Skip to main content

Advances in Radiation Dosimetry

  • Chapter
  • 472 Accesses

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Radiation dosimetry plays a central role in the physics of radiation oncology because potentially lethal amounts of radiation are necessary for the successful eradication of malignant tumors in humans. It has been estimated that an accuracy of ± 5% for dose delivered in the entire irradiated volume is necessary. Some of the steps in the radiation therapy procedure that influence the accuracy of dose delivered to tumor and healthy tissues are: (a) diagnosis, staging, localization of tumor volume, dose prescription, and fractionation schedule; (b) calculation of dose distributions resulting from an optimum geometric arrangement of radiation beams; (c) simulation and execution of the treatment plan; and (d) recording and verification of dose delivered. In this long chain of events, the dosimetry calibration of radiation fields used under reference conditions is the starting point for the accurate delivery of prescribed dose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AAPM, American Association of Physicists in Medicine (1966) Protocol for the dosimetry of high energy electrons. Phys Med Biol 11:505–520

    Google Scholar 

  • AAPM, American Association of Physicists in Medicine (1971) Protocol for the dosimetry of X- and gamma-ray beams with maximum energies between 0.6 and 50 MeV. Phys Med Biol 16: 379–396

    Google Scholar 

  • AAPM, American Association of Physicists in Medicine, Task Group No. 10, Radiation Therapy Committee (1975) Code of practice for x-ray therapy linear accelerators. Med Phys 2: 110–121

    Google Scholar 

  • AAPM, American Association of Physicists in Medicine, Task Group No. 21, Radiation Therapy Committee (1983) A protocol for the determination of absorbed dose from high-energy photon and electron beams. Med Phys 10: 741–771

    Google Scholar 

  • AAPM, American Association of Physicists in Medicine, Task Group 21, Radiation Therapy Committee (1984) Erratum: a protocol for the determination of absorbed dose from high-energy photon and electron beams. [Med. Phys. 10:741 (1983)]. Med Phys 11: 213

    Google Scholar 

  • AAPM, American Association of Physicists in Medicine, Task Group 25, Radiation Therapy Committee (1991) Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group no. 25. Med Phys 18: 73–109

    Google Scholar 

  • Aget H, Rosenwald JC (1991) Polarity effect for various ionization chambers with multiple irradiation conditions in electron beams. Med Phys 18: 67–72

    PubMed  CAS  Google Scholar 

  • Almond PR (1967) The physical measurement of electron beams from 6 to 18 MeV: absrobed dose and energy calibrations. Phys Med Biol 12: 13–24

    PubMed  CAS  Google Scholar 

  • Almond PR (1985) A comparison of x-ray dose calibration using different phantom materials. Radiother Oncol 4: 319–323

    PubMed  CAS  Google Scholar 

  • Almond PR, Svensson H (1977) Ionization chamber dosimetry for photon and electron beams. Acta Radiol Ther Phys Biol 16: 177–186

    PubMed  CAS  Google Scholar 

  • Almond PR, Mendez A, Behmardf M (1978) In: National and international standardization of radiation dosimetry, vol II. STI/PUB/471, IAEA, Vienna, pp 271–289

    Google Scholar 

  • Andreo P (1983) DOSIS: a computer program for the calculation of absorbed dose in photon and electron beams from ionization measurements in a phantom. Nucl Instrum Methods 211: 481

    CAS  Google Scholar 

  • Andreo P, Brahme A (1981) Mean energy in electron beams. Med Phys 8: 682–687

    PubMed  CAS  Google Scholar 

  • Andreo P, Brahme A (1984) Restricted energy-loss straggling and multiple scattering of electrons in mixed Monte Carlo procedures. Radiat Res 100: 16–29

    CAS  Google Scholar 

  • Andreo P, Brahme A (1986) Stopping power data for high-energy photon beams. Phys Med Biol 31: 839–858

    PubMed  CAS  Google Scholar 

  • Andreo P, Nahum AE (1985) Stopping-power ratio for a photon spectrum as a weighted sum of the values for monoenergetic photon beams. Phys Med Biol 30: 1055–1065

    PubMed  CAS  Google Scholar 

  • Andreo P, Nahum AE, Brahme A (1986) Chamber-dependent wall correction factors in dosimetry. Phys Med Biol 31:1189–1199

    PubMed  CAS  Google Scholar 

  • Andreo P, Nahum AE, Svensson H (1987) Recent developments in basic dosimetry. Radiother Oncol 10: 117–126

    PubMed  CAS  Google Scholar 

  • Andreo P, Brahme A, Nahum A, Mattsson O (1989) Influence of energy and angular spread on stopping-power ratios for electron beams. Phys Med Biol 34: 751–768

    CAS  Google Scholar 

  • Andreo P, Lindborg L, Medin J (1991) On the calibration of plane-parallel ion chambers using 60Co beams. Med Phys 18: 326–327

    PubMed  CAS  Google Scholar 

  • Andreo P, Lindborg L, Medin J (1992) Comments to “Chamber replacement correction in absorbed dose calibrations,” by J.E. Burns. Med Phys 19:211

    Google Scholar 

  • Appleby A, Leghrouz A (1991) Imaging of radiation dose by visible color development in ferrous-agarose-xylenol orange gels. Med Phys 18: 309–321

    PubMed  CAS  Google Scholar 

  • Appleby A, Christman E A, Leghrouz A (1987) Imaging of spatial radiation dose distribution in agarose gels using magnetic resonance. Med Phys 14: 382–384

    PubMed  CAS  Google Scholar 

  • Ashley JC (1982a) Density effect in liquid water. Radiat Res 89: 32–37

    CAS  Google Scholar 

  • Ashley JC (1982b) Stopping power of liquid water for low-energy electrons. Radiat Res 89: 25–31

    CAS  Google Scholar 

  • Attix FH (1984a) Presentation of nominal accelerating potential as a function of the ionization ratio in the new AAPM dosimetry protocol. Med Phys 11: 565–566

    Google Scholar 

  • Attix FH (1984b) Determination of Aion and Pion in the new AAPM radiotherapy dosimetry protocol. Med Phys 11: 714–716

    PubMed  CAS  Google Scholar 

  • Attix FH (1984c) A simple derivation of Ngas, a correction in Awall, and other comments on the AAPM Task Group 21 protocol. Med Phys 11: 725–728

    PubMed  CAS  Google Scholar 

  • Attix FH (1989) Equations for Ngas and Nair in terms of Nx and Nk. Med Phys 16: 803–806

    PubMed  CAS  Google Scholar 

  • Attix FH (1990) A proposal for the calibration of plane-parallel ion chambers by accredited dosimetry calibration laboratories. Med Phys 17: 931–933

    PubMed  CAS  Google Scholar 

  • Austerlitz C, Sibata CH, de Almeida CE (1987) A graphite transmission ionization chamber. Med Phys 14: 1056–1059

    PubMed  CAS  Google Scholar 

  • Awschalom M, Rosenberg I, Ten Haken RK (1983) A new look at displacement factor and point of measurement corrections in ionization chamber dosimetry. Med Phys 10: 307–313

    PubMed  CAS  Google Scholar 

  • Barish RJ (1984) Thermal characteristics of a common polystyrene phantom. Med Phys 11: 214–215

    PubMed  CAS  Google Scholar 

  • Barish RJ, Lerch IA (1992) Long-term use of an isotope check source or verification of ion chamber calibration. Med Phys 19: 203–205

    PubMed  CAS  Google Scholar 

  • Barnard GP (1964) Dose-exposure conversion factors for mega-voltage x-ray dosimetry. Phys Med Biol 9: 321–332

    Google Scholar 

  • Barnard GP, Axton EJ, Marsh ARS (1959) A study of cavity ion chambers for use with 2 M V x-rays: equilibrium wall thickness wall absorption correction. Phys Med Biol 3: 366

    PubMed  CAS  Google Scholar 

  • Berger M J, Seltzer SM (1964) Studies in penetration of charge particles in matter. National Research Council Publication 1133, Washington National Academy of Sciences

    Google Scholar 

  • Berger MJ, Seltzer SM (1982) Stopping powers and ranges o electrons and positrons. NBS Report IR 82–2550. US Dept. of Commerce, Gaithersburg, MD

    Google Scholar 

  • Berger M J, Domen SR, Lamperti PJ (1975) Stopping power ratios for electron dosimetry with ionization chambers. In: Biomedica dosimetry. IAEA Vienna, pp 589–609

    Google Scholar 

  • Berkley LW, Gagnon WF, Hanson WF, Weaver KA, Shalek RJ (1980) A review of the discrepancy between the in-air and in-water calibration of cobalt-60 machines. Med Phys 7: 520–524

    PubMed  CAS  Google Scholar 

  • Bewley DK (1963) The measurement of locally absorbed dose of megavoltage x-rays by means of a carbon calorimeter. Br J Radiol 36: 865–878

    PubMed  CAS  Google Scholar 

  • Bielajew AF (1985) The effect of free electrons on ionization chamber saturation curves. Med Phys 12: 197–200

    PubMed  CAS  Google Scholar 

  • Bielajew AF (1990a) Correction factors for thick-walled ionisation chambers in point-source photon beams. Phys Med Biol 35: 501–516

    Google Scholar 

  • Bielajew AF (1990b) An analytic theory of the point-source non-uniformity correction factor for thick-walled ionisation chambers in photon beams. Phys Med Biol 35: 517–538

    Google Scholar 

  • Bielajew AF (1990c) On the technique of extrapolation to obtain wall correction factors for ion chambers irradiated by photon beams. Med Phys 17: 583–587

    PubMed  CAS  Google Scholar 

  • Bielajew AF, Rogers DWO, Nahum AE (1985) The Monte Carlo simualtion of ion chamber response to 60Co resolution of anomalies associated with interfaces. Phys Med Biol 30: 419–427

    CAS  Google Scholar 

  • Bistrovic M, Viculin T (1987) Comments on the comparison of the new and old CE factors listed in the 1985 HPA code. Phys Med Biol 32: 905–906

    PubMed  CAS  Google Scholar 

  • Bjärngard BE (1987) On Fano’s and O’Connor’s theorems. Radiat Res 109: 184–189

    PubMed  Google Scholar 

  • Bjärngard BE, Kase KR (1985) Replacement correction factors for photon and electron dose measurements. Med Phys 12: 785–787

    PubMed  Google Scholar 

  • Bjärngard BE, Tsai J-S, Rice RK (1989) Attenuation in very narrow photon beams. Radiat Res 118: 195–200

    PubMed  Google Scholar 

  • Bloch P (1988) A unified electron/photon dosimetry approach. Phys Med Biol 33: 373–377

    PubMed  CAS  Google Scholar 

  • Boag JW (1982) The recombination correction for an ionization chamber exposed to pulsed radiation in a ‘swept beam’ technique. Phys Med Biol 27: 201–211

    PubMed  CAS  Google Scholar 

  • Boag JW (1984) Dosimetry in a magnetically swept electron beam. Radiother Oncol 2: 37–40

    PubMed  CAS  Google Scholar 

  • Boag JW (1987) Ionization chambers. In: Kase KR, Bjärngard BE, Attix FH (eds) The dosimetry of ionizing radiation, vol II. Academic Press, 169–244

    Google Scholar 

  • Boese HR, Cormack DV (1985) Detection of a leak in a “sealed” monitor chamber. Med Phys 12: 377–378

    PubMed  CAS  Google Scholar 

  • Böhm J (1980) The perturbation correction factor of ionisation chambers in β-radiation fields. Phys Med Biol 25: 65–75

    PubMed  Google Scholar 

  • Boutillon M (November 1977) Some remarks concerning the measurement of kerma with a cavity ionization chamber. Bureau International des Poids et Mesurer (CCEMRI (I))/ 77–114

    Google Scholar 

  • Boutillon M (1983) Perturbation correction for the ionometric determination of absorbed dose in a graphite phantom for 60Co gamma rays. Phys Med Biol 28: 375–388

    CAS  Google Scholar 

  • Boutillon M (1989) Gap correction for the calorimetric measurement of absorbed dose in graphite with a 60Co beam. Phys Med Biol 34: 1809–1821

    Google Scholar 

  • Boutillon M, Perroche-Roux AM (1987) Re-evaluation of the W value for electrons in dry air. Phys Med Biol 32: 213–219

    Google Scholar 

  • Brahme A, Andreo P (1986) Dosimetry and quality specification of high energy photon beams. Acta Radiol Oncol 25: 213–223

    PubMed  CAS  Google Scholar 

  • Bruinvis IAD, Heukelom S, Mijnheer BJ (1985) Comparison of ionisation measurements in water and polystyrene for electron beam dosimetry. Phys Med Biol 30: 1043–1053

    PubMed  CAS  Google Scholar 

  • Burns JE (1992) Chamber replacement correction in absorbed dose calibration. Med Phys 19: 209–211

    PubMed  CAS  Google Scholar 

  • Burns JE, Rosser KE (1990) Saturation correction for the NE 2560/1 dosemeter in photon dosimetry. Phys Med Biol 35: 687–693

    Google Scholar 

  • Burns JE, Dale JWG, DuSautoy AR, Owen B, Pritchard DH (1988) New calibration service for high-energy x-radiation at NPL. In: Proceedings of sympium on dosimetry in radiotherapy, vol 2. IAEA, Vienna, pp 125–132

    Google Scholar 

  • Campos LL, Caldas L VE (1991) Absorbed dose dependence of the correction factors for ionization chamber cable irradiation effects. Phys Med Biol 36: 339–344

    PubMed  CAS  Google Scholar 

  • Carlsson GA (1985) Theoretical basis for dosimetry. In: Kase KR, Bjärngard BE, Attix TM (eds) The dosimetry of ionizing radiation, vol I. Academic Press, London, pp 2–77

    Google Scholar 

  • Casson H, Kiley JP (1987) Replacement correction factors for electron measurements with a parallel-plate chamber. Med Phys 14: 216–217

    PubMed  CAS  Google Scholar 

  • Comité de Dosimetria en Radioterapia, Sociedad Espanola de Fisica Médica, Brosed A, Andreo P, Gómez D, Gultresa J, Mincholé JL, Serrano C, Vivanco J (1985) The Spanish dosimetry protocol. Radiother Oncol 4: 305–308

    PubMed  CAS  Google Scholar 

  • Conere TJ (1986a) Some dosimetric discrepancies obtained using a guarded parallel-plate ion chamber with a high input impedance electrometer in measurements involving a pulsed and magnetically swept electron beam. Phys Med Biol 31:1157–1160

    PubMed  CAS  Google Scholar 

  • Conere TJ (1986b) Variation in collection efficiency of two ion chambers of the same model type. Radiother Oncol 6: 77–78

    PubMed  CAS  Google Scholar 

  • Conere TJ, Boag JW (1984) The collection efficiency of an ionization chamber in a pulsed and magnetically swept electron beam: limits of validity of the two-voltage technique Med Phys 11: 465–468

    PubMed  CAS  Google Scholar 

  • Constantinou C (1982) Phantom materials for radiation dosimetry. I. Liquids and gels. Br J Radiol 55: 217–224

    PubMed  CAS  Google Scholar 

  • Constantinou C, Attix FH, Paliwal BR (1982) A solid water phantom material for radiotherapy x-ray and γ-ray beam calibrations. Med Phys 9: 436–441

    PubMed  CAS  Google Scholar 

  • Cottens E, Janssens A, Eggermont G, Buysse J (1982) Study of the effect of chloride ion on the ferric ion yield of the Fricke dosemeter in the absense of impurities. Phys Med Biol 27: 597–602

    CAS  Google Scholar 

  • Cunningham JR, Johns HE (1980) Calculations of the average energy absorbed in photon interactions. Med Phys 7: 51–54

    PubMed  CAS  Google Scholar 

  • Cunningham JR, Schulz RJ (1984) On the selection of stoppingpower and mass energy-absorption coefficient ratios for highenergy x-ray dosimetry. Med Phys 11: 618–623

    PubMed  CAS  Google Scholar 

  • Cunningham JR, Sontag MR (1980) Displacement corrections used in absorbed dose determinations. Med Phys 7: 672–676

    PubMed  CAS  Google Scholar 

  • Cunningham JR, Woo M, Rogers DWO, Bielajew AF (1986) The dependence of mass energy absorption coefficient ratios on beam size and depth in a phantom. Med Phys 13: 496–502

    PubMed  CAS  Google Scholar 

  • Davies JV, Greene D, Keene JP, Law J, Massey JB (1963) A comparison of ionization, calorimetric and ferrous sulphate dosimetry. Phys Med Biol 8: 97–102

    PubMed  CAS  Google Scholar 

  • Day MJ (1990) Radiation dosimetry using nuclear magnetic resonance: an introductory review. Phys Med Biol 35: 1605–1609

    PubMed  CAS  Google Scholar 

  • de Almeida CE, Perroche-Roux A-M, Boutillon M (1989) Perturbation correction of a cylindrical thimble-type chamber in a graphite phantom for 60Co gamma rays. Phys Med Biol 34: 1443–1449

    Google Scholar 

  • Domen SR (1980a) Absorbed dose water calorimeter. Med Phys 7: 157–159

    PubMed  CAS  Google Scholar 

  • Domen SR (1980b) Thermal diffusivity, specific heat, and thermal conductivity of A-150 plastic. Phys Med Biol 25: 93–102

    PubMed  CAS  Google Scholar 

  • Domen SR (1982) An absorbed dose water calorimeter: therapy, design, and performance. J Res Natl Bur Stand 87: 211–235

    CAS  Google Scholar 

  • Domen SR (1983) A polystyrene-water calorimeter. Int J Appl Radiat Isot 34: 643–644

    CAS  Google Scholar 

  • Domen SR (1986) Comment on ‘convection current in a water calorimeter.’ Phys Med Biol 31: 1166–69

    Google Scholar 

  • Domen SR (1988) Further comments on convection currents in a water calorimeter. Phys Med Biol 33: 1083–1086

    Google Scholar 

  • Domen SR (1990) Advances in calorimetry for radiation dosimetry. In: Kase KR, Bjärngard BE, Attix FH (eds.) The dosimetry of ionizing radiation, vol II. Academic Press, London, pp 245–320

    Google Scholar 

  • Dutreix A (1985) The French dosimetry protocol. Radiother Oncol 4: 301–304

    PubMed  CAS  Google Scholar 

  • Dutreix A, Bridier A (1985) Dosimetry for external beams of photon and electron radiation. In: Kase KR, Bjärngard BE, Attix FH (eds) The dosimetry of ionizing radiation, vol I. Academic Press, London, pp 164–229

    Google Scholar 

  • Dutreix J, Dutreix A (1966) Etude comparée d’une série de chambres d’ionisation dans des faisceaux d’électrons de 20 et 10 MeV. Biophysik 3: 249–258

    PubMed  CAS  Google Scholar 

  • Dutreix A, Mijnheer B, Svensson H (1985) New protocols for the dosimetry of high-energy photon and electron beams (introduction). Radiother Oncol 4: 289–290

    PubMed  CAS  Google Scholar 

  • Engler M J, Jones GL (1984) Small-beam calibration by 0.6- and 0.2-cm3 ionization chambers. Med Phys 11: 822–826

    PubMed  CAS  Google Scholar 

  • Fallone BG, Podgorsak EB (1983) Saturation curves of parallel-plate ionization chambers. Med Phys 10: 191–196

    PubMed  CAS  Google Scholar 

  • Freyer JP, Schillaci ME, Raju MR (1989) Measurement of the Gvalue for 1.5 keV X-rays. Int J Radiat Biol 56: 885–892

    PubMed  CAS  Google Scholar 

  • Fricke H, Hart EJ (1966) Chemical dosimetry, in Radiation Dosimetry vol II edited by FH Attix and WC Roesch, Academic Press 1966, p. 167–240

    Google Scholar 

  • Gajewski R, Izewska J (1987) Perturbation correction factors for the plane-parallel chamber NE 2534. In: Proc. dosimetry in radiotherapy IAEA-SM-298/82, vol 1. IAEA, Vienna, pp 187–193

    Google Scholar 

  • Galbraith DM, Rawlinson JA, Munro P (1984) Dose errors due to charge storage in electron irradiated plastic phantoms. Med Phys 11:197–203

    PubMed  CAS  Google Scholar 

  • Galloway G, Greening JR, Williams JR (1986) A water calorimeter for neutron dosimetry. Phys Med Biol 31: 397–406

    PubMed  CAS  Google Scholar 

  • Gastorf RJ, Hanson WF, Shalel RJ, Berkley LW (1984) The implementation of the AAPM Task Group 21 protocol by the Radiological Physics Center and its implications. Med Phys 11: 547–551

    PubMed  CAS  Google Scholar 

  • Gastorf RJ, Humphries L, Rozenfeld M (1986) Cylindrical chamber dimensions and the corresponding values of Awall and Ngas/(NxAion). Med Phys 13: 751–754

    PubMed  CAS  Google Scholar 

  • Gerbi BJ, Khan FM (1987) The polarity effect for commercially available plane-parallel ionization chambers. Med Phys 14: 210–215

    PubMed  CAS  Google Scholar 

  • Gerbi BJ, Khan FM (1990) Measurement of dose in the buildup region using fixed-separation plane-parallel ionization chambers. Med Phys 17: 17–26

    PubMed  CAS  Google Scholar 

  • German Standard Association (1975a, draft) Procedures in dosimetry; principles of photon and electron dosimetry with probe-type detectors. In: DIN 6800/1

    Google Scholar 

  • German Standard Association (1975b, draft) Procedures in dosimetry; ionization dosimetry. In: DIN 6800/2

    Google Scholar 

  • German Standard Association (1976) Clinical dosimetry; therapeutical application of x-ray, gamma-ray and electron beams. In: DIN 6809/1

    Google Scholar 

  • Gillin MT, Kline RW, Niroomand-Rad A, Grimm DF (1985) The effect of thickness of the waterproofing sheath on the calibration of photon and electron beams. Med Phys 12: 234–236

    PubMed  CAS  Google Scholar 

  • Goodman LJ (1978) Density and composition uniformity of A150 tissue-equivalent plastic. Phys Med Biol 23: 753–758

    PubMed  CAS  Google Scholar 

  • Gore JC, Kang YS, Schulz RJ (1984) Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol 29: 1189–1197

    PubMed  CAS  Google Scholar 

  • Goswami GC, Kase KR (1989) Measurement of replacement factors for a parallel-plate chamber. Med Phys 16: 791–793

    PubMed  CAS  Google Scholar 

  • Greene D (1962) The use of an ethylene-filled polythene chamber for dosimetry of megavoltage x-rays. Phys Med Biol 7: 213–224

    PubMed  CAS  Google Scholar 

  • Greene D, Massey JB (1966) The use of Farmer-Baldwin and Victrometer ionization chambers for dosimetry of high energy x-radiation. Phys Med Biol 11: 569–575

    PubMed  CAS  Google Scholar 

  • Greene D, Massey JB (1967) The use of Farmer-Baldwin and Victrometer ionization chambers for dosimetry of high energy x-radiation. Phys Med Biol 12: 257–258

    PubMed  CAS  Google Scholar 

  • Greene D, Massey JB (1968) The use of Farmer-Baldwin and Victrometer ionization chambers for dosimetry of high energy x-radiation. Phys Med Biol 13: 287–288

    PubMed  CAS  Google Scholar 

  • Hanson WF, Tinoco JAD (1985) Effects of plastic protective caps on the calibration of therapy beams in water. Med Phys 12: 243–248

    PubMed  CAS  Google Scholar 

  • Hanson WF, Arnold DJ, Shalek RJ, Humphrines LJ (1988) Contamination of ionization chambers by talcum powder. Med Phys 15: 776–777

    PubMed  CAS  Google Scholar 

  • Harder D (1965) Berechnung der Energiedosis aus Ionisationsmessungen bei Sekundärelektronen-gleichgewicht. In: Zuppinger A, Poretti G (eds) Symposium on high-energy electrons. Springer, Berlin Heidelberg New York, pp 260

    Google Scholar 

  • Harder D (1968) Einfluss der Vielfachstreuung von Elektronen auf die Ionisation in gasgefüllten Hohlräumen. Biophysik 5: 157–164

    PubMed  CAS  Google Scholar 

  • Hayakama Y, Schechtman H (1988) Comments on the value of the average energy expended per ion pair formed in air for a proton beam recommended by the American Association of Physicists in Medicine. Med Phys 15: 778

    Google Scholar 

  • Hayakama Y, Loch CP, Tada J, Inada T (1989) Compensation for beam intensity fluctuation in determination of Pion, the ion-recombination correction factor for ionization chambers, by the two-voltage technique. Med Phys 16: 346–351

    Google Scholar 

  • Hazle JD, Hefner L, Nyerick CE, Wilson L, Boyer AL (1991) Dose-response characteristics of a ferrous-sulphate-doped gelatin system for determining radiation absorbed dose distributions by magnetic resonance imaging (FeMRI). Phys Med Biol 36: 1117–1125

    PubMed  CAS  Google Scholar 

  • Hermann K-P, Geworski L, Hatzky T, Lietz R, Harder D (1986) Muscle- and fat-equivalent polyethylene-based phantom materials for x-ray dosimetry at tube voltages below 100 kV. Phys Med Biol 31: 1041–1046

    PubMed  CAS  Google Scholar 

  • Heese RN, Podgorsak EB, Fallone BG (1986) Approximations to saturation curves in gas-filled parallel-plate ionization chambers. Med Phys 13: 93–98

    PubMed  CAS  Google Scholar 

  • Hettinger G, Pettersson C, Svensson H (1967a) Displacement effect of thimble chambers exposed to a photon or electron beam from a betatron. Acta Radiol Ther 6: 61–64

    CAS  Google Scholar 

  • Hettinger G, Pettersson C, Svensson H (1967b) Calibration of thimble chambers in a 34 M V roentgen beam. Acta Radiol Ther 6: 214–218

    CAS  Google Scholar 

  • Heukelom S, Lanson JH, Mijnheer BJ (1991) Comparison of entrance and exit dose measurements using ionization chambers and silicon diodes. Phys Med Biol 36: 47–59

    PubMed  CAS  Google Scholar 

  • Ho AK, Paliwal BR (1986) Stopping-power and mass energy-absorption coefficient ratios for solid water. Med Phys 13: 403–404

    PubMed  CAS  Google Scholar 

  • Hochhäuser E, Balk O A (1986) The influence of unattached electrons on the collection efficiency of ionisation chambers for the measurement of radiation pulses of high dose rate. Phys Med Biol 31: 223–233

    Google Scholar 

  • Hogstrom KR, Almond PR (1982) The effect of electron multiple scattering on dose measured in non-water phantoms (abstract). Med Phys 9: 607

    Google Scholar 

  • Holt JG, Kessaris ND (1977) Discrepancy between C and CE. Phys Med Biol 22: 538–540

    PubMed  CAS  Google Scholar 

  • Hoshi M, Uehara S, Yamamoto O, et al. (1992) Iron (II) sulphate (Ficke solution) oxidation yields for 8.9 and 13.6 keV X-rays from synchrotron radiation. Int J Radiat Biol 61: 21–27

    PubMed  CAS  Google Scholar 

  • Houdek PV (1983) Dosimetry of small radiation fields for 10-MV x-rays. Med Phys 10: 333–336

    PubMed  CAS  Google Scholar 

  • HPA, Hospital Physicists’ Association (1960) A code of practice for x-ray measurements. Br J Radiol 33: 55–59

    Google Scholar 

  • HPA, Hospital Physicists’ Association (1964) A code of practice for the dosimetry of 2 to 8 MV X-ray and caesium-137 and cobalt-60 γ-ray beams. Phys Med Biol 9: 457–463

    Google Scholar 

  • HPA, Hospital Physicists’ Association (1969) A code of practice for the dosimetry of 2 to 35 MV X-ray and caesium-137 and cobalt-60 gamma-ray beams. Phys Med Biol 14: 1–8

    Google Scholar 

  • HPA, Hospital Physicists’ Association (1971) A practical guide to electron dosimetry 5–35 MeV. In: HPA Report Series No. 4

    Google Scholar 

  • HPA, Hospital Physicists’ Association (1975) A practical guide to electron dosimetry below 5 MeV for radiotherapy purposes. In: HPA Report Series No. 13

    Google Scholar 

  • HPA, Hospital Physicists’ Association (1983) Revised code of practice for the dosimetry of 2 to 25 MV x-ray, and of caesium-137 and cobalt-60 gamma-ray beams. Phys Med Biol 28: 1097–1104

    Google Scholar 

  • HPA, Hospital Physicists’ Association (1985) Code of practice for electron beam dosimetry in radiotherapy. Phys Med Biol 30: 1169–1194

    Google Scholar 

  • HPA, Hospital Physicists’ Association (1990) Code of practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service. Phys Med Biol 35: 1355–1360

    Google Scholar 

  • Hubbell JH (1977) Photon mass attenuation and mass energyabsorption coefficients for H, C, N, O, Ar and seven mixtures from 0.1 keV to 20 MeV. Radiat Res 70: 58–81

    PubMed  CAS  Google Scholar 

  • Hubbell JH (1982) Photon mass attenuation and energyabsorption coefficients for 1 keV to 20 MeV. Int J Appl Radiat Isot 33: 1269–1290

    CAS  Google Scholar 

  • Hunt MA, Malik S, Thomason C, Masterson ME (1984) A comparison of the AAPM “Protocol for the determination of absorbed dose from high-energy photon and electron beams” with currently used protocols. Med Phys 11: 806–813

    PubMed  CAS  Google Scholar 

  • Hunt MA, Kutcher GJ, Buffa A (1988) Electron backscatter corrections for parallel-plate chambers. Med Phys 15: 96–103

    PubMed  CAS  Google Scholar 

  • IAEA, International Atomic Energy Agency (1962) Single field isodose charts: an international guide.

    Google Scholar 

  • IAEA, Vienna IAEA, International Atomic Energy Agency (1987) Absorbed dose determination in photon and electron beams: an international code of practice. Technical Reports Series No. 277, IAEA, Vienna, pp 1–98

    Google Scholar 

  • ICRU, International Commission on Radiation Units and Measurements (1969) Radiation dosimetry: x-rays and gamma rays with maximum photon energies between 0.6 and 50 MeV. ICRU Report No. 14, Washington, DC

    Google Scholar 

  • ICRU, International Commission on Radiation Units and Measurements (1972) Radiation dosimetry: electrons with initial energies between 1 and 50 MeV. Report No. 21, ICRU, Washington, DC

    Google Scholar 

  • ICRU, International Commission on Radiation Units and Measurements (1973) Measurement of absorbed dose in a phantom irradiated by a single beam of X or gamma rays. Report No. 23, ICRU, Washington, DC

    Google Scholar 

  • ICRU, International Commission on Radiation Units and Measurements (1979) Average energy required to produce an ion pair. Report No. 31, ICRU, Washington, DC

    Google Scholar 

  • ICRU, International Commission on Radiation Units and Measurements (1984a) Stopping powers for electrons and positrons. Report No. 37, ICRU, Bethesda, MD

    Google Scholar 

  • ICRU, International Commission on Radiation Units and Measurements (1984b) Radiation dosimetry: electron beams with energies between 1 and 50 MeV. Report No. 35, ICRU, Bethesda, MD

    Google Scholar 

  • IPSM, Institute of Physical Sciences in Medicine (1990) Code of practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service. Phys Med Biol 35: 1355–1360

    Google Scholar 

  • IPSM, Institute of Physical Sciences in Medicine (1991) Report of the IPSM working party on low- and medium-energy x-ray dosimetry. Phys Med Biol 36: 1027–1038

    Google Scholar 

  • Janssens A (1984) The fundamental constraint of cavity theory. Phys Med Biol 1157–1158

    Google Scholar 

  • Jayaraman S, Rozenfeld M, Lanzl LH, Chung-Bin A (1985) Can the AAPM Task Group 21 protocol lead to optimum ion chamber designs? Med Phys 12: 373–376

    PubMed  CAS  Google Scholar 

  • Johansson K-A, Svensson H (1982) Liquid ionization chamber for absorbed dose determinations in photon and electron beams. Acta Radiol Oncol 21: 359–367

    PubMed  CAS  Google Scholar 

  • Johansson K-A, Mattsson LO, Lindborg L, Svesson H (1978) Absorbed dose determination with ionization chambers in electron and photon beams having energies between 1 and 50 MeV. In: Proceedings of international symposium on national and international standardization of radiation dosimetry 2. IAEA, Vienna, pp 243–270

    Google Scholar 

  • Johansson K-A, Horiot JC, Van Dam J, Lepinoy D, Sentenac I, Sernbo G (1986) Quality assurance control in the EORTC cooperative group of radiotherapy. 2. Dosimetric intercom-parison. Radiother Oncol 7: 269–279

    PubMed  CAS  Google Scholar 

  • Johns HE, Epp ER, Cormack DV, Fedoruk SO (1952) II. Depth dose data and diaphragm design for the Saskatchewan 1000 Curie cobalt unit. Br J Radiol 25: 302

    PubMed  CAS  Google Scholar 

  • Jones D (1981) Comparison of the perturbation correction in a parallel plate and a cylindrical ion chamber. Med Phys 8: 239–241

    PubMed  CAS  Google Scholar 

  • Kase KR, Adler GJ, Bjärngard BE (1982) Comparisons of electron beam dose measurements in water and polystyrene using various dosimeters. Med Phys 9: 13–19

    PubMed  CAS  Google Scholar 

  • Kearsley E (1984) A new general cavity theory. Phys Med Biol 29: 1179–1187

    CAS  Google Scholar 

  • Kemp LAW (1972) The NPL secondary standard therapy-level x-ray exposure meter. Br J Radiol 45: 775–778

    PubMed  CAS  Google Scholar 

  • Kessaris ND (1970) Absorbed dose and cavity ionization for high-energy electron beams. Radiat Res 43: 288–301

    PubMed  CAS  Google Scholar 

  • Khan FM, Doppke KP, Hogstrom DR, et al. (1991) Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group No. 25. Med Phys 18: 73–109

    PubMed  CAS  Google Scholar 

  • Klevenhagen SC (1991) Determination of absorbed dose in high-energy electron and photon radiation by means of an uncalibrated ionization chamber. Phys Med Biol 36: 239–253

    PubMed  CAS  Google Scholar 

  • Kooy HM, Simpson LD, McFaul JA (1988) Parallel-plate ionization chamber response in cobalt-60 irradiated transition zones. Med Phys 15: 199–203

    PubMed  CAS  Google Scholar 

  • Kristensen M (1983) Measured influence of the central electrode diameter and material on the response of a graphite ionisation chamber to cobalt-60 gamma rays. Phys Med Biol 28: 1269–1278

    CAS  Google Scholar 

  • Crithivas G (1984) A study of the efficacy of a single voltage electrometer-chamber system in determining the ion collection efficiency. Phys Med Biol 29: 1265–1269

    Google Scholar 

  • Krithivas G, Rao SN (1986) Ngas determination for a parallel-plate ion chamber. Med Phys 13: 674–677

    PubMed  CAS  Google Scholar 

  • Kubo H (1985) Estimate of the amount of thermal diffusion from a polystyrene-water calorimeter detector to surrounding water during irradiation. Phys Med Biol 30: 785–798

    Google Scholar 

  • Kubo H (1990) Reply to ‘Comments on construction of a calorimeter prototype with a high sensitivity pulsed signal detection circuit.’ Phys Med Biol 35: 1029–1030

    Google Scholar 

  • Kubo H, Cheng P (1988) Absorbed dose comparison among commercial ionization chambers in polystyrene and acrylic phantoms. Med Phys 15: 269–272

    PubMed  CAS  Google Scholar 

  • Kubo H, Brown DE, Russell MD (1985) A thermoregulated enclosure for controlling thermal drift in a radiation calorimeter. Med Phys 12: 344–346

    PubMed  CAS  Google Scholar 

  • Kubo H, Kent LJ, Krithivas G (1986) Determinations of Ngas and Prepl factors from commercially available parallel-plate chambers: AAPM Task Group 21 protocol. Med Phys 13: 908–912

    PubMed  CAS  Google Scholar 

  • Kubo H, Kageyama Y, Lo KK (1989) Construction of a calorimeter prototype with a high sensitivity pulsed signal detection circuit. Phys Med Biol 34: 1119–1123

    PubMed  CAS  Google Scholar 

  • Kwa W, Kornelson RO (1990) Comparison of ferrous sulfate (Fricke) and ionization dosimetry for high-energy photon and electron beams. Med Phys 17: 602–606

    PubMed  CAS  Google Scholar 

  • Laurence GC (1937) Comparison of ferrous sulfate (Fricke) and ionization dosimetry for high-energy photon and electron beams Can J Res A 15: 67, as cited in: Principles of radiation dosimetry by GN Whyte, John Wiley, New York (1959) pp 71

    Google Scholar 

  • Law J, Foster CJ (1987) Calibration of radiotherapy dosemeters against secondary standard dosemeters: an anomalous result. Phys Med Biol 32: 1039–1043

    PubMed  CAS  Google Scholar 

  • Law J, Naylor GP (1984) Ferrous sulphate G-values for mega-voltage photons and electrons derived from ionisation dosimetry using Cλ and CE values. Phys Med Biol 29: 749–750

    Google Scholar 

  • Liu P, Kruger RA (1984) Comments on “quantum noise in detectors.” Med Phys 11: 561

    Google Scholar 

  • Loevinger R (1981) A formalism for calculation of absorbed dose to a medium from photon and electron beams. Med Phys 8: 1–12

    PubMed  CAS  Google Scholar 

  • Loevinger R (1985) The new AAPM protocol. Radiother Oncol 4: 295–296

    PubMed  CAS  Google Scholar 

  • Ma CM, Nahum AE (1991) Bragg-Gray theory and ion chamber dosimetry for photon beams. Phys Med Biol 36: 413–428

    PubMed  CAS  Google Scholar 

  • Mach H, Rogers DWO (1983) An absolutely calibrated source of 6.13 MeV gamma-rays. IEEE Trans Nucl Sci NS-30: 1514

    CAS  Google Scholar 

  • Mach H, Rogers DWO (1984) A measurement of absorbed dose to water per unit incident 7 MeV photon fluence. Phys Med Biol 29: 1555–1570

    CAS  Google Scholar 

  • Majenka I, Rostkowska J, Derezinski M, Paz N (1982) The recombination correction for an ionization chamber exposed to pulsed radiation in a ‘swept beam’ technique. II. Experimental. Phys Med Biol 27: 213–221

    PubMed  CAS  Google Scholar 

  • Markus B (1964) Beiträge zur Entwicklung der Dosimetrie Schneller Elecktronen, Teil III. Strahlentherapie 124: 33

    PubMed  CAS  Google Scholar 

  • Marinello G, Valero M, Delplanque JM (1986a) The study of a swept electron beam in order to apply Boag’s theory for calculation of the collection efficiency. I. Beam and swept area characteristics. Phys Med Biol 31: 859–868

    PubMed  CAS  Google Scholar 

  • Marinello G, Valero M, Bellec-Pollack J (1986b) The study of a swept electron beam in order to apply Boag’s theory for calculation of the collection efficiency. II. Application to different ionisation chambers and comparison with other methods. Phys Med Biol 31: 869–878

    PubMed  CAS  Google Scholar 

  • Mattsson O (1985) Comparison of different protocols for the dosimetry of high-energy photon and electron beams. Radiother Oncol 4: 313–318

    PubMed  CAS  Google Scholar 

  • Mattsson O (1990) Comparison of absorbed dose determinations using the IAEA dosimetry protocol and the ferrous sulphate dosimeter. Med Phys World 6

    Google Scholar 

  • Mattsson O, Svensson H (1984) Charge build-up effects in insulating phantom materials. Acta Radiol Oncol 23: 393–399

    PubMed  CAS  Google Scholar 

  • Mattsson O, Johansson K-A, Svensson H (1981) Calibration and use of plane-parallel ionization chambers for the determination of absorbed dose in electron beams. Acta Radiol Oncol 20: 385–399

    PubMed  CAS  Google Scholar 

  • Mattsson O, Johansson K-A, Svensson H (1982) Ferrous sulphate dosimeter for control of ionization chamber dosimetry of electron and 60Co gamma beams. Acta Radiol Oncol 21: 139–144

    PubMed  CAS  Google Scholar 

  • Mattsson O, Svensson H, Wickman G, Domen SR, Pruitt JS, Loevinger R (1990) Absorbed dose in water. Acta Oncol 29: 235–240

    PubMed  CAS  Google Scholar 

  • Mayo CS, Gottschalk(1992) Temperature coefficient of open thimble chambers. Phys Med Biol 37: 289–291

    Google Scholar 

  • McEwan AC (1980) A theoretical study of cavity chamber correction factors for photon beam absorbed dose determination. Phys Med Biol 25: 39–50

    PubMed  CAS  Google Scholar 

  • McEwan AC, Smyth VG (1984) Comments on “calculated response and wall correction factors for ionization chambers exposed to 60Co gamma-rays.” Med Phys 11: 216–218

    PubMed  CAS  Google Scholar 

  • Meli JA, Weinhous MS (1986) Collection efficiency of an ionisation chamber in a pulsed swept beam: chamber size effects. Phys Med Biol 31: 1139–1146

    PubMed  CAS  Google Scholar 

  • Mellenberg DE Jr (1990) Determination of build-up region over-response corrections for a Markus-type chamber. Med Phys 17: 1041–1044

    PubMed  Google Scholar 

  • Mijnheer BJ (1985a) Variations in response to radiation of a nylon-walled ionization chamber induced by humidity changes. Med Phys 12:625–626

    PubMed  CAS  Google Scholar 

  • Mijnheer BJ (1985b) Summary of the discussion on the practical use and comparison of new protocols for the dosimetry of high-energy photon and electron beams. Radiother Oncol 4:325–328

    PubMed  CAS  Google Scholar 

  • Mijnheer BJ, Chin LM (1989) The effect of differences in data base on the determination of absorbed dose in high-energy photon beams using the American Association of Physicists in Medicine protocol. Med Phys 16: 119–122

    PubMed  CAS  Google Scholar 

  • Mijnheer BJ, Williams JR (1985) Comments on dry air or humid air values for physical parameters using in AAPM protocol for photon and electron dosimetry. Med Phys 12: 656–658

    PubMed  CAS  Google Scholar 

  • Mijnheer BJ, Wittämper FW (1986) Comparison of recent codes of practice for high-energy photon dosimetry. Phys Med Biol 31: 407–416

    PubMed  CAS  Google Scholar 

  • Mijnheer BJ, Aalbers AHL, Visser AG, Wittämper FW (1986) Consistency and simplicity in the determination of absorbed dose to water in high-energy photon beams: a new code of practice. Radiother Oncol 7: 371–384

    PubMed  CAS  Google Scholar 

  • Mijnheer BJ, Wittämper FW, Aalbers AHL, van Dijk E (1987) Experimental verification of the air kerma to absorbed dose conversion factor Cw.u, Radiother Oncol 8: 49–56

    PubMed  CAS  Google Scholar 

  • Morris WT, Owen B (1975) An ionisation chamber for therapy-level dosimetry of electron beams. Phys Med Biol 20: 718–727

    PubMed  CAS  Google Scholar 

  • Mosse D, Cance M, Steinschaden K, Chartier M, Ostrowsky A, Simoen JP (1982) Détermination du rendement du dosimètre au sulfate ferreux dans un faisceau d’électrons de 35 MeV. Phys Med Biol 27: 583–596

    CAS  Google Scholar 

  • Müller-Sievers K, Kober B (1989) Considerations on recombination losses in ionization chambers using pulsed electron beams with beam scanning. Int J Radiat Oncol Biol Phys 17: 1323–1325

    PubMed  Google Scholar 

  • NACP, Nordic Association of Clinical Physics (1972) Procedures in radiation therapy dosimetry with 5 to 50 MeV electrons and roentgen and gamma rays with maximum photon energies between 1 and 50 MeV. Acta Radiat Ther 11: 603–624

    Google Scholar 

  • NACP, Nordic Association of Clincial Physics (1980) Procedures in external radiation therapy dosimetry with electron and photon beams with maximum energies between 1 and 50 MeV. Acta Radiol Oncol 19: 55–79

    Google Scholar 

  • NACP, Nordic Association of Clinical Physics (1981) Electron beams with mean energies at the phantom surface below 1 MeV. Acta Radiol Oncol 20: 401–415

    Google Scholar 

  • Nahum AE (1975) Ph.D. Thesis. University of Edinburgh, Univ Micofilm Int. Order No. 77–70,006

    Google Scholar 

  • Nahum AE (1978) Water/air mass stopping power ratios fo megavoltage photon and electron beams. Phys Med Biol 23 24–38

    PubMed  CAS  Google Scholar 

  • Nahum AE, Greening JR (1976) Inconsistencies in derivation of Cλ and CE. Phys Med Biol 21: 862–864

    PubMed  CAS  Google Scholar 

  • Nahum AE, Greening JR (1978) A detailed re-evaluation of Cλ and CE with application to ferrous sulphate G-values. Phys Mec Biol 23: 894–908

    CAS  Google Scholar 

  • Nahum AE, Kristensen M (1982) Calculated response and wal correction factors for ionization chambers exposed to 60Co gamma rays. Med Phys 9: 925–927

    PubMed  CAS  Google Scholar 

  • Nahum AE, Svensson H, Brahme A (1980) The ferrous sulfate G-value for electron and photon beams: a semi-empirical analysis and its experimental support. In: Proceedings of the seventh symposium on microdosimetry. Harwood, New York, pp 841–851

    Google Scholar 

  • Nahum AE, Thwaites DI, Andreo P (1988) An analysis oi the revised HPA dosimetry protocols. Phys Med Biol 33: 923–938

    Google Scholar 

  • Nath R, Schulz RJ (1981) Calculated response and wall correction factors for ionization chambers exposed to 60Co gamma-rays. Med Phys 8: 85–93

    PubMed  CAS  Google Scholar 

  • NCRP, National Council on Radiation Protection and Measurements (1981) Dosimetry of x-ray and gamma-ray beams for radiation therapy in the energy range 10 keV to 50 MeV. Report No. 69, Washington, DC

    Google Scholar 

  • Niatel M-T (1983) On the location of a flat ionisation chamber for absorbed dose determination. Phys Med Biol 28: 407–410

    CAS  Google Scholar 

  • Niatel MT, Perroche-Roux AM, Boutillon M (1985) Two determinations of W for electrons in dry air. Phys Med Biol 30: 67–75

    CAS  Google Scholar 

  • Nilsson B, Brahme A (1983) Relation between kerma and absorbed dose in photon beams. Acta Radiol Oncol 22: 77–85

    PubMed  CAS  Google Scholar 

  • Nilsson B, Montenlius A (1986) Fluence perturbation in photon beams under nonequilibrium conditions. Med Phys 13:191–195

    PubMed  CAS  Google Scholar 

  • O’Connor JE, Malone DE (1987) A method of measuring the wall contribution of an ionisation chamber. Phys Med Biol 32: 1603–1607

    Google Scholar 

  • Olsson LE, Petersson S, Ahlgren L, Mattsson S (1989) Ferrous sulphate gels for determination of absorbed dose distributions using MRI technique: basic studies. Phys Med Biol 34: 43–52

    PubMed  CAS  Google Scholar 

  • Olsson LE, Fransson A, Ericsson A, Mattsson S (1990) MR imaging of absorbed dose distributions for radiotherapy using ferrous sulpate gels. Phys Med Biol 35: 1623–1631

    PubMed  CAS  Google Scholar 

  • Owen B, DuSautoy AR (1991) Correction for the effect of the gaps around the core of an absorbed dose in graphite calorimeter in high energy photon radiation. Phys Med Biol 36: 1699–1704

    Google Scholar 

  • Paul JM, Koch RF, Philip PC (1985) AAPM Task Group 21 protocol: dosimetric evaluation. Med Phys 12: 424–430

    PubMed  CAS  Google Scholar 

  • Pearson DW, Attix FH, DeLuca PM Jr, Goetsch SJ, Torti RP (1980) Ionisation error due to porosity in graphite ionisation chambers. Phys Med Biol 25: 333–338

    PubMed  CAS  Google Scholar 

  • Perris A, Zarris G (1989) Specific primary ionisation for electrons, protons and alpha particles incident on water. Phys Med Biol 34: 1113–1118

    CAS  Google Scholar 

  • Pitchford WG (1985) The HPA photon protocol and proposed electron protocol. Radiother Oncol 4: 297–300

    PubMed  CAS  Google Scholar 

  • Prasad PV, Nalcioglu O, Rabbani B (1991) Measurement of three-dimensional radiation dose distributions using MRI1. Radiat Res 128: 1–13

    PubMed  CAS  Google Scholar 

  • Pruitt JS, Loevinger R (1982) The photon-fluence scaling theorem for Compton-scattered radiation. Med Phys 9: 176–179

    PubMed  CAS  Google Scholar 

  • Pruitt JS, Domen SR, Loevinger R (1981) The graphite calorimeter as a standard of absorbed dose for cobalt-60 gamma radiation. J Res Nat Bur Stand (U.S.) 86: 495–502

    CAS  Google Scholar 

  • Rao ISS, Naik SB (1980) Graphite calorimeter in water phantom and calibration of ionization chamber in dose to water for 60Co gamma radiation. Med Phys 7: 196–201

    CAS  Google Scholar 

  • Rawlinson JA, Bielajew AF, Munro P, Galbraith DM (1984) Theoretical and experimental investigation of dose enhancement due to charge storage in electron-irradiated phantoms. Med Phys 11:814–821

    PubMed  CAS  Google Scholar 

  • Reft CS (1989) Output calibration in solid water for high energy photon beams. Med Phys 16: 299–301

    PubMed  CAS  Google Scholar 

  • Reich H (1979) Choice of the measuring quantity for therapy-level dosemeters. Phys Med Biol 24: 895–900

    PubMed  CAS  Google Scholar 

  • Rogers DWO (1984) Fluence to dose equivalent conversion factors calculated with EGS3 for electrons from 100 keV to 20 GeV and photons from 11 keV to 20 GeV. Health Phys 46: 891–914

    PubMed  CAS  Google Scholar 

  • Rogers DWO (1989) Fundamentals of the AAPM’s TG-21 dosimetry protocol. Refresher course RC-9, 26 July 1989, AAPM Annual Meeting, Memphis, Tenn., PIRSO 198

    Google Scholar 

  • Rogers DWO (1991) Fundamentals of high energy x-ray and electron dosimetry protocols and new dosimetry standards. In: Purdy J (ed) Advances in Radiation Oncology Physics. AAPM, New York, pp 181–223

    Google Scholar 

  • Rogers DWO, Bielajew AF (1990) Wall attenuation and scatter corrections for ion chambers: measurements versus calculations. Phys Med Biol 35: 1065–1078

    Google Scholar 

  • Rogers DWO, Ross CK (1988) The role of humidity and other correction factors in the AAPM TG-21 dosimetry protocol. Med Phys 15:40–48

    PubMed  CAS  Google Scholar 

  • Rogers DWO, Bielajew AF, Nahum AE (1985) Ion chamber response and Awall correction factors in a 60 Co beam by Monte Carlo simulation. Phys Med Biol 30: 429–443

    CAS  Google Scholar 

  • Ross CK, Klassen NY, Smith GD (1984) The effect of various dissolved gases on the heat defect of water. Med Phys 11: 635–658

    Google Scholar 

  • Ross CK, Klassen NV, Shortt KR, Smith GD (1989) A direct comparison of water calorimetry and Fricke dosimetry. Phys Med Biol 34: 23–42

    PubMed  CAS  Google Scholar 

  • Roy SC, Apfel RE (1984) Semi-empirical formula for the stopping power of ions. Nucl Instrum Meth Phys Res B4: 20–22

    Google Scholar 

  • Rubach A, Conrad F, Bichsel H (1986) Dose build-up curves for cobalt-60 irradiation: a systematic error occurring with pancake chamber measurements. Phys Med Biol 31: 441–448

    PubMed  CAS  Google Scholar 

  • Scharf K (1971) Spectrophotometric measurement of ferric ion concentration in the ferrous sulphate (Fricke) dosemeter. Phys Med Biol 16: 77–86

    PubMed  CAS  Google Scholar 

  • Schulz RJ (1982) Concerning the perturbation correction in electron-beam dosimetry. Med Phys 9: 131

    PubMed  CAS  Google Scholar 

  • Schulz RJ (1986) Reply to comments of Rogers et al. Med Phys 13: 965–966

    Google Scholar 

  • Schulz RJ (1990) Comments on construction of a calorimeter prototype with a high sensitivity pulsed signal detection circuit. Phys Med Biol 35: 467–469

    Google Scholar 

  • Schulz RJ, Meli JA (1984) Reply to comments of Wu et al. Med Phys 11:872–874

    Google Scholar 

  • Schulz RJ, Weinhous MS (1985) Calorimeteric determination of the cavity-gas calibration factor Ngas. Med Phys 12: 166–168

    PubMed  CAS  Google Scholar 

  • Schulz RJ, Almond PR, Kutcher G, et al. (1986) Clarification of the AAPM Task Group 21 protocol. Med Phys 13: 755–759

    PubMed  CAS  Google Scholar 

  • Schulz RJ, Wuu CS, Weinhous MS (1987) The direct determination of dose-to-water using a water calorimeter. Med Phys 14: 790–796

    PubMed  CAS  Google Scholar 

  • Schulz RJ, deGuzman AF, Nguyen DB, Gore JC (1990a) Dose-response curves for Fricke-infused agarose gels as obtained by nuclear magnetic resonance. Phys Med Biol 35: 1611–1622

    PubMed  CAS  Google Scholar 

  • Schulz RJ, Venkataramanan N, Huq MS (1990b) The thermal defect of A-150 plastic and graphite for low-energy protons. Phys Med Biol 35: 1563–1574

    PubMed  CAS  Google Scholar 

  • Schulz RJ, Huq MS, Venkataramanan N, Motakabbir KA (1991) A comparison of ionization chamber and water calorimeter dosimetry for high energy x rays. Med Phys 18: 1229–1233

    PubMed  CAS  Google Scholar 

  • SCR AD, Sub-Committee of Radiation Dosimetry of the American Association of Physicists in Medicine (1966) Protocol for the dosimetry of high energy electrons. Phys Med Biol 11: 505–520

    Google Scholar 

  • SCRAD, Sub-Committee on Radiation Dosimetry of the American Association of Physicists in Medicine (1971) Protocol for the dosimetry of x- and gamma-ray beams with maximum energies between 0.6 and 50 MeV. Phys Med Biol 16: 379–396

    Google Scholar 

  • SEFM, Sociedad Espanola de Fisica Medica (1984) Procedimien-tos recomendados para la dosimettria de fotones y electrones de energias comprendidas entre 1 MeV y 50 MeV en radioterapia de haces externos. Publication No. 1–1984, Madrid, Spain

    Google Scholar 

  • Seuntjens J, Thierens H, Van der Plaetsen A, Segaert O (1987) Conversion factor — for x-ray beam qualities, specified by peak tube potential and HVL value. Phys Med Biol 32: 595–603

    PubMed  CAS  Google Scholar 

  • Seuntjens J, Thierens H, Van der Plaetsen A, Segaert O (1988) Determination of absorbed dose to water with ionisation chambers calibrated in free air for medium-energy x-rays. Phys Med Biol 33: 1171–1185

    Google Scholar 

  • Shiragai A (1978) A proposal concerning the absorbed dose conversion factor. Phys Med Biol 23: 245–252

    PubMed  CAS  Google Scholar 

  • Shiragai A (1984) A comment on a modification of Burlin’s general cavity theory. Phys Med Biol 29: 427–432

    Google Scholar 

  • Shiragai A (1991) A formulation for high-energy photon and electron beam dosimetry. Phys Med Biol 36: 633–642

    PubMed  CAS  Google Scholar 

  • Shortt KR (1989) The temperature dependence of G (Fe3+) for the Fricke dosemeter. Phys Med Biol 34: 1923–1926

    CAS  Google Scholar 

  • Smathers JB, Otte VA, Smith AR, et al. (1977) Composition of A-150 tissue-equivalent plastic. Med Phys 4: 74–77

    PubMed  CAS  Google Scholar 

  • Smyth VG, McEwan AC (1984) Verification of a result of Kristensen by Monte Carlo modelling. Phys Med Biol 29: 1279–1282

    Google Scholar 

  • Spokas JJ, Meeker RD (1980) Investigation of cables for ionization chambers. Med Phys 7: 135–140

    PubMed  CAS  Google Scholar 

  • Sternheimer RM, Peierls RF (1971) General expression for the density effect for the ionization loss of charged particles. Phys Rev B3: 3681

    Google Scholar 

  • Sternheimer RM, Berger MJ, Seltzer SM (1984) Density effect for the ionization loss of charged particles in various substances. Atomic Data Nucl Data Tables 30: 261–271

    CAS  Google Scholar 

  • Svensson H (1971) Dosimetric measurements at the Nordic Medical Accelerators. II. Absorbed dose measurements. Acta Radiol Ther Phys Biol 10: 631–654

    PubMed  CAS  Google Scholar 

  • Svensson H (1985) The new NACP- and ICRU-dosimetry protocols for dosimetry of high-energy photon and electron radiation. Radiother Oncol 85: 291–294

    Google Scholar 

  • Svensson H (1990) Presentation of TRS No. 277 “Absorbed dose determination in photon and electron beams. An international code of practice.” Med Phys World 6

    Google Scholar 

  • Svensson H, Brahme A (1979) Ferrous sulfate dosimetry for electrons. A re-evaluation. Acta Radiol Oncol 18: 326–36

    CAS  Google Scholar 

  • Svensson H, Hettinger G (1971) Dosimetric measurements at the Nordic medical accelerators. I. Characteristics of the radiation beam. Acta Radiol Ther Phys Biol 10: 369–384

    PubMed  CAS  Google Scholar 

  • Svensson H, Petersson S (1967) Absorbed dose calibration of thimble chambers with high-energy electrons at different phantom depths. Ark Fys 34: 377–384

    CAS  Google Scholar 

  • Svensson H, Andreo P, Cunningham J, Hohlfeld K (1987) Code of practice for absorbed dose determination in photon and electron beams. In: Radiotherapy in developing countries. IAEA, Vienna, p 333

    Google Scholar 

  • Takata N, Matiullah(1991) Dependence of the value of m on the lifetime of ions in parallel-plate ionization chambers. Phys Med Biol 36: 449–459

    Google Scholar 

  • Takata N, Sakihara K (1989) The dependence of the m value on applied voltage in the collection efficiency of ionisation chambers. Phys Med Biol 34: 589–597

    Google Scholar 

  • Thomas SJ, Palmer N (1989) The use of carbon-loaded thermoluminescent dosimeters for the measurement of surface doses in megavoltage x-ray beams. Med Phys 16: 902–904

    PubMed  CAS  Google Scholar 

  • Thwaites DI (1984) Charge storage effect on dose in insulating phantoms irradiated with electrons. Phys Med Biol 29: 1153–1156

    PubMed  CAS  Google Scholar 

  • Thwaites DI (1985) Measurements of ionisation in water, polystyrene and a ‘solid water’ phantom material for electron beams. Phys Med Biol 30: 41–53

    PubMed  CAS  Google Scholar 

  • Van Dam J, Rijnders A, Ang KK, Mellaerts M, Grobet P (1985) Determination of ionisation chamber collection efficiency in a swept electron beam by means of thermoluminescent detectors and the “two-voltage” method. Radiother Oncol 3: 363–370

    PubMed  Google Scholar 

  • van der Giessen PH (1986) About the rate of temperature changes in a thimble chamber. Radiother Oncol 7: 287–291

    PubMed  Google Scholar 

  • Vandyk J, Macdonald JCF (1972) Charge desposition from high energy electron beams. Radiat Res 50: 20–32

    PubMed  CAS  Google Scholar 

  • Waiter GD, Lerski RA (1991) The variation of proton density in agarose gels used as NMR test substances through the use of glass beads. Phys Med Biol 36: 541–546

    PubMed  CAS  Google Scholar 

  • Weinhous MS, Meli JA (1984) Determining Pion, the correction factor for recombination losses in an ionization chamber. Med Phys 11: 846–849

    PubMed  CAS  Google Scholar 

  • Weinhous MS, Meli JA (1988) Collection efficiency of an ionisation chamber in a pulsed swept beam: collimator scattered effects. Phys Med Biol 31: 1147–1155

    Google Scholar 

  • White GA, Gibbs GL (1985) Comments on “A protocol for the determination of absorbed dose from high-energy photon and electron beams.” Med Phys 12: 114

    PubMed  Google Scholar 

  • Whyte GN (1954) Nucleonics 12: 18, as cited in: Principles of radiation dosimetry by G.N. Whyte, John Wiley, New York (1959), pp 71

    Google Scholar 

  • Wielopolski L, Pai S, Mlyn M (1991) Semianalytical expressions for L/P and Prepl for electron beams. Med Phys 18: 559–564

    PubMed  CAS  Google Scholar 

  • Williams JR (1987) Dosimetry with a water calorimeter in a p(62) + Be neutron beam. Phys Med Biol 32: 403–406

    PubMed  CAS  Google Scholar 

  • Williams PC (1977) Discrepancy between Cλ and CE. Phys Med Biol 22: 535–538

    PubMed  CAS  Google Scholar 

  • Williams PC (1985) The selection of stopping power and mass energy absorption coefficient data for the HPA Code of Practice for dosimetry. Phys Med Biol 30: 707–708

    PubMed  CAS  Google Scholar 

  • Williams PC, Jordan TJ (1984) Extra-cameral volume effects in ionisation chambers for electron beam dosimetry. Phys Med Biol 29: 277–286

    PubMed  CAS  Google Scholar 

  • Wittkämper FW, Mijnheer BJ (1990) Experimental determination of wall correction factors. Part I. Cylindrical ionisation chambers. Phys Med Biol 35: 835–846

    Google Scholar 

  • Wittkämper FW, Mijnheer BJ, van Kleffens HJ (1987) Dose intercomparison at the radiotherapy centers in the Netherlands. 1. Photon beams under reference conditions and for prostatic cancer treatment. Radiother Oncol 9: 33–44

    PubMed  Google Scholar 

  • Wittkämper FW, Mijnheer BJ, van Kleffens HJ (1988) Dose intercomparison at the radiotherapy centers in the Netherlands. 2. Accuracy of locally applied computer planning systems for external photon beams. Radiother Oncol 11: 405–414

    PubMed  Google Scholar 

  • Wittkämper FW, Thierens H, Van der Plaetsen A, de Wagter C, Mijnheer BJ (1991) Perturbation correction factors for some ionization chambers commonly applied electron beams. Phys Med Biol 36: 1639–1652

    Google Scholar 

  • Woo MK, Cunningham JR (1988) Comments on a unified electron/photon dosimetry approach. Phys Med Biol 33: 981–982

    Google Scholar 

  • Woo MK, Cunningham JR, Jezioranski JJ (1990) Extending the concept of primary and scatter separation to the condition of electronic disequilibrium. Med Phys 17: 588–595

    PubMed  CAS  Google Scholar 

  • Wu A, Kalend AM, Zwicker RD, Sternick ES (1984) Comments on the method of energy determination for electron beams in TG-21 protocol. Med Phys 11: 871–872

    PubMed  CAS  Google Scholar 

  • Zeitz L and Laughlin JS (1982) “Nonisolated-sensor” solid polystyrene absorbed dose measurements. Med Phys 9: 763–768

    PubMed  CAS  Google Scholar 

  • Zeitz L (1989) Design of apparatus for precise x-ray dose chamber calibrations. Med Phys 16: 644–647

    PubMed  CAS  Google Scholar 

  • Zeitz L, Ulin K, Caley R (1986) Improved “nonisolatedsensor” solid polystyrene calorimeter. Med Phys 13: 399–402

    PubMed  CAS  Google Scholar 

  • Zoetelief J, Engels AC, Broerse JJ (1980) Effective measuring point of ion chambers for photon dosimetry in phantoms. Br J Radiol 53: 580–583

    PubMed  CAS  Google Scholar 

  • Zoetelief J, Eisenhauer CM, Coyne JJ (1990) Calculations of displacement corrections for in-phantom measurements with ionisation chambers for mammography. Phys Med Biol 35: 1287–1299

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nath, R., Huq, M.S. (1995). Advances in Radiation Dosimetry. In: Smith, A.R. (eds) Radiation Therapy Physics. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03107-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03107-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03109-4

  • Online ISBN: 978-3-662-03107-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics