Stereotactic Brachytherapy Physics

  • Keith A. Weaver
Part of the Medical Radiology book series (MEDRAD)


The word “stereotactic” (or “stereotaxic”) is compounded from the Greek words “stereos,” meaning “solid” or “three-dimensional,” and “taxis,” meaning “arrangement” or “positioning.” Stereotactic brachytherapy refers to the accurate placement of radioactive sources with the aid of a special mechanical frame. Such frames allow a user to specify target points as precise three-dimensional (3-D) sets of coordinates, and to guide a probe along a variety of trajectories to hit a target with great accuracy. A high-resolution 3-D imaging technique, such as computed tomography (CT) or magnetic resonance imaging (MRI), is usually required for identifying the targets.


Target Volume Interstitial Brachytherapy Seed Position Line Source Model Template Guide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrath FG, Henderson SD, Simpson JR, Moran CJ, Marchosky JA (1986) Dosimetry of CT-guided volumetric Ir-192 brain implants. Int J Radiat Oncol Biol Phys 12: 359–363PubMedCrossRefGoogle Scholar
  2. Anderson L (1985) Physical optimization of afterloading techniques. Strahlentherapie 161: 264–269PubMedGoogle Scholar
  3. Anderson L, Harrington P, Osian A, Arbit E, Leibel S, Malkin M (1993) A versatile method for planning stereotactic brain implants. Med Phys 20: 1459–1464CrossRefGoogle Scholar
  4. Bauer-Kirpes B, Sturm V, Schlegel W, Lorenz WJ (1988) Computerized optimization of 125I implants in brain tumors. Int J Radiat Oncol Biol Phys 14: 1013–1023PubMedCrossRefGoogle Scholar
  5. Brown RA (1979) Stereotactic headframe for use with CT body scanners. Invest Radiol 14: 300–304PubMedCrossRefGoogle Scholar
  6. Brown RA, Roberts TS, Osborn AG (1980) Stereotactic frame and computer software for CT-directed neurosurgical localization. Invest Radiol 15:308–312PubMedCrossRefGoogle Scholar
  7. Coffey RJ, Friedman WA (1987) Interstitial brachytherapy of malignant brain tumors using computed tomography-guided stereotaxis and available imaging software: technical report. Neurosurgery 20: 4–7PubMedCrossRefGoogle Scholar
  8. Findlay PA, Wright DC, Rosenow U, Harrington FS, Miller RW (1985) 125I interstitial brachytherapy for primary malignant brain tumors: technical aspects of treatment planning and implantation methods. Int J Radiat Oncol Biol Phys 11: 2021–2026PubMedCrossRefGoogle Scholar
  9. Gutin PH, Phillips TL, Hosobuchi Y, et al. (1981) Permanent and removable implants for brachytherapy of brain tumors. Int J Radiat Oncol Biol Phys 7: 1371–1381PubMedCrossRefGoogle Scholar
  10. Gutin PH, Phillips TL, Wara WM, et al. (1984) Brachytherapy of recurrent malignant brain tumors with removable high-activity iodine-125 sources. J Neurosurg 60: 61–68PubMedCrossRefGoogle Scholar
  11. Heilbrun M, Roberts T, Apuzzo M, Wells T, Sabshin J (1983) Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system. J Neurosurg 59: 217–222PubMedCrossRefGoogle Scholar
  12. Interstitial Collaborative Working Group (1990) Interstitial brachytherapy: physical, biological and clinical considerations. Raven, New YorkGoogle Scholar
  13. Kelly P, Kall B, Goerss S (1984) Transposition of volumetric information derived from computed tomography scanning into stereotactic space. Surg Neurol 21: 465–471PubMedCrossRefGoogle Scholar
  14. Leibel SA, Gutin PH, Wara WM, et al. (1989) Survival and quality of life after interstitial implantation of removable high-activity iodine-125 sources for the treatment of patients with recurrent malignant gliomas. Int J Radiât Oncol Biol Phys 17:1129–1139PubMedCrossRefGoogle Scholar
  15. Leksell L, Jernberg B (1980) Stereotaxis and tomography: a technical note. Acta Neurochir (wien) 52: 1–7CrossRefGoogle Scholar
  16. Leksell L, Leksell D, Schwebel J (1985) Stereotaxis and nuclear magnetic resonance. J Neurol Neurosurg Psychiatry 48:14–18PubMedCrossRefGoogle Scholar
  17. Ling C, Schell M, Yorke E, Palos B, Kubiatowicz D (1985) Two-dimensional dose distribution of 125I seeds. Med Phys 12: 652–655PubMedCrossRefGoogle Scholar
  18. Maruyama Y, Chin HW, Young AB, Wang PC, Tibbs P, Beach JL, Goldstein S (1984) Implantation of brain tumors with Cf-252. Radiology 152: 177–181PubMedGoogle Scholar
  19. Moran C, Naidich T, Marchosky JA, Barbier J (1982) A simple stabilization device for intracranial aspiration procedures guided by computed tomography. Radiology 144: 183–184PubMedGoogle Scholar
  20. Mundinger F, Hoefer T (1974) Protracted long-term irradiation in inoperable midbrain tumors by stereotactic Curie therapy using iridium-192. Acta Neurochir Suppl (wien) 21: 93–100Google Scholar
  21. Mundinger F, Weigel K (1984) Long-term results of stereotactic interstitial curietherapy. Acta Neurochir Suppl (wien) 33: 367–371Google Scholar
  22. Mundinger F, Ostertag CB, Birg W, Weigel K (1980) Stereotactic treatment of brain lesions: biopsy, interstitial radiotherapy (iridium-192 and iodine-125) and drainage procedures. Appl Neurophysiol 43: 198–204PubMedGoogle Scholar
  23. Riechert T, Mundinger F (1955) Beschreibung und Anwendung eines Zielgerätes für stereotaktisches Hirnoperationen (II. Modell). Acta Neurochir Suppl (wien) 3: 308–337Google Scholar
  24. Rosenow U, Wojcicka J (1991) Clinical implementation of stereotaxic brain implant optimization. Med Phys 18: 266–272PubMedCrossRefGoogle Scholar
  25. Schell M, Ling C, Gromadzki Z, Working K (1987) Dose distributions of model 67021–125 seeds in water. Int J Radiat Oncol Biol Phys 13: 795–799PubMedCrossRefGoogle Scholar
  26. Siddon R, Barth N (1987) Stereotaxic localization of intracranial targets. Int J Radiat Oncol Biol Phys 13: 1241–1246PubMedCrossRefGoogle Scholar
  27. Sneed P, Stauffer P, Gutin P, et al. (1991) Interstitial irradiation and hyperthermia for the treatment of recurrent malignant brain tumors. Neurosurgery 28: 206PubMedCrossRefGoogle Scholar
  28. Sturm V, Pastyr O, Schlegel W, et al. (1983) Stereotactic computer tomography with a modified Riechert-Mundinger device as the basis for integrated stereotactic neuroradiological investigations. Acta Neurochir (wien) 68: 11–17CrossRefGoogle Scholar
  29. Thomason C, Higgins P (1989) Radial dose distribution of 192Ir and 125I seed sources. Med Phys 16: 254–257PubMedCrossRefGoogle Scholar
  30. Weaver KA, Smith V, Huang D, Barnett C, Schell MC, Ling CC (1989) Dose parameters of 125I and 192Ir seed sources. Med Phys 16: 636–643PubMedCrossRefGoogle Scholar
  31. Weaver KA, Smith V, Lewis JD, et al. (1990) A CT-based computerized treatment planning system for I-125 stereotactic brain implants. Int J Radiât Oncol Biol Phys 18: 445–454PubMedCrossRefGoogle Scholar
  32. Williamson J (1991) Comparison of measured and calculated dose rates in water near I-125 and Ir-192 seeds. Med Phys 18: 776–786PubMedCrossRefGoogle Scholar
  33. Williamson J, Quintero F (1988) Theoretical evaluation of dose distributions in water about models 6711 and 6702 125I seeds. Med Phys 15: 891–897PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Keith A. Weaver
    • 1
  1. 1.Department of Radiation Oncology, Long HospitalUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations