Advertisement

Dosimetry of Radiolabeled Antibodies

  • Barry W. Wessels
  • Donald J. Buchsbaum
Chapter
  • 313 Downloads
Part of the Medical Radiology book series (MEDRAD)

Abstract

Even before the advent of monoclonal antibodies, clinicians and scientists had been intrigued by the possibility of selectively targeting tumors and metastatic disease with a variety of agents including hormones, transmitters, drugs, metabolites, and polyclonal antibodies (Wagner 1968). Naturally, if it was found that any of these agents were not sufficiently cytotoxic to the tumor, a radionuclide label was added to promote selective tumor lethality and “action at a distance” tumor cell kill. This addition of the radionuclide to the biologically targeted therapy also made it possible to externally monitor the time-dependent distribution of the agent in animals and humans.

Keywords

Beta Particle Normal Tissue Toxicity Radiation Therapy Oncology Group Study Human Glioma Xenograft Natl Cancer Lnst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson-Berg WT, Squire RA, Strand M (1984) Specific radioimmunotherapy using 90Y-labeled monoclonal antibody in erythroleukemic mice. Cancer Res 47: 1905–1912Google Scholar
  2. Badger CC, Krohn KA, Peterson AV, Shulman H, Bernstein ID (1985) Experimental radiotherapy of murine lymphoma with 131I-labeledanti-Thy 1.1 monoclonal antibody. Cancer Res 45: 1536–1544PubMedGoogle Scholar
  3. Badger CC, Krohn KA, Shulman H, Flournoy N, Bernstein ID (1986) Experimental radioimmunotherapy of murine lym-phoma with 131I-labeled anti-T-cell antibodies. Cancer Res 46: 6223–6228PubMedGoogle Scholar
  4. Badger CC, Wilbur DS, Hadley SW, Fritzberg AR, Bernstein ID (1990) Biodistribution of p-iodobenzoyl (PIP) labeled antibodies in a murine lymphoma model. Int J Radiat Appl Instrum[B] 17:381–387CrossRefGoogle Scholar
  5. Beaumier PL, Venkatesan P, Vanderheyden J-L et al. (1991) 186Re radioimmunotherapy of small cell lung carcinoma xenografts in nude mice. Cancer Res 51: 676–681PubMedGoogle Scholar
  6. Begent RH, Bagshawe KD, Pedley RB et al. (1987) Use of second antibody in radioimmunotherapy. NCI Monogr 3: 59–61PubMedGoogle Scholar
  7. Begent RHJ, Ledermann JA, Green AJ et al. (1989) Antibody distribution and dosimetry in patients receiving radiolabeled antibody therapy for colorectal cancer. Br J Cancer 60: 406–412PubMedCrossRefGoogle Scholar
  8. Bender H, Takahashi H, Adachi K et al. (1992) Immunotherapy of human glioma xenografts with unlabeled,131I-, or 125I-labeled monoclonal antibody 425 to epidermal growth factor receptor. Cancer Res 52: 121–126PubMedGoogle Scholar
  9. Berger MJ (1971) Distribution of absorbed dose around point sources of electrons and beta particles in water and other media. MIRD Pamphlet No. 7. J Nucl Med (Suppl) 12: 1–23Google Scholar
  10. Bhargava KK, Acharya SA (1989) Labeling of monoclonal antibodies with radionuclides. Semin Nucl Med 19: 187–201PubMedCrossRefGoogle Scholar
  11. Blumenthal RD, Sharkey RM, Goldenberg DM (1992) Dose escalation of radioantibody in a mouse model with the use of recombinant human interleukin-1 and granulocyte-macrophage colony-stimulating factor intervention to reduce myelo-suppression. J Natl Cancer Inst 84: 399–406PubMedCrossRefGoogle Scholar
  12. Brady LW, Markoe AM, Woo DV, Rackover MA, Koprowski MA, Steplewski Z, Pyester RG (1990) Iodine 125 labeled anti-epidermal growth factor receptor-425 in the treatment of malignant astrocytomas. A pilot study. J Neurosurg Sci 34: 243–249PubMedGoogle Scholar
  13. Breitz H, Weiden P, Vanderheyden JL et al. (1992) Clinical experience with Re-186-labeled monoclonal antibodies for radioimmuniotherapy: results of phase I trials. J Nucl Med 33: 1099–1112PubMedGoogle Scholar
  14. Breitz HB, Fisher DR, Weiden PL et al. (1993) Dosimetry of rhenium-186-labeled monoclonal antibodies: Methods, prediction from technatium-99m-labeled antibodies and results of Phase I trials. J Nucl Med 34: 908–917PubMedGoogle Scholar
  15. Buchegger F, Pelegrin A, Delaloye B, Bischof-Delaloye A, Mach J-P (1990) Iodine-131-labeled MAb F(ab’)2 fragments are more efficient and less toxic than intact anti-CEA antibodies in radioimmunotherapy of large human colon carcinoma grafted in nude mice. J Nucl Med 31: 1035–1044PubMedGoogle Scholar
  16. Buchsbaum DJ, Ten Haken RK, Heidorn DB, Terry VH, Guilbault DM, Stelewski Z, Lichter AS (1990) A comparison of I131-labeled monoclonal antibody 17–1A treatment to external beam irradiation on the growth of LSI 74T human colon carcinoma xenografts. Int J Radiat Oncol BiolPhys 18: 1033–1041CrossRefGoogle Scholar
  17. Buchsbaum DJ, Khazaeli MB, Davis MA, Lawrence TS (1993a) Sensitization of radiolabeled monoclonal antibody therapy using bromodeoxyuridine. Cancer 73: 999–1005CrossRefGoogle Scholar
  18. Buchsbaum DJ, Langmuir VK, Wessels BW (1993b) Experimental radioimmunotherapy. Med Phys 20: 551–567PubMedCrossRefGoogle Scholar
  19. Buchsbaum DJ, Lawrence TS, Roberson PL, Heidorn DB, Ten Haken RK, Steplewski Z (1993c) Comparison of 131I-and 90Y-labeled monoclonal antibody 17–1A for treatment of human colon cancer xenografts. Int J Radiat Oncol Biol Phys 25: 629–638PubMedCrossRefGoogle Scholar
  20. Buras RR, Beatty BG, Williams LE, Wanek PM, Harris JB, Hill R, Beatty JD (1990) Radioimmunotherapy of human colon cancer in nude mice. Arch Surg 125: 660–664PubMedCrossRefGoogle Scholar
  21. Buras RR, Wong JYC, Kuhn JA, Beatty BG, Williams LE, Wanek PM, Beatty JD (1993) Comparison of radioimmunotherapy and external beam radiotherapy in colon cancer xenografts. Int J Radiat Oncol Biol Phys 25: 473–479PubMedCrossRefGoogle Scholar
  22. Carrasquillo JA, Krohn KA, Beaumier P et al. (1984) Diagnosis of and therapy for solid tumors with radiolabeled antibodies and immune fragments. Cancer Treat Rep 68: 317–328PubMedGoogle Scholar
  23. Chen F-M, Taylor DK, Epstein AL (1989) Tumor necrosis treatment of ME-180 human cervical carcinoma model with 131I-labeled TNT-1 monoclonal antibody. Cancer Res 49: 4578–4585PubMedGoogle Scholar
  24. Cheung N-K, Landmeier B, Neely J et al. (1986) Complete tumor ablation with iodine-131-radiolabeled disialogan-glioside GD2-specific monoclonal antibody against human neuroblastoma xenografted in nude mice. J Natl. Cancer Inst 77: 739–745PubMedGoogle Scholar
  25. Chiou RK, Vessella RL, Limas C, Shafer RB, Elson MK, Arfman EW, Lange PH (1988) Monoclonal antibody-targeted radiotherapy of renal cell carcinoma using a nude mouse model. Cancer 61: 1766–1775PubMedCrossRefGoogle Scholar
  26. Colapinto EV, Zalutsky MR, Archer GE, Noska MA, Friedman HS, Carrel S, Bigner DD (1990) Radioimmuno-therapy of intracerebral human glioma xenografts with 131I-labeled F(ab’)2 fragments of monoclonal antibody Mel-14. Cancer Res 50: 1822–1827PubMedGoogle Scholar
  27. Colcher D, Zalutsky M, Kaplan W, Kufe D, Austin F, Scholm J (1983) Radiolocalization of human mammary tumors in athymic mice by a monoclonal antibody. Cancer Res 43: 736–742PubMedGoogle Scholar
  28. Cole WC, De Nardo SJ, Meares CF et al. (1987) Comparative serum stability of radiochelates for antibody radiopharmaceuticals. J Nucl Med 28: 83–90PubMedGoogle Scholar
  29. Dale RG (1985) The application of the linear quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 58: 515–528PubMedCrossRefGoogle Scholar
  30. DeNardo SJ, DeNardo GL, O’Grady LF et al. (1988) Pilot studies of radioimmunotherapy of B cell lymphoma and leukemia using I-131 LYM-1 monoclonal antibody. Antib, Immunoconj Radiopharm 1: 17–33Google Scholar
  31. DeNardo SJ, Warhoe KA, O’Grady LF, DeNardo GL, Hellstrom I, Hellstrom KE, Mills SL (1991a) “Radioimmunotherapy with 1-131 chimeric L-6 in advanced breast cancer,” in Breast Epithelial Antigens, edited by R.L. Ceriani. Plenum, New YorkGoogle Scholar
  32. DeNardo SJ, Warhoe KA, O’Grady LF et al. (1991b) Response to 131I chimeric MoAb L-6 radioimmunotherapy in patients with advanced metastatic breast cancer. J Nucl Med 32: 922Google Scholar
  33. Dillman LT, Von der Lage FC (1975) Radionuclide decay schemes and nuclear paramters for use in radiation-dose estimation. MIRD Pamphlet No 10. Society of Nuclear Medicine, New YorkGoogle Scholar
  34. Eary JF, Appelbaum FR, Durack L, Brown P (1989) Preliminary validation of the opposing view method for quantitative gamma camera imaging. Med Phys 16: 382–387PubMedCrossRefGoogle Scholar
  35. Eckerman KF (1985) Aspects of the dosimetry of radionuclides within the skeleton with particular emphasis on the active marrow. Proceedings of the Fourth International Symposium on Radiopharmaceutical Dosimetry. US Depart-ment of Energy, DE86010102 (CONF 851113), 514–534, Oak Ridge, TennGoogle Scholar
  36. Erdi AK, Wessels BW, DeJager R et al. (1994) Tumor activity confirmation and isodose curve display for patients receiving iodine-131–16.88 human monoclonal antibody. Cancer 73: 932–44PubMedCrossRefGoogle Scholar
  37. Erdi YE, Wessels BW, DeJager R et al. (1994). A new fiducial alignment system to overlay abdominal computed tomography or magnetic resanance anatomical images with radiolabeled antibody single-photon emission computed tomographic scans. Cancer 73: 923–931PubMedCrossRefGoogle Scholar
  38. Ferens JM, Krohn KA, Beaumier PL et al. (1984) High-level iodination of monoclonal antibody fragments for radiotherapy. J Nucl Med 25: 367–370PubMedGoogle Scholar
  39. Fisher DR (1986) The microdosimetry of monoclonal antibodies labeled with alpha particles. In Schlafke-Stelson AT, Watson EE (eds) Fourth International Radiopharmaceutical Dosimetry Symposium. Oak Ridge Associated Universities, Oak Ridge, Tenn. pp 446–457Google Scholar
  40. Fowler JF (1990) Radiobiological aspects of low dose rates in radioimmunotherapy. Int J Radiat Oncol Biol Phys 18: 1261–1269PubMedCrossRefGoogle Scholar
  41. Fritzberg AR, Beminger RW, Hadley SW, Wester DW (1988) Approaches to radiolabeling of antibodies for diagnosis and therapy of cancer. Pharm Res 4: 325–334CrossRefGoogle Scholar
  42. Gallagher BM (1983) Monoclonal antibodies: the design of appropriate carrier and evaluation systems. Animal Models in Radiotracer Design 3: 61–105CrossRefGoogle Scholar
  43. Goldenberg DM, Gaffar SA, Bennett SJ, Beach JL (1981) Experimental radioimmunotherapy of a xenografted human colonic tumor (GW-39) producing carcinoembry-onic antigen. Cancer Res 41: 4354–4360PubMedGoogle Scholar
  44. Goldenberg DM, Sharkey RM, Blumenthal RD, Goldenberg H, Murthy S, Hansen HJ, Pinsky CM (1990) Problems and prospects for radioimmunodetection and radioimmunotherapy of cancer. Antibody Immunoconj Radiopharm 3: 151–167Google Scholar
  45. Goldenberg DM, Horowitz JA, Sharkey RM et al. (1991) Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with 131I-labeled LL2 (EPB-2) monoclonal antibody J Clin Oncol 9: 548–564PubMedGoogle Scholar
  46. Goodwin DA, Smith SI, Meares CF, David GS, McTigue M, Finston RA (1985) Chelate chase of radiopharmaceuticals reversibly bound to monoclonal antibodies improves dosimetry. In: Schlafke-Stelson AT, Watson EE (eds) Fourth International Radiopharmaceutical Dosimetry Symposium. Oak Ridge Associated Universities, Oak Ridge, Tenn., pp 477–492Google Scholar
  47. Goodwin DA, Meares CF, McCall MJ, McTigue M, Chaovapong W (1988) Pre-targeted immunoscintigraphy of murine tumors with 1–111-labeled bifunctional haptens. J Nucl Med 29: 226–234PubMedGoogle Scholar
  48. Green AJ, Dewhurst SE, Begent RH, Bagshawe KD, Riggs SJ (1990) Accurate quantification of 131–1 distribution by gamma camera imaging. Eur J Nucl Med 16: 362–365CrossRefGoogle Scholar
  49. Greiner JW, Guadagni F, Noguchi P, Pestka S, Colcher D, Fisher PB, Schlom J (1987) Recombinant interferon enhances monoclonal antibody-targeting of carcinoma lesions in vivo. Science 235: 895–898PubMedCrossRefGoogle Scholar
  50. Griffith MH, Yorke ED, Wessels BW, DeNardo GL, Neacy WP (1988) Direct dose confirmation of quantitative autoradiography with micro-TLD measurements for radioimmunotherapy. J Nucl Med 29: 1795–1809PubMedGoogle Scholar
  51. Hammond MD, Moldofsky PJ, Beardsley MR, Mulhern CB Jr (1984) External imaging techniques for quantitation of distribution of 1–131 F(ab’) fragments of monoclonal antibody in humans. Med Phys 11: 778–783PubMedCrossRefGoogle Scholar
  52. Harrison A, Royle L (1987) Efficacy of astatine-211 labeled monoclonal antibody in treatment of murine T-cell lymphoma. NCI Monogr 3: 157–158PubMedGoogle Scholar
  53. Hennigan TW, Begent RHJ, Allen-Mersh TG (1991) Histamine leukotriene C4 and interleukin-2 increase antibody uptake into a human carcinoma xenograft model. Br J Cancer 64: 872–874PubMedCrossRefGoogle Scholar
  54. Hnatowich DJ, Virzi F, Doherty PW (1985) DTPA-coupled antibodies labeled with yttrium-90. J Nucl Med 26:503–509PubMedGoogle Scholar
  55. Hosain F, Hosain P (1978) In: Spencer R (ed) Therapy in nuclear medicine. Grune and Stratton, New York, pp 33–34Google Scholar
  56. Howell RW, Rao DV, Sastry KSR (1989) Macroscopic dosimetry for radioimmunotherapy: nonuniform activity distributions in solid tumors. Med Phys 16: 66–74PubMedCrossRefGoogle Scholar
  57. Humm JL (1986) Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med 27: 1490–1497PubMedGoogle Scholar
  58. Humm JL (1987) A microdosimetric model of astatine-211 labeled antibodies for radioimmunotherapy. Int J Radiat Oncol Biol Phys 13: 1767–1773PubMedCrossRefGoogle Scholar
  59. Humm JL, Charlton DE (1989) A new calculational method to assess the therapeutic potential of Auger electron emission. Int J Radiat Oncol Biol Phys 17: 352–360CrossRefGoogle Scholar
  60. Humm JL, Chin LM (1990) Cellular dosimetry. In: Adelstein SJ, Kassis AI, Burt RW (eds) Dosimetry of administered radionuclides. American College of Nuclear Physicians, Washington, DC, pp 306–330Google Scholar
  61. Humm JL, Roeske JC, Fisher DR, Chen GTY (1993) Micro dosimetric concepts in radioimmunotherapy. Med Phys 2C 535–542CrossRefGoogle Scholar
  62. Huneke RB, Pippin CG, Squire RA, Brechiel MW, Gansol OA, Strand M (1992) Effective alpha-particle-mediate radioimmunotherapy of murine leukemia. Cancer Res 52: 5818–5820PubMedGoogle Scholar
  63. Jain RK (1990) Tumor physiology and antibody delivery Front Radiat Ther Oncol 24: 32–46PubMedGoogle Scholar
  64. Jungerman JA, Yu K-HP, Zanelli CI (1984) Radiatior absorbed dose estimates at the cellular level for some electron-emitting radionuclides for radioimmunotherapy Int J Appl Radiat Isot 35: 883–888PubMedCrossRefGoogle Scholar
  65. Kalofonos HP, Pawlikowska TR, Hemingway A et al. (1989; Antibody guided diagnosis and therapy of brain gliomas using radio-labeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase. J Nucl Med 30: 1636–1645PubMedGoogle Scholar
  66. Kaminski MS, Fig LM, Zasadny KR et al. (1992) Imaging, dosimetry, and radioimmunotherapy with iodine-131-labeled anti-CD37 (MB-1) antibody in B-cell lymphoma. J Clin Oncol 10: 1696–1711PubMedGoogle Scholar
  67. Klein JL, Nguyen TH, Laroque P et al. (1989) Yttrium-90 and iodine-131 radioimmunoglobulin therapy of an experimental human hepatoma. Cancer Res 49: 6383–6389PubMedGoogle Scholar
  68. Knox SJ, Goris ML, Wessels BW (1992) Overview of comparative studies comparing radioimmunotherapy with dose equivalent external beam irradiation. Radiother Oncol 23:111–117PubMedCrossRefGoogle Scholar
  69. Kohler G, Milstein C (1975) Continuous culture of fused cells secreting antibody of predefined specificity. Nature 256: 495–497PubMedCrossRefGoogle Scholar
  70. Kozak RW, Raubitschek A, Mirzadeh S, Brechbiel M, Junghaus R, Gansow O, Waldmann T (1989) Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-90 monoclonal antibodies: critical factors in determining in vivo survival and organ toxicity. Cancer Res 49: 2639–2644PubMedGoogle Scholar
  71. Kwok CS, Prestwich WV, Wilson BC (1985) Calculation of radiation doses for non-uniformly distributed beta and gamma radionuclides in soft tissue. Med Phys 12: 405–412PubMedCrossRefGoogle Scholar
  72. Langmuir VK (1991) Radioimmunotherapy: clinical results and dosimetric considerations. Nucl Med Biol 19: 213–225Google Scholar
  73. Langmuir VK, Sutherland RM (1988) Dosimetry models forradioimmunotherapy. Med Phys 15: 867–873PubMedCrossRefGoogle Scholar
  74. Langmuir VK, Fowler JF, Knox SJ, Wessels BW, Sutherland RM, Wong JYC (1993) Radiobiology of radiolabeled antibody therapy as applied to tumor dosimetry. Med Phys 20: 601–610PubMedCrossRefGoogle Scholar
  75. Larson SM, Carrasquillo JA, McGuffin RW et al. (1985) Use of 1-131 labeled, murine Fab against a high molecular weight antigen of human melanoma: preliminary experience. Radiology 155: 487–492PubMedGoogle Scholar
  76. Lashford L, Jones D, Pritchard J, Breatnach F, Kemshead JT (1987) Therapeutic application of radiolabeled monoclonal antibody UJ13A in children with disseminated neuroblas-toma. NCI Monogr 3: 53PubMedGoogle Scholar
  77. Lee Y, Bullard DE, Humphrey PA (1988a) Treatment of intracranial human glioma xenografts, with ,311-labeled anti-tenascin monoclonal antibody 81C6, Cancer Res 48: 2904–2910PubMedGoogle Scholar
  78. Lee Y-S, Bullard DE, Zalutsky MR (1988b) Therapeutic efficacy of antiglioma mesenchymal extracellular matrix 131I-radiolabeled murine monoclonal antibody in a human glioma xenograft model, Cancer Res 48: 559–566PubMedGoogle Scholar
  79. Lederer CH, Hollander JM, Perlman I (1968) Table of isotopes, 6th edn. John Wiley & Sons Inc., New YorkGoogle Scholar
  80. Leichner PK, Kwok CS (1993) Tumor dosimetry in radio-immunotherapy: methods of calculation for beta particles. Med Phys 20: 529–534PubMedCrossRefGoogle Scholar
  81. Leichner PK, Klein JL, Sieglman SS, Ettinger DS, Order SE I (1981a) Dosimetry of Mabeled antiferritin hepatoma, Cancer Treat Rep 67: 647–658Google Scholar
  82. Leichner PK, Klein JL, Garrison JB, Jenkins RE, Nickoloff EL, Ettinger DS, Order SE (1981b) Dosimetry of 131I-labeled anti-ferritin in hepatoma: A model for radioimmunol-globulin dosimetry. Int J Radiat Oncol Biol Phys 7: 323–333PubMedCrossRefGoogle Scholar
  83. Leichner PK, Yang NC, Frenkel TL, Loudenslager DM, Hawkins WG, Klein JL, Order SE (1988) Dosimetry and treatment planning for 90Y-labeled antiferritin in hepatoma. Int J Radiat Oncol Biol Phys 14: 1033–1042PubMedCrossRefGoogle Scholar
  84. Leichner PK, Stillwagon GB, Order SE (1989) 194 Hepatocellular cancers treated by radiation and chemotherapy combinations: toxicity and response: a Radiation Therapy Oncology Group study. Int J Radiat Oncol Biol Phys 17: 1223–1229PubMedCrossRefGoogle Scholar
  85. Leichner PK, Hawkins WG, Yang NC (1990) Quantitative SPECT in radioimmunotherapy. Antibody Immunoconj Radiopharm 4: 25Google Scholar
  86. Leichner PK, Koral KF, Jaszczak RJ, Green AJ, Chen GTY, Roeske JC (1993) An overview of imaging techniques and physical aspects of treatment planning in radioimmunotherapy. Med Phys 20: 569–578PubMedCrossRefGoogle Scholar
  87. Lenhard RE, Order SE, Spuhberg JJ, Asbell SO, Leibel SA (1985) Isotopic immunoglobulin: A new systemic therapy for advanced Hodgkin’s disease. J Clin Oncol 3:1296–1300PubMedGoogle Scholar
  88. Lightfoot DV, Walker KK, Boniface GR, Hetherington EL, Izard ME, Russell PJ (1991) Dosimetric and therapeutic studies in nude mice xenograft models with 153samarium-labelled monoclonal antibody, BLCA-38 Antib. Immunoconj Radiopharm 4: 319–330Google Scholar
  89. Loevinger R, Japha E, Brownell G (1956) Discrete radioisotope sources. Radiation dosimetry. Academic Press, New YorkGoogle Scholar
  90. Loevinger R, Budinger TF, Watson EE (1991) MIRD primer for absorbed dose calculations. Society of Nuclear MedicineGoogle Scholar
  91. Macklis RM, Kinsey BM, Kassis AI et al. (1988) Radioimmunotherapy with alpha-particle-emitting immunocon-jugates. Science 240: 1024–1026PubMedCrossRefGoogle Scholar
  92. Macklis RM, Kaplan WD, Ferrara JLM, Atcher RW, Hines JJ, Burakoff SJ, Coleman CN (1989) Residents essay award: Alpha particle radio-immunotherapy: Animal models and clinical prospects. Int J Radiat Oncol Biol Phys 16: 1377–1387PubMedCrossRefGoogle Scholar
  93. Macklis RM, Lin JY, Beresford B, Atcher RW, Hines JJ, Humm JL (1992) Cellular kinetics, dosimetry, and radio-biology of alpha-particle radioimmunotherapy: induction of apoptosis. Radiat Res 130: 220–226PubMedCrossRefGoogle Scholar
  94. Markoe AM, Brady LW, Woo D et al. (1990) Treatment of gastrointestinal cancer using monoclonal antibodies. In: Frontiers of Radiation Therapy Oncology, edited by JM Vaeth and JL Meyer. Karger, Base Vol. 24: pp 214–224Google Scholar
  95. Matthews DC, Appelbaum FR, Eary JF et al. (1991) Radiolabeled anti-CD45 monoclonal antibodies target lympho-hematopoietic tissue in the macaque. Blood 78: 1864–1874PubMedGoogle Scholar
  96. Mausner LF, Srivastava SC (1993) Selection of radionuclidesfor radioimmunotherapy. Med Phys 20: 503–510PubMedCrossRefGoogle Scholar
  97. Meredith RF, Khazaeli MB, Plott G et al. (1992) Phase I trial of 131I-chimeric B72.3 in metastatic colorectal cancer. J Nucl Med 33: 23–29PubMedGoogle Scholar
  98. Meredith RF, Johnson TK, Plott G et al. (1993) Dosimetry of solid tumors. Med Phys 20: 583–592PubMedCrossRefGoogle Scholar
  99. Moi MK, De Nardo SJ, Meares CF (1990) Stable Afunctional chelates of metals used in radiotherapy. Cancer Res (Suppl) 50: 789s-793sGoogle Scholar
  100. Molthoff CFM, Pinedo HM, Schluper HMM, Boven E (1992) Influence of dose and schedule on the therapeutic efficacy of 131I-labelled monoclonal antibody 139H2 in a human ovar-ian cancer xenograft model. Int J Cancer 50: 474–480PubMedCrossRefGoogle Scholar
  101. Moshakis V, Mcllhinney RA, Raghavab D, Neville AM (1981) Localization of human tumor xenografts after IV adminis-tration of radiolabeled monoclonal antibodies. Br J Cancer 44: 91–99PubMedCrossRefGoogle Scholar
  102. Nabi HA, Doerr RJ (1992) Radiolabeled monoclonal antibody imaging (immunoscintigraphy) of colorectal cancers; current status and future perspective. Am J Surg 163: 448–456PubMedCrossRefGoogle Scholar
  103. Neacy WP, Wessels BW, Bradley EW, Kovandi S, Justice T, Danskin S, Sands H (1986) Comparison of radioimmuno-therapy (RIT) and 4 MV external beam radiotherapy of human tumor xenografts in athymic mice. J Nucl Med 27: 902–903Google Scholar
  104. Order SE (1982) Monoclonal antibodies: potential role in radiation therapy and oncology. Int J Radiat Oncol Biol Phys 8: 1193–1201PubMedCrossRefGoogle Scholar
  105. Order SE, Stillwagon GB, Klein JL et al. (1985) Iodine-131-antiferritin, a new treatment modality in hepatoma: a Radiation Therapy Oncology Group Study. J Clin Oncol 3: 1573–1582PubMedGoogle Scholar
  106. Order SE, Vriesendorp HM, Klein JL, Leichner PK (1988) A phase I study of 90yttrium antiferritin: dose escalation and tumor dose. Antib Immunoconj Radiopharm 1: 163–168Google Scholar
  107. Orton CG, Cohen LA (1988) A unified approach to dose-effect relationships in radiotherapy. I. Modified TDF and linear quadratic equations. Int J Radiat Oncol Biol Phys 14: 549–556PubMedCrossRefGoogle Scholar
  108. Paik CH, Eckelman WC, Reba RC (1986) Transchelation of Tc-99m from low affinity sites to high affinity sites of antibodies. Int J Radiat Appl Instrum [B] 13: 359–362CrossRefGoogle Scholar
  109. Parker BA, Vassos AB, Halper SE et al. (1990) Radioimmuno-therapy of human B-cell lymphoma with 90Y-conjugated anti-idiotype monoclonal antibody. Cancer Res Suppl 50: 1022–1028Google Scholar
  110. Press OW, Eary JF, Badger CC et al. (1989) Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol 7: 1027–1038PubMedGoogle Scholar
  111. Press OW, Eary JF, Badger CC et al. (1990) High-dose radio-immunotherapy of B cell lymphomas. Front Radiat Ther Oncol 24: 204–213PubMedGoogle Scholar
  112. Prestwich WV, Nunes J, Kwok CS (1989) Beta dose point kernels for radionuclides of potential use in radioimmuno-therapy. J Nucl Med 30: 1036–1046 and 1739–1740PubMedGoogle Scholar
  113. Redwood WR, Tom TD, Strand M (1984) Specificity, efficacy, and toxicity of radioimmunotherapy in erythroleukemic mice. Cancer Res 44: 5681–5687PubMedGoogle Scholar
  114. Riva P, Moscatelli G, Lazzari S et al. (1989) Systemic and locoregional administration of labelled MOABS for gastrointestinal cancer radioimmunotherapy: Biokinetics, pharmacokinetics and dosimetry aspects. J Nucl Med 30: 779Google Scholar
  115. Riva P, Arista A, Mariani G et al. (1991) Improved tumor targeting by direct intralesional injection of radiolabeled monoclonal antibody: A phase I study in brain glioma. J Nucl Med 32: 922Google Scholar
  116. Roberson PL, Buchsbaum DJ, Heidora DB, Ten Haken R (1992a) Three-dimensional tumor dosimetry for radioimmunotherapy using serial autoradiography. Int J Radiat Oncol Biol Phys 24: 329–334PubMedCrossRefGoogle Scholar
  117. Roberson PL, Buchsbaum DJ, Heidorn DB, Ten Haken RK (1992b) Variations in 3-D dose distributions for 131 Iodine-labeled monoclonal antibody. Antib Immunoconj Radio-pharm 5: 397–402Google Scholar
  118. Roeske JC, Chen GTY, Brill AB (1993) Dosimetry of intra-peritoneally administered radiolabeled antibodies. Med Phys 20: 593–600PubMedCrossRefGoogle Scholar
  119. Rofstad R (1985) Human tumor xenografts in radiothera-peutic research. Radiother Oncol 3: 35–46PubMedCrossRefGoogle Scholar
  120. Rosen ST, Zimmer AM, Goldman-Leikin R et al. (1987) Radioimmunodetection and radioimmunotherapy of cutaneous T cell lymphomas using an 1311-labeled monoclonal antibody: An Illinois Cancer Council study. J Clin Oncol 5: 562–573PubMedGoogle Scholar
  121. Roselli M, Schlom J, Gansow OA, Raubitschek A (1989) Comparative biodistributions of yttrium- and indium-labeled monoclonal antibody B72.3 in athymic mice bearing human colon carcinoma xenografts. J Nucl Med 30: 672–682PubMedGoogle Scholar
  122. Rostock RA, Klein JL, Leichner P, Kopher KA, Order SE (1983) Selective tumor localization in experimental hepatoma by radiolabeled antiferritin antibody. Int. J Radiat Oncol Biol Phys 9: 1345–1350PubMedCrossRefGoogle Scholar
  123. Sands H (1990) Experimental studies radioimmunodetection of cancer: an overview. Cancer Res (Suppl) 50: 809s-813sGoogle Scholar
  124. Scheinberg DA, Straus DJ, Yeh SD et al. (1990) A phase I toxicity, pharmacology, and dosimetry trial of monoclonal antibody OKB7 in patients with non-Hodgkin’s lymphoma: Effects of tumor burden and antigen expression. J Clin One 8: 792–803Google Scholar
  125. Schlom J, Hand PH, Greiner JW et al. (1990) Innovations that influence the pharmacology of monoclonal antibody guid-ed tumor targeting. Cancer Res (Suppl) 50: 820s-827sGoogle Scholar
  126. Senekowitsch R, Reidel G, Mollenstadt S, Kriegel H, Pabst H-W (1989) Curative radioimmunotherapy of human mammary carcinoma xenografts with iodine-131-labeled monoclonal antibodies. J Nucl Med 30: 531–537PubMedGoogle Scholar
  127. Schroff RW, Weiden PL, Appelbaum J et al. (1990) Rhenium-186 labeled antibody in patients with cancer: Report of a pilot Phase I study. Antib Immunoconj Radiopharm 3:99–110Google Scholar
  128. Schmidberger H, Buchsbaum DJ, Blazar BR, Everson P, Vallera DA (1991) Radiotherapy in mice with yttrium-90-labeled anti-Lyl monoclonal antibody: Therapy of the T cell lymphoma EL4. Cancer Res 51: 1883–1890PubMedGoogle Scholar
  129. Sgouros G, Barest G, Thekkumthaia J, Chui C, Mohan R, Bigler R, Zanzonico P (1990) Treatment planning for internal radionuclide therapy: three-dimensional dosimetry for nonuniformly distributed radionuclides. J Nucl Med 31:1884–1891PubMedGoogle Scholar
  130. Sharkey RM, Pykett MJ, Siegel JA, Alger EA, Primus FJ, Goldenberg DM (1987) Radioimmunotherapy of the GW-39 human colonic tumor xenograft with 131I-labeled murine monoclonal antibody to carcinoembryonic antigen. Cancer Res 47: 5672–5677PubMedGoogle Scholar
  131. Sharkey RM, Kaltovich FA, Shin LB, Fand I, Govelitz G, Goldenberg DM (1988) Radioimmunotherapy of human colonic cancer xenografts with -labeled monoclonal antibodies to carcinoembryonic antigen. Cancer Res 48: 3270–3275PubMedGoogle Scholar
  132. Siegel JA, Pawlyk DA, Lee RE, Sasso NL, Horowitz JA, Sharkey RM, Goldenberg DM (1990a) Tumor, red marrow, and organ dosimetry for 311I-labeled anti-carcinoembryonic antigen monoclonal antibody. Cancer Res Suppl 50: 1039–1042Google Scholar
  133. Siegel JA, Wessels BW, Watson EE et al. (1990b) Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibod) Immunoconj Radiopharm 3: 213–233Google Scholar
  134. Siegel JA, Goldenberg DM, Badger CC (1993) Radioimmunotherapy dose estimation in patients with B-cel) lymphoma. Med Phys 20: 579–582PubMedCrossRefGoogle Scholar
  135. Snyder WS, Ford MR, Warner GG, Watson SB (1975) “S”, absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet No. 11. Society of Nuclear Medicine, New YorkGoogle Scholar
  136. Stewart, JSW, Hird V, Snook D et al. (1990) Intraperitoneal yttrium-90-labeled monoclonal antibody in ovarian cancer. J Clin Oncol 8: 1941–1950PubMedGoogle Scholar
  137. Stickney DR, Anderson LD, Slater JB, Ahlem CN, Kirk GA, Schweighardt SA, Frincke JM (1991) Bifunctional antibody: a binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res 51: 6650–6655PubMedGoogle Scholar
  138. Stillwagon GB, Order SE, Klein JL et al. (1987) “Multi-modality treatment of primary nonresectable intrahepatic cholangiocarcinoma with 131I anti-CEA-a Radiation Therapy Oncology Group study”. Int J Radiat Oncol Biol Phys 13: 687–695PubMedCrossRefGoogle Scholar
  139. Strand SE, Zanzonico P, Johnson T (1993) Pharmacokineticmodeling. Med Phys 20: 515–528PubMedCrossRefGoogle Scholar
  140. Thomas SR, Maxon R, Kereiakes G (1976) In vivo quantitation of lesion activity using external counting methods. Med Phys 3: 325–335CrossRefGoogle Scholar
  141. Vessella RL, Alvarez V, Chiou R-K et al. (1987) Radio-immunoscintigraphy and radioimmunotherapy of renal cell carcinoma xenografts. Natl Cancer Inst Monogr 3: 159–167Google Scholar
  142. Vessella RL, Lange PH, Palme IIDF, Chiou RK, Elson MK, Wessels BW (1988) Radioiodinated monoclonal antibodies in the imaging and treatment of human renal cell carcinoma xenografts in nude mice. In: Targeted Diagnosis and Therapy, edited by J.D. Rodwell (Marcel Dekker, New York, NY, 1988), Vol. I, pp 245–282Google Scholar
  143. Vesselia RL (1991) Radioimmunoconjugates in renal cell carcinoma. In: Immunotherapy of Renal Cell Carcinoma, edited by F.M.J. Debruyne, R.M. Bukowski, J.E. Pontes, and P.H.M. de Mulder Springer Verlag, Heidelberg, pp 38–46CrossRefGoogle Scholar
  144. Volkert WA, Goeckeler WF, Ehrhardt GJ, Ketring AR (1991) Therapeutic radionuclides: production and decay property considerations. J Nucl Med 32: 174–185PubMedGoogle Scholar
  145. Wagner H (1968) Principles of nuclear medicine. W.B. Saunders, London, UKGoogle Scholar
  146. Washburn LC, Sun TTH, Lee Y-CC et al. (1991) Comparison of five bifunctional chelate techniques for 90-labeled monoclonal antibody CO 17–1 A. Nucl Med Biol 18: 313–321Google Scholar
  147. Watson EE, Stabin MG, Siegel JA (1993) MIRD formulation. Med Phys 20: 511–514PubMedCrossRefGoogle Scholar
  148. Weinstein JN, Van Osdol W (1992a) The macroscopic and microscopic pharmacology of monoclonal antibodies. Int J Immunopharmacol 14: 457–463PubMedCrossRefGoogle Scholar
  149. Weinstein JN, Van Osdol W (1992b) Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the “binding site barrier”. Cancer Res 52 (Suppl): 2747s–2751sPubMedGoogle Scholar
  150. Wessels BW (1990) Current status of animal radioimmunotherapy. Cancer Res (Suppl) 50: 970s–973sGoogle Scholar
  151. Wessels BW, Rogus RD (1984) Radionuclide selection and model absorbed dose calculations for radiolabeled tumor associated antibodies. Med Phys 11: 638–645PubMedCrossRefGoogle Scholar
  152. Wessels BW, Vessella RL, Palme DF, Berkopec JM, Smith GK, Bradley EW (1989) Radiobiological comparison of exter-nal beam irradiation and radioimmunotherapy in renal cell carcinoma xenografts. Int J Radiat Oncol Biol Phys 17: 1257–1263PubMedCrossRefGoogle Scholar
  153. Wessels BW, Yorke ED, Bradley EW (1990) Dosimetry of heterogeneous uptake of radiolabeled antibody for radio-immunotherapy. Front Radiat Ther Oncol 24: 104–108PubMedGoogle Scholar
  154. Wessels BW, Neacy WP, Yorke ED, Sands H (1991) External beam and radioimmunotherapy dosimetry comparison of colorectal xenografts. US Department of Energy, (DE-AC05–760R00033), 65–76, Oak Ridge,Google Scholar
  155. Tenn Williams JR, Dillehay LE (1989) Radiological characteristics of radiolabeled immunoglobulin therapy. Proceedings of the 1988 ACNP/SNM Joint Symposium on the Biology of Radionuclide Therapy. American College of Nuclear Physicians, Washington, DC, pp 262–269Google Scholar
  156. Williams LE, Duda RB, Profitt RT et al. (1988) Tumor uptake as a function of tumor mass: a mathematical model. J Nucl Med 29: 103–109PubMedGoogle Scholar
  157. Williams JA, Wessels BW, Wharam MD, Order SE, Wanek PM, Poggenburg JK, Klein JL (1990) Targeting of human glioma xenografts in vivo utilizing radiolabeled antibodies. Int J Radiat Oncol Biol Phys 18: 1367–1375PubMedCrossRefGoogle Scholar
  158. Woo DV, Li DR, Brady LW, Emrich J, Mattis J, Steplewski Z (1990) Auger electron damage induced by radioiodinated iodine-125 monoclonal antibodies. Front Radiat Ther Oncol 24: 47–63PubMedGoogle Scholar
  159. Yokoyama K, Carrasquillo JA, Chang AE et al. (1989) Differences in biodistribution of indium-Ill and iodine-131-labeled B72.3 monoclonal antibodies in patients with colorectal cancer. J Nucl Med 30: 320–327PubMedGoogle Scholar
  160. Yoneda S, Fujisawa M, Watanabe J, Okabe T, Takaku F, Homma T, Yoshida K (1988) Radioimmunotherapy of transplanted small cell lung cancer with 131I-labelled monoclonal antibody. Br J Cancer 58: 292–295PubMedCrossRefGoogle Scholar
  161. Yorke ED, Beaumier PL, Wessels BW, Fritzberg A, Morgan C (1991) Optimal antibody-radionuclide combinations for clinical radioimmunotherapy: a predictive model based on mouse pharmacokinetics. Nucl Med Biol 18: 827–835Google Scholar
  162. Yorke ED, Williams LE, Demidecki AJ, Heidorn DB, Roberson PL, Wessels BW (1993) Multicellular dosimetry for beta-emitting radionuclides: autoradiography, thermoluminescent dosimetry and three-dimensional dose calculations. Med Phys 20: 543–550PubMedCrossRefGoogle Scholar
  163. Zalcberg JR, Thompson CH, Lichtenstein M, McKenzie FC (1989) Tumor immunotherapy in the mouse with the use of 131I-labeled monoclonal antibodies. J Natl Cancer Inst 72: 697–704Google Scholar
  164. Zalutsky MR, Garg PK, Friedman HS, Bigner DD (1989) Labeling monoclonal antibodies and F (ab’) fragments with the alpha-particle-emitting nuclide astatine-211: preser-vation of immunoreactivity and in vivo localizing capacity. Proc Natl Acad Sci USA 86: 7149–7153PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Barry W. Wessels
    • 1
  • Donald J. Buchsbaum
    • 2
  1. 1.Department of Radiation OncologyGeorge Washington University Medical CenterWashingtonUSA
  2. 2.Department of Radiation OncologyUniversity of Alabama-BirminghamBirminghamUSA

Personalised recommendations