambers for mammography. Phys Med Biol 35: 1287–1299PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Ravinder Nath
    • 1
  • M. Saiful Huq
    • 2
  1. 1.Department of Therapeutic RadiologyYale University School of MedicineNew HavenUSA
  2. 2.Department of Radiation Oncology and Nuclear MedicineThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations