Skip to main content

Radiation Dose-Response Models

  • Chapter
Radiation Therapy Physics

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

In studying radiation responses, there are primarily two motivations. One motivation is to learn the basic mechanisms involved in the response of living tissue to radiation. The other, but not altogether different motivation, is to learn what response is likely in a human when a patient is irradiated for therapeutic (or diagnostic) purposes. Clearly these objectives are not mutually exclusive. However, both the investigators and the methods they employ are likely to be different for the two arenas of investigation. The basic research is more likely to study the mechanisms of effects and less likely to be concerned with the quantification and prediction of effects. The more clinically oriented research is likely to work at the cellular level and above, whereas the basic research generally works at the cellular level and below. In Clinical research, investigators are often interested in modeling the responses to radiation so that these responses may be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike H (1977). On entropy maximization principle. In: Krishaiah PR (ed) Applications of statistics. North Holland, New York, pp 27–41

    Google Scholar 

  • Chadwick KH, Leenhouts HP (1973) A molecular theory of cell survival. Phys Med Biol 18: 78–87

    Article  PubMed  CAS  Google Scholar 

  • Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, London

    Google Scholar 

  • Cox DR, Snell EJ (1989) Analysis of binary data. Chapman and Hall, New York

    Google Scholar 

  • Curtis SB (1986) Lethal and potentially lethal lesions induced by radiation — a unified repair model. Radiat Res 106: 252–271

    Article  PubMed  CAS  Google Scholar 

  • Douglas BG, Henkelman RM, Lau GKY, Fowler JG, Eaves CJ (1979) Practical and theoretical considerations in the use of the mouse foot system to derive epithelial stem cell survival parameters. Radiat Res 77: 453–471

    Article  PubMed  CAS  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • Ellis F (1963) Fractionation and dose-rate. Br J Radiol 36: 153–162

    Article  Google Scholar 

  • Finney DJ (1978) Statistical method in biological assay. Charles Griffin, London

    Google Scholar 

  • Goitein M (1986) Causes and consequences of inhomogeneous dose distributions in radiation therapy. Int J Radiat Oncol Biol Phys 12: 701–704

    Article  PubMed  CAS  Google Scholar 

  • Herbert DE (1993) Quality assessment and improvement of dose response models: some effects of study weaknesses on study findings. “C’est magnifique?”. Medical Physics Publishing Co

    Google Scholar 

  • Hopewell JW, Hamlet R, Peel D (1985) The response of pig skin to single doses of irradiation from strontium-90 sources of differing surface area. Br J Radiol 58: 778–780

    Article  PubMed  CAS  Google Scholar 

  • Hosmer DW, Lemeshow S (1989) Applied linear regression. Wiley, New York

    Google Scholar 

  • Jackson A, Kutcher GJ, Yorke ED (1993) Probability of radiation induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys 20: 613–625

    Article  PubMed  CAS  Google Scholar 

  • Kellerer AM, Rossi HH (1971) RBE and the primary mechanism of radiation action. Radiat Res 47:15–34

    Article  PubMed  CAS  Google Scholar 

  • Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21: 137–146

    Article  PubMed  CAS  Google Scholar 

  • Lyman JT, Wolbarst AB (1987) Optimization of radiation therapy. III. A method of assessing complication probabilities from dose volume histograms. Int J Radiat Oncol Biol Phys 13: 103–109

    Article  PubMed  CAS  Google Scholar 

  • McCullagh P, Neider JA (1989) Generalized linear models. Chapman and Hall, New York

    Google Scholar 

  • Neary GJ (1965) Chromosone aberrations and the theory of RBE. Int Radiat Oncol Biol Phys 9:477–502

    Article  CAS  Google Scholar 

  • Nias AHW (1990) An introduction to radiobiology. Wiley, New York

    Google Scholar 

  • Oliver R (1964) A comparison of the effects of acute and protracted gamma-radiation on the growth of seedlings of Vicia faba. II. Theoretical calculations. Int J Radiat Oncol Biol Phys 8: 475–488

    Article  CAS  Google Scholar 

  • Roberts SA, Hendry JH (1993) The delay before onset of accelerated tumor cell repopulation during radiotherapy: a direct maximum-likelihood analysis of a collection of worldwide tumor-control data. Radiother Oncol 29: 69–74

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Cohen L, Mansell J (1990) Normal tissue reactions and complications following high-energy neutron beam therapy. II. Complication rates adjusted for censoring. Int J Radiat Oncol Biol Phys 18: 169–171

    Article  Google Scholar 

  • Schultheiss TE, Orton CG, Peck RA (1983) Models in radiotherapy: volume effects. Med Phys 10:410–415

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Higgins EH, El-Mahdi AM (1984) The latent period in radiation myelopathy. Int J Radiat Oncol Biol Phys 10: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Thames HD, Peters LJ, Dixon DO (1986) Effect of latency on calculated complication rates. Int J Radiat Oncol Biol Phys 12: 1861–1865

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Zagars GK, Peters LJ (1987) An explanatory hypothesis for parameter values in the LQ model for early versus late effects. Radiother Oncol 9: 241–248

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Stephens LC, Ang KK, Price RE, Peters LJ (1994) Volume effects in rhesus monkey spinal cord. Int J Radiat Oncol Biol Phys 29: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Stewart JG, Jackson AW (1975) The steepness of the dose response curve both for tumour cure and normal tissue injury. Laryngoscope 85:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Thames HD (1985) An “incomplete-repair” model for survival after fractionated and continuous irradiations. Int J Radiat Oncol Biol Phys 47: 319–339

    Article  CAS  Google Scholar 

  • Thames HD, Hendry JH (1987) Fractionation in radiotherapy. Taylor & Francis, London

    Google Scholar 

  • Thames HD, Schultheiss TE, Tucker SL, Dubray BM, Hendry JH, Brock W A (1992) Can modest escalations of dose be detected as increased tumor control? Int J Radiat Oncol Biol Phys 22: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Trott K-R (1990) Cell repopulation and overall treatment time. Int J Radiat Oncol Biol Phys 19:1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Thames HD, Peters LJ (1983) A new isoeffect curve for change in dose per fraction. Radiother Oncol 1:187–191

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988) The hazard of accelerated tumour clonogen repopulation during radiotherapy. Acta Oncol 27: 131–146

    Article  PubMed  CAS  Google Scholar 

  • Wong CS, Mivkiv S, Hill RP (1992) Linear-quadratic model underestimates sparing effects of small doses per fraction in rat spinal cord. Radiother Oncol 23:176–184

    Article  PubMed  CAS  Google Scholar 

  • Zagars GK, Schultheiss TE, Peters LJ (1987) Inter-tumor heterogeneity and radiation dose control curves. Radiother Oncol 8: 353–362

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schultheiss, T.E. (1995). Radiation Dose-Response Models. In: Smith, A.R. (eds) Radiation Therapy Physics. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03107-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03107-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03109-4

  • Online ISBN: 978-3-662-03107-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics