Advertisement

Recent Developments in Basic Brachytherapy Physics

  • Jeffrey F. Williamson
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Brachytherapy physics research has experienced a renaissance ofcreative and innovative developments over the last decade which have only begun to influence clinical practice. The purpose of this chapter is to review the major innovations in singlesource brachytherapy dosimetry introduced during the last 10 years. Among these developments are:
  1. 1.

    Development of new low-energy isotopes for brachytherapy, including 103Pd, 241Am, 143Sm, and 169Yb, with photon energies in the range of 23–100 keV

     
  2. 2.

    Introduction of new physical configurations of conventional isotopes (137Cs and 192Ir) in response to the proliferation of high- and low-dose-rate remote afterloading devices

     
  3. 3.

    Validation of brachytherapy dose-measurement techniques and acceptance of directly measured dose distributions for clinical treatment planning

     
  4. 4.

    Validation of Monte Carlo photon-transport simulation as a clinical dosimetry tool

     

Keywords

Dose Rate Dose Distribution 125I Seed Radiochromic Film Primary Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad M, Fontenla DP, Chiu-Tsao S-T, Chui CS, Reiff JE, Anderson LL (1992) Diode dosimetry of models 6711 and 6712 125I seeds in a water phantom. Med Phys 19: 391–399PubMedGoogle Scholar
  2. Alberti W, Divoux S, Pothmann B, Tabor P, Hermann K-P, Harder D (1993) Autoradiography for iodine-125 seeds. Int J Radiat Oncol Biol Phys 25: 881–884PubMedGoogle Scholar
  3. Anderson LL, Nath R, Weaver KA, et al. (Interstitial Collaborative Working Group) (1990) Interstitial brachytherapy, physical, biological, and clinical considerations. Raven, New YorkGoogle Scholar
  4. Berger MJ (1964) Energy deposition in water by photons from point isotropic sources. MIRD Pamphlet No. 2, J Nucl MedGoogle Scholar
  5. Boyer AL, Mok EC (1985) A photon dose distribution model employing convolution calculations. Med Phys 12: 169–177PubMedGoogle Scholar
  6. Boyer AL, Mok EC (1986a) Calculation of photon dose distribution in an inhomogeneous medium using convolutions. Med Phys 13: 503–509PubMedGoogle Scholar
  7. Boyer AL, Mok EC (1986b) Brachytherapy seed dose distribution calculation employing the fast Fourier transform. Med Phys 13: 525–529PubMedGoogle Scholar
  8. Brenner DJ, Hall EJ (1991) Fractionated high dose-rate versus low dose-rate regimens for intracavitary brachytherapy of the cervix. Br J Radiol 64: 133–141PubMedGoogle Scholar
  9. Burns GS, Raeside DE (1983) Monte Carlo estimates of specific absorbed fractions for an I-125 point source in water. Med Phys 10: 197–198PubMedGoogle Scholar
  10. Burns GS, Raeside DE (1987) Monte Carlo simulation of the dose distribution around 125I seeds. Med Phys 14: 420–424PubMedGoogle Scholar
  11. Burns GS, Raeside DE (1989) The accuracy of single-seed dose superposition for I-125 implants. Med Phys 16: 627–631PubMedGoogle Scholar
  12. Cerra F, Rodgers JE (1990) Dose distribution anisotropy of the Gamma Med IIi brachytherapy source. Endocurie Hypertherm Oncol 6: 71–80Google Scholar
  13. Chiu-Tsao S-T, Anderson LL (1991) Thermoluminescent dosimetry for 103Pd seeds (model 200) in solid water phantom. Med Phys 18: 449–452PubMedGoogle Scholar
  14. Chiu-Tsao S-T, O’Brien K, Sanna R, et al. (1986) Monte Carlo dosimetry for 12I and 60Co in eye plaque therapy. Med Phys 13: 678–682PubMedGoogle Scholar
  15. Chiu-Tsao S-T, Anderson LL, Stabile I (1988) TLD dosimetry for I-125 eye plaque (abstract). 1988 World Congress on Medical Physics and Biomedical Engineering, San Antonia, TXGoogle Scholar
  16. Chiu-Tsao S-T, Anderson LL, O’Brien K, Sanna R (1990) Dose rate determination for 125I seeds. Med Phys 17: 815–825PubMedGoogle Scholar
  17. Cygler J, Szanto J, Soubra M, Rogers DWO (1990) Effects of fold and silver backings on the dose rate around an 125I seed. Med Phys 17: 172–178PubMedGoogle Scholar
  18. Dale RG (1983) Some theoretical derivations relating to the tissue dosimetry of brachytherapy nuclides with particular reference to iodine-125. Med Phys 10: 176–183PubMedGoogle Scholar
  19. Diffey BL Klevenhagen SC (1975) An experimental and calculated dose distribution in water around CDC K-type caesium-137 sources. Phys Med Biol 20: 446–454PubMedGoogle Scholar
  20. Fairchild RG, Grill AB, Ettinger KV (1982) Radiation enhancement with iodinated deoxyuridine. Radiology 17: 407–415Google Scholar
  21. Fairchild RG, Kalef-Erza J, Packer S et al. (1987) Samarium145: a new brachytherapy source. Phys Med Biol, 32: 847–858PubMedGoogle Scholar
  22. Genest P, Hilaris BS, Nori D, et al. (1985) Iodine-125 as a substitute for Ir-192 in temporary interstitial implants. Endocurie Hypertherm Oncol 1: 223–228Google Scholar
  23. Goetsch SJ, Attix FH, Pearson DW, Thomadsen BR (1991) Calibration of 192Ir high-dose-rate afterloading systems. Med Phys 18: 462–467PubMedGoogle Scholar
  24. Goffinet DR, Ling CC, Mariscal M, Phillips TL (1987) 125 Iodine removable breast implants. Preliminary report. Endocurie Hypertherm Oncol 3: 121–125Google Scholar
  25. Hilaris BS, Holt GJ, St German J (1975) The use of iodine-125 for interstitial implants. US Deprtment of Health, Education and Welfare, DHEW/FO 476–8022, Rockville, MDGoogle Scholar
  26. Huang DYC, Schell MC, Weaver KA, Ling CC (1990) Dose distribution of 125I sources in different tissues. Med Phys 17: 826–832PubMedGoogle Scholar
  27. Hubbell JH (1982) Photon mass attenuation and energy absorption coefficients from 1 keV to 20 MeV. Int J Appl Radiat-Isot 33: 1269–1290Google Scholar
  28. Hubbell JH, ØØverbø I (1979) Relativistic atomic form factors and photon coherent scattering cross sections. J Phys Chem Ref Data 8: 69–105Google Scholar
  29. Hubbell JH, Veigele WJ, Briggs EA, Brown RT, Cramer DT, Howerton RJ (1975) Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J Phvs Chem Ref Data 4: 471–538Google Scholar
  30. Jenkins TM, Nelson WR, Rindi A (1988) Monte Carlo transport of electrons and photons. Plenum, New YorkGoogle Scholar
  31. Krishnaswamy V (1978) Dose distribution around an 125I seed source in tissue. Radiology 126: 489–491PubMedGoogle Scholar
  32. Kubo H (1985) Exposure contribution from Ti K x rays produced in the titanium capsule of the clinical 1–125 seed. Med Phys 12: 215–220PubMedGoogle Scholar
  33. Li Z., Williamson JF (1992) Volume-based geometric modeling for radiation transport calculations. Med Phys 19: 667–678PubMedGoogle Scholar
  34. Ling CC (1992) Permanent implants using Au-198, Pd-103, and I- 125: radiobiological considerations based on the linear quadratic model. Int J Radiat Oncol Biol Phys 23: 81–87PubMedGoogle Scholar
  35. Ling CC, Spiro IJ (1984) Measurement of dose distribution around fletcher-Suit-Delcos colpostats using a Therados radiation field analyzer (RFA-3). Med Phys 11: 326–330PubMedGoogle Scholar
  36. Ling CC, Yorke ED (1989) Interface dosimetry for 125I seeds. Med Phvs 16: 376–381Google Scholar
  37. Ling CC, Yorke ED, Spiro IJ, Kubiatowicz D, Bennett D (1983) Physical dosimetry of 125I seeds of a new design for interstitial implant. Int J Radiat Oncol Biol Phys 9: 1747–1752PubMedGoogle Scholar
  38. Ling CC, Schell MC, Yorke ED (1985) Two-dimensional dose distribution of 125I seeds. Med Phys 12: 652–655PubMedGoogle Scholar
  39. Ling CC, Yorke ED, Schell MC, Goffinet D, Phillips TL (1986) Physical advantages of using iodine-125 in temporary implants of the breast. Endocurie Hypertherm Oncol 2: 216–217Google Scholar
  40. Ling CC, Schell MC, Working KR, Jentzsch K, Harisiadis L, Carabell S, Rogers CC (1987) CT-assisted assessment of bladder and rectum dose in gynecological implants. Int J Radiat Oncol Biol Phys 13: 1577–1582PubMedGoogle Scholar
  41. Ling CC, Huang DY, Barnett C, et al. (1988) Improved dose distribution with customized 1–125 source loading in temporary interstitial implants. Int J Radiat Oncol Biol Phys 15: 769–774PubMedGoogle Scholar
  42. Loftus TP (1984) Exposure standardization of iodine-125 seeds used for brachytherapy. J Res Natl Bur Stand 89: 295–303Google Scholar
  43. Lulu BA, Bjarngard BE (1982) Batho’s correction factor combined with scatter summation. Med Phys 9: 372–377PubMedGoogle Scholar
  44. Luxton G, Astrahan MA, Findley DO, Petrovich Z (1990) Measurement of dose rate from exposure-calibrated 12I seeds. Int J Radiat Oncol Phys 18: 1199–1207Google Scholar
  45. Mackie TR, Scrimger JW, Battista JJ (1985) A convolution method for calculating dose for 15-MV x rays. Med Phys 12: 188–196PubMedGoogle Scholar
  46. Marchese MJ, Goldhagen PE, Zaider M, Brenner DJ, Hall EJ (1990) The relative biological effectiveness of photon radiation from encapsulated iodine-125, assessed in cells of human origin: I. Normal diploid fibroblasts. Int J Radiat Oncol Biol Phys 18: 1407–1413PubMedGoogle Scholar
  47. Mason DL, Battista JJ, Barnett J, Porter AT (1992) Ytterbium169: calculated physical properties of a new radiation source for brachytherapy. Med Phys 19: 695–704PubMedGoogle Scholar
  48. McLaughlin WL, Yun-Dong C, Soares CG, Miller A, Van Dyk G, Lewis DF (1991) Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams. Nucl Instrum Methods Phys Res A302: 165–176Google Scholar
  49. McMasters WH, Kerr N, Mallett JH, Hubbell JH (1969) Compilation of X-ray cross sections. Lawrence Livermore Laboratory, Livermore, CA, UCRL-50174, Sec. II, Rev. 1Google Scholar
  50. Meertens H, van der Laarse R (1985) Screens in ovoids of a Selectron cervix applicator. Radiother Oncol 3: 69–80PubMedGoogle Scholar
  51. Meigooni AS, Nath R (1992a) A comparison of radial dose functions for 103pd, 125I, 1455m, 241Am, 169Yb, 192lr, and 137Cs brachytherapy sources. Int J Radiat Oncol Biol Phys 22: 1125–1130PubMedGoogle Scholar
  52. Meigooni AS, Nath R (1992b) Tissue inhomogeneity correction for brachytherapy sources in a heterogeneous phantom with cylindrical symmetry. Med Phys 19: 401–407PubMedGoogle Scholar
  53. Meigooni AS, Meli JA, Nath R (1988a) Influence of the variation of energy spectra with depth in the dosimetry of 192Ir using LiF TLD. Phys Med Biol 33: 1159–1170PubMedGoogle Scholar
  54. Meigooni AS, Meli JA, Nath R (1988b) A comparison of solid phantoms with water for dosimetry of 12I brachytherapy sources. Med Phys 15: 695–701PubMedGoogle Scholar
  55. Meigooni AS, Sabnis S, Nath R (1990) Dosimetry of palladium-103 brachytherapy sources for permanent implants. Endocurie Hypertherm Oncol 6: 107–117Google Scholar
  56. Meigooni AS, Meli JA, Nath R (1992) Interseed effects on dose for 25I brachytherapy implants. Med Phys 19: 385–390PubMedGoogle Scholar
  57. Meisberger LL, Keller RJ, Shalek RJ (1968) The effective attenuation in water of the gamma rays of gold 198, iridium 192, cesium 137, radium 226, and cobalt 60. Radiology 90: 953–957PubMedGoogle Scholar
  58. Meli JA, Meigooni AS, Nath R (1988) On the choice of phantom material for the dosimetry of 192Ir sources. Int J Radiat Oncol Biol Phys 14: 587–594PubMedGoogle Scholar
  59. Metcalfe PE (1988) Experimental verification of cesium brachytherapy line source emission using a semiconductor detector. Med Phys 15: 702–706PubMedGoogle Scholar
  60. Miller WF, Lewis EE (1984) Computational methods of neutron transport, John Wiley, New YorkGoogle Scholar
  61. Mohan R, Ding IY, Martel MK, Anderson LL, Nori D (1985) Measurements of radiation dose distributions for shielded cervical applicators. Int J Radiat Oncol Biol Phys 11: 861–868PubMedGoogle Scholar
  62. Mohan R, Chui C, Lidofsky L (1986) Differential pencil beam dose computation model for photons. Med Phys 13: 64–73PubMedGoogle Scholar
  63. Morin LRM (1982) Molecular from factors and photon coherent scattering cross sections of water. J Phys Chem Ref Data 11: 1091–1098Google Scholar
  64. Mortin J, Yabuki H, Porter EA, Rockwell S, Nath R (1989) Relative biological effectiveness of 241Am relative to 1921r for continuous low-dose-rate irradiation of BA 1112 rat sarcomas. Radiat Res 119: 478–488Google Scholar
  65. Muench PJ, Meigooni AS, Nath R, McLaughlin WL (1991) Photon energy dependence of the sensitivity of radiochromic film and comparison with silver halide film and Li F TLDs used for brachytherapy dosimetry. Med Phvs 18: 769–775Google Scholar
  66. Muench PJ, Nath R (1992) Dose distributions produced by shielded applicators using 241Am for intracavitary irradiation of tumors in the vagina. Med Phys 19: 1299–1306PubMedGoogle Scholar
  67. Nath R, Gray L (1987) Dosimetry studies on prototype 241Am sources for brachytherapy. Int J Radiat Oncol Biol Phys 13: 897–905PubMedGoogle Scholar
  68. Nath R, Bongiorni P, Rossi PI, Rockwell S (1987a) Enhancement oflUdR radiosensitization by low energy photons. Int J Radiat Oncol Biol Phys 13: 1071–1079PubMedGoogle Scholar
  69. Nath R, Gray L, Park CH (1987b) Dose distributions around cylindrical 241Am sources for a clinical intracavitary applicator. Med Phys 14: 809–817PubMedGoogle Scholar
  70. Nath R, Anderson L, Jones D, Ling C, Loevinger R, Williamson JF, Hanson W (1987c) Specification of brachytherapy source strength. A report by Task Group 32 of the American Association of Physicists in Medicine. American Institute of Physics, New YorkGoogle Scholar
  71. Nath R, Peschel RE, Park CH, Fischer JJ (1988) Development of an 241Am applicator for intracavitary irradiation of gynecologic cancers. Int J Radiat Oncol Biol Phys 14: 969–978PubMedGoogle Scholar
  72. Nath R, Park CH, King CR, Muench P (1990a) A dose computation model for 241Am vaginal applicators including the source- to-source shielding effects. Med Phys 17: 833–842PubMedGoogle Scholar
  73. Nath R, Meigooni AS, Meli JA (1990b) Dosimetry on the transverse axes of 1251 and 192Ir interstitial brachytherapy sources. Med Phys 17: 1032–1040PubMedGoogle Scholar
  74. Nath R, Bongiorni P, Rossi PI, Rockwell S (1990c) Enhanced I UdR radiosensitization by 241 Am photons relative to 226Ra and 1251 photons at 0.72 Gy/hr. Int J Radiat Oncol Phys 18: 1377–1385Google Scholar
  75. Nath R, Bongiorni P, Rockwell S (1990d) The relative biological effectiveness of iodine-125 and americium-241 photons relative to radium-226 photons for continuous low dose rate irradiations at dose rates of 0.17 to 0.73 Gy/hr. Endocurie Hypertherm Oncol 6: 81–91Google Scholar
  76. Nath R, Bongiorni P, Rossi PI, Rockwell S (1990e) Iododeoxyuridine radiosensitization by low- and high-energy photons for brachytherapy dose rates. Radiat Res 124: 249–258PubMedGoogle Scholar
  77. Nath R, Meigooni AS, Melillo A (1992a) Some treatment planning considerations for 103Pd and 1251 permanent interstitial implants. Int J Radiat Oncol Biol Phys 22: 1131–1138PubMedGoogle Scholar
  78. Nath R, Rockwell S, King CR, Bongiorni P, Kelley M, Carter D (1992b) Development of a shielded 241 Am applicator for continuous low dose rate irradiation of rat rectum. Int J Radiat Oncol Biol Phys 23: 175–181PubMedGoogle Scholar
  79. Nath R, Anderson L, Luxton G, Weaver K, Williamson JF, Meigooni AS (1994) Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group 43 Med Phys (in press)Google Scholar
  80. Nath R, Meigooni AS, Muench P, Melillo A (1993) Anisotropy functions for 103Pd, 1251, and 192Ir interstitial brachytherapy sources. Med Phys 20: 1465–1473PubMedGoogle Scholar
  81. Perera H, Williamson JF, Monthofer SP, Binns WR, Klammen JC, Fuller GA, Wong JW (1992) Rapid two-dimensional dose measurement in brachytherapy using plastic scintillator sheet: linearity, signal-to-noise ratio and energy response characteristics. Int J Radiat Oncol Biol Phys 23: 1059–1069PubMedGoogle Scholar
  82. Perera H, Williamson JF, Li Z, Mishra V, Meigooni A (1994) Rapid two-dimensional dose measurement in brachytherapy using plastic scintillator sheet: linearity, signal-to-nois ratio and energy response characteristics of a new ytterbium-169 seed: an experimentally-validated Monte Carlo investigation. Int J Radiat Oncol Biol Phys 28: 953–971PubMedGoogle Scholar
  83. Peschel RE, Dowling S, Nath R, et al. (1988) An intracavitary vaginal applicator using americium-241. Endocurie Hypertherm Oncol 4: 91–96Google Scholar
  84. Piermattei A, Arcovito G, Bassi FA (1988) Experimental dosimetry of 125I new seeds (model 6711) for brachytherapy treatments. Physica Medica 1: 59–70Google Scholar
  85. Piermattei A, Arcovito G, Azario L, Rossi G, Soriani A, Montemaggi P (1992) Experimental dosimetry of 169Yb seeds prototype 6 for brachytherapy treatment. Physica Medica 8: 163–169Google Scholar
  86. Plechaty EF, Cullen DE, Howerton RJ (1978) Tables and graphs of photo-interaction cross sections from 0.1 keV to 100 MeV derived from the LLL evaluated-nuclear-data library, report no. UCRL-50400 (Lawrence Livermore Laboratory, Livermore, CA), vol 6, Rev 2Google Scholar
  87. Prasad SC, Bassano DA, Kubsada SS (1983) Buildup factors and dose around a 137Cs source in the presence of inhomogeneities. Med Phys 10: 705–708PubMedGoogle Scholar
  88. Pratt RH, Ron A, Tseng HK (1973) Atomic photoelectric effect above 10 keV. Rev Modern Phys 45: 273–324Google Scholar
  89. Ritz VH (1960) Standard free-air chamber for the measurement of low energy x-rays (20 to 100 kilovolts-constant-potential). J Res Natl Bur Stand 64C: 49–53Google Scholar
  90. Roesch WC (1958) Dose for nonelectronic equilibrium conditions. Radiat Res 9: 399–410PubMedGoogle Scholar
  91. Roussin RW (1978) Documentation for DLC7/HPICE Data Package, Oak Ridge National Lab, RSIC Data Library Collection, Radiation Shielding Information CenterGoogle Scholar
  92. Roussin RW, Knight JR, Hubbell JH, Howerton RJ (1983) Description of the DCL-99/Hugo package of photon interactions. Oak Ridge National Laboratory, RSIC Data Library Collection, Radiation Shielding Information Center, December, Report ORN/RSIC-46Google Scholar
  93. Saloman EB, Hubbell JH (1986) X-ray attenuation coefficients (total cross sections): Comparison of the experimental data base with the recommended values of Henke and theoretical values of Scofield for energies between 0.1 keV-100 keV. National Bureau of Standards, Report no. NBSIR 86–3431, Washington D.C.Google Scholar
  94. Saloman E-B, Hubbell JH (1987) Critical analysis of soft X-ray cross section data. Nucl Instr Meth Phys Res A255: 38–42Google Scholar
  95. Saloman EB, Hubbell JH, Scofield JH (1988) X-ray attenuation cross sections for energies 100 keV to 100 keV and elements Z=1 to Z=92. Atomic Data and Nuclear Data Tables 38:1–197Google Scholar
  96. Samuels M, Peschel RE, Papadoulos D et al. (1991) A feasibility study of intracavitary americium-241 for recurrent pelvic malignancies. Endocurie Hypertherm Oncol 7: 131–137Google Scholar
  97. Saylor WL, Dillard M (1976) Dosimetry of 137Cs sources with the fletcher-Suit gynecological applicator. Med Phys 3: 117–119PubMedGoogle Scholar
  98. Schell MC, Ling CC, Gromadzki ZC, Working KR (1987) Dose distributions of model 6702 1251 seeds in water. Int J Radiat Oncol Biol Phys 13: 795–799PubMedGoogle Scholar
  99. Schoeppel SL, Ellis JH, La Vigne ML, Martel MK, McShan DL, Fraass BA, Roberts JA (1993) 3-D treatment planning of intracavitary gynecologic implants: analysis of ten cases and implications for dose specification. Int J Radiat Onc Biol Phys 28: 277–283Google Scholar
  100. Scofield JH (1973) Theoretical photoionization cross sections from 1 to 1500 keV. Lawrence Livermore Laboratory, Livermore, CA, UCRL-5132Google Scholar
  101. Sievert RM (1921) Die Intensitätsverteilung der primarenStrählung in der Nähe medizinischer Radiumpräparate. Acta Radiol 1: 89–128Google Scholar
  102. Spiers FW (1949) The influence of absorption and electron range on dosage in irradiated bone. Br J Radiol 22: 251–533Google Scholar
  103. Trubey DK, Berger MJ, Hubbell JH (1989) Photon cross sections for ENDF/B-VI. Presented to. Advances in Nuclear Computation and Radiation Shielding and American Nuclear Society Topical Meeting, Santa Fe, New MexicoGoogle Scholar
  104. van der Laarse R, Meertens H (1984) An algorithm for ovoid shielding of a cervix applicator. In: Cunningham JR, Ragan D, Van Dyk D. (eds) The proceedings of the 8th international conference on the use of computers in radiation therapy, Toronto, Canada. IEEE Computer Society, Los Angeles, pp 365–369Google Scholar
  105. Weaver KA (1984) Response of LiF powder to 12I photons. Med Phys 11: 850–854PubMedGoogle Scholar
  106. Weaver KA (1986) The dosimetry of 1251 seed eye plaques. Med Phys 13: 78–83PubMedGoogle Scholar
  107. Weaver KA, Smith V, Huang D, Barnett C, Schell MC, Ling C (1989) Dose parameters of125I and 192Ir seed sources. Med Phys 16: 636–643PubMedGoogle Scholar
  108. Weeks KJ, Dennett JC (1990) Dose calculation and measurements for a CT-compatible version of the fletcher applicator. Int J Radiat Oncol Biol Phys 18: 1191–1198PubMedGoogle Scholar
  109. Williamson JF (1983) Monte Carlo evaluation of the Sievert integral for brachytherapy dosimetry. Phys Med Biol 28: 1021–1032.PubMedGoogle Scholar
  110. Williamson JF (1987) Monte Carlo evaluation of kerma at a point for photon transport problems. Med Phys 14: 567–576PubMedGoogle Scholar
  111. Williamson JF (1988a) Monte Carlo and analytic calculation of absorbed dose near 137Cs intracavitary sources. Int J Radiat Oncol Biol Phys 15: 227–237PubMedGoogle Scholar
  112. Williamson JF (1988b) Monte Carlo evaluation of specific dose constants in water for 125I seeds. Med Phys 15: 686–694PubMedGoogle Scholar
  113. Williamson JF (1988c) Monte Carlo simulation of photon transport phenomena. In: Morin RL (ed) Monte Carlo simulation in the radiological sciences. CRC Press, Boca Raton, Fl, pp 53–102Google Scholar
  114. Williamson JF (1989) Radiation transport calculation in treatment planning. Comput Med Imaging Graph 13: 251–268PubMedGoogle Scholar
  115. Williamson JF (1990) Dose calculations about shielded gynecological colpostats. Int J Radiat Oncol Biol Phys 19: 167–178PubMedGoogle Scholar
  116. Williamson JF (1991a) Comparison of measured and calculated dose rates in water near I-125 and Ir-192 seeds. Med Phys 18: 776–783PubMedGoogle Scholar
  117. Williamson JF (1991b) Practical quality assurance for low doserate brachytherapy. In: Starkshall G, Horton J (eds) Proceedings of an American Collage of Medical Physics Symposium. Medical Physics Publishing Company, Madison, WI. pp 139–182Google Scholar
  118. Williamson JF (1992) Dosimetry, treatment planning and quality assurance in gynecological intracavitary therapy. In: Purdy JA (ed) Advances in radiation oncology physics. Medical Physics Monograph 19, American Institute of Physics, New York, pp 258–288Google Scholar
  119. Williamson JF, Nath R (1991) Clinical implementation of AAPM Task Group 32 recommendations on brachytherapy source strength specification. Med Phys 18: 439–448PubMedGoogle Scholar
  120. Williamson JF, Quinterro F(1988) Theoretical evaluation of dose distributions in water about models 6711 and 6702 125I seeds. Med Phys 15: 891–897PubMedGoogle Scholar
  121. Williamson JF, Seminoff T (1987) Template-guided interstitial implants: Cs-137 reusable sources as a substitute for Ir-192. Radiology 165: 265–269PubMedGoogle Scholar
  122. Williamson JF, Deibel FC, Morin RL (1984) The significance of electron binding corrections in Monte Carlo photon transport calculations. Phys Med Biol 29: 1063–1073PubMedGoogle Scholar
  123. Williamson JF, Baker R, Li Z (1991) A convolution algorithm for brachytherapy dose computations in heterogeneous geometries. Med Phys 18: 1256–1265PubMedGoogle Scholar
  124. Williamson JF, Li Z, Wong JW (1993a) One-dimensional scatter- subtraction method for brachytherapy dose calcu-lation near bounded heterogeneities. Med Phys 20: 233–244PubMedGoogle Scholar
  125. Williamson JF, Perera H, Li Z, Lutz WR (1993b) Comparison of calculated and measured heterogeneity correction factors for 125I, 137Cs and 192Ir brachytherapy sources near localized heterogeneities. Med Phys 20: 209–222PubMedGoogle Scholar
  126. Wong JW, Purdy JA (1990) On methods of inhomogeneity corrections for photon transport. Med Phys 17: 807–814PubMedGoogle Scholar
  127. Yau MM, Shirhari SN (1983) A hierarchical data structure for multidimensional digital images. Communications of the ACM Journal 26: 504–515Google Scholar
  128. Yorke ED, Huang YCD, Schell MC, Wong R, Ling CC (1991) Clinical implications of I-125 dosimetry of bone and bone-soft tissue interfaces. Interfaces. Int J Radiat Oncol Biol Phys 21: 1613–1620Google Scholar
  129. Young MEJ, Batho HF (1964) Dose tables for linear radium sources calculated by an electronic computer. Br J Radiol 37: 38–44PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Jeffrey F. Williamson
    • 1
  1. 1.Mallinckrodt Institute of Radiology, Physics SectionRadiation Oncology CenterSt. LouisUSA

Personalised recommendations