External Beam Stereotactic Radiosurgery Physics

  • Michael C. Schell
  • Andrew Wu
Part of the Medical Radiology book series (MEDRAD)


Radiosurgery or stereotactic radiosurgery (SRS) is defined as the irradiation of intracranial lesions with a single fraction of focused small ionizing radiation beams, such as x-rays or gamma rays, eliminating the need for conventional invasive surgery. Stereotactic radiation therapy (SRT) is the treatment of intracranial lesions with the stereotactic apparatus and multiple fractions. A stereotactic frame allows for rigid immobilization of the patient and accurate localization of the target. The goal of radiosurgery is to locate and define the intracranial lesion and deliver single or multiple doses to the target with small x-ray beams without exceeding the radiation tolerance of normal tissues adjacent to the target volume. Radiosurgery was initiated in 1950 by Lars Leksell to treat dysfunctional intracranial abnormalities originally using orthovoltage x-rays in conjunction with a stereotactic frame of his own design (Leksell 1951).


Dose Distribution Radiat Oncol Biol Phys Gamma Knife Stereotactic Radiosurgery Normal Tissue Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Association of Physicists in Medicine (1984) Physical aspects of quality assurance in radiation therapy, American Institute of Physics, AAPM Report No. 13Google Scholar
  2. American Association of Physicists in Medicine (1993) Task Group 42 Report. Stereotactic external beam irradiationGoogle Scholar
  3. Arcovito G, Piermattei A, DAbramo G, Bassi FA (1985) Dose measurements and calculations of small radiation fields for 9–MV x-rays. Med Phys 12: 779–784PubMedCrossRefGoogle Scholar
  4. Barcia-Salorio JL, Roldan P, Hernandez G, Lopez GL (1985) Radiosurgical treatment of epilepsy. Appl Neurophysiol 48: 400–403PubMedGoogle Scholar
  5. Betti OO, Munari C, Rosler R (1989) Stereotactic radiosurgery with the linear accelerator: treatment of arteriovenous malformations. Neurosurgery 24: 311–321PubMedCrossRefGoogle Scholar
  6. Bjarngard BE, Tsai JS, Rice RK (1990) Doses on central axis of narrow 6-MV X-ray beams. Med Phys 17: 794–799PubMedCrossRefGoogle Scholar
  7. Bova FJ, Friedman WA (1991) Stereotactic angiography: an inadequate database for radiosurgery? Int J Radiat Oncol Biol Phys 20: 891–895PubMedCrossRefGoogle Scholar
  8. Chierego G, Marchetti M, Avanzo RC (1988) Dosimetric considerations on multiple arc stereotaxic radiotherapy. Radiother Oncol 12: 141–152PubMedCrossRefGoogle Scholar
  9. Colombo F, Benedetti A, Casentini L, Zanusso M, Pozza F (1987) Linear accelerator radiosurgery of arteriovenous malformations. Appl Neuronhvsiol 50: 257–261Google Scholar
  10. Curran BH, Starkschall G (1991) A program for quality assurance of dose planning computers. In: Starkschall G, Horton J (eds) Quality assurance in radiotherapy physics. Proceedings of an American College of Medical Physics Symposium. Medical Physics Publishing, Madison, WiscGoogle Scholar
  11. Dawson DJ, Schroeder NJ, Hoya JD (1986) Penumbral measurements in water for high-energy x-rays. Med Phys 13: 101–104PubMedCrossRefGoogle Scholar
  12. DeMagri CE, Smith V, Schell MC, Larson DA (1994) Interlock system for linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  13. De-Salles AA, Asfora WT, Abe M, Kjellberg RN (1987) Transposition of target information from the magnetic resonance and computed tomography scan images to conventional x-ray stereotactic space. Appl Neurophysiol 50: 23–32PubMedGoogle Scholar
  14. Dryzmala RE (1991) Quality assurance for linac-based stereotactic radiosurgery. In: Starksschall G, Horton J (eds) Quality assurance in radiotherapy physics. Proceedings of an American College of Medical Physics Symposium. Medical Physics Publishing, Madison, WiscGoogle Scholar
  15. Dutreix A, Bridier A (1985) Dosimetry of photons and electrons. In: Kase KR, Bjarngard BE, Attix FH (eds) The dosimetry of ionizing radiation, vol I. Academic Press, New YorkGoogle Scholar
  16. Ehricke H, Schad LR, Gademann G, Wowra B, Engenhart R, Lorenz WJ (1992) Use of MR angiography for stereotactic planning. J Comput Assist Tomogr 16: 35–40PubMedCrossRefGoogle Scholar
  17. Fabrikant JI, Lyman JT, Hosobuchi Y (1984) Stereotactic heavyion Bragg peak radiosurgery for intra-cranial vascular disorders: method for treatment of deep arteriovenous malformations. Br J Radiol 57: 479–490PubMedCrossRefGoogle Scholar
  18. Flickinger JC, Schell MC, Larson DA (1990) Estimation of complications for linear accelerator radiosurgery with the integrated logistic formula. Int J Radiat Oncol Biol Phys 19: 143–148PubMedCrossRefGoogle Scholar
  19. Friedman WA, Bova FJ (1989) The University of Florida radiosurgery system. Surg Neurol 32: 334–342PubMedCrossRefGoogle Scholar
  20. Galloway RL, Maciunas R, Latimer JW (1991) The accuracies of four stereotactic frame systems: an independent assessment. Biomed Instrum Technol 25: 457–460PubMedGoogle Scholar
  21. Haimson J (1963) Megavoltage x-ray dose distributions for millimetric field sizes. Radiology 80: 117–118PubMedGoogle Scholar
  22. Halperin EC, Bentel G, Heinz ER, Burger PC (1989) Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based in post mortem. Topographic anatomy with CT correlations. Int J Radiat Oncol BiolPhys 17: 1347–1350CrossRefGoogle Scholar
  23. Hartmann G, Schlegel W, Sturm V, Kober B, Pastyr O, Lorenz W (1985) Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 11: 1185–1192PubMedCrossRefGoogle Scholar
  24. Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30: 907–911PubMedCrossRefGoogle Scholar
  25. Houdek PV, VanBuren JM, Fayos JV (1983) Dosimetry of small radiation fields for 10-MV x rays. Med Phys 10: 333–336PubMedCrossRefGoogle Scholar
  26. Jani SK (1993) Handbook of dosimetry data for radiotherapy. CRC Press, Boca Raton, Fl.Google Scholar
  27. Kamerer DFB, Lunsford LD, Miller M (1988) Gamma knife: an alternative treatment for acoustic neurinomas. Ann Otol Rhinol LaryngolGoogle Scholar
  28. Kelly PJ, Daumas-Dupport C, Kispert DB, Rall BA, Scheithauer BW, Illig JJ (1987) Image-based stereotaxic biopsies in untreated intracranial glial neoplasms. J Neurosurg 66: 865–874PubMedCrossRefGoogle Scholar
  29. Kihlstrom L (1986) Stereotactic radiosurgery — epidemiologic considerations. Karolinska Hospital, StockholmGoogle Scholar
  30. Kjellberg RN (1986) Stereotactic Bragg peak proton beam radiosurgery for cerebral arteriovenous malformations. Ann Clin Res 47: 17–19Google Scholar
  31. Kooy HM, Nedzi LA, Loeffler JS et al. (1991) Treatment planning for stereotactic radiosurgery of intra-cranial lesions. Int J Radiat Oncol Biol Phys 21: 683–693PubMedCrossRefGoogle Scholar
  32. Kubsad SS, Mackie TR, Gehring MA, Misisco DJ, Paliwal BR, Mehta MP, Kinsella TJ (1990) Monte Carlo and convolution dosimetry for stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 19: 1027–1035PubMedCrossRefGoogle Scholar
  33. Lambert HE (1973) Systems safety analysis and fault tree analysis. Lawrence Livermore Laboratory, UCID-16238Google Scholar
  34. Larson DA, Gutin PH, Leibel SA, Phillips TL, Sneed PK, Wara WM (1990) Stereotaxic irradiation of brain tumors. Cancer 65: 792–799PubMedCrossRefGoogle Scholar
  35. Larsson B, Linden K, Sarby B (1974) Irradiation of small structures through the intact skull. Acta Radiol Ther Phys Biol 13: 512–534PubMedCrossRefGoogle Scholar
  36. Leksell DG (1987) Stereotactic radiosurgery. Present status and future trends. Neurol Res 9: 60–68PubMedGoogle Scholar
  37. Leksell LT (1951) The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102: 316–319PubMedGoogle Scholar
  38. Linq CC, Spiro IJ, Mitchell JM, Stickler R (1985) The variation of OER with dose rate. Int J Radiat Oncol Biol Phys 11:1367–1373CrossRefGoogle Scholar
  39. Lunsford LD, Flickinger J, Lindner G, Maitz A (1989) Stereotactic radiosurgery of the brain using the first United States 201 cobalt-60 source gamma knife. Neurosurgery 24: 151–159PubMedCrossRefGoogle Scholar
  40. Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14: 373–381PubMedCrossRefGoogle Scholar
  41. Marin-Grez M (1988) High dose percutaneous stereotactic irradiation of solitary brain metastases using a 15-MeV linear accelerator (abstract). Int J Radiat Oncol Biol Phys 15(S1): 231Google Scholar
  42. McGinley PH, Butker EK, Crocker JR, Landry JC (1990) A patient rotator for stereotactic radiosurgery. Phys Med Biol 35: 649–657PubMedCrossRefGoogle Scholar
  43. McLaughlin WL, Soares CG, Sayeg JA, McCullough EC, Kline RW, Wu A, Maitz A (1993) Chromic radiation detectors for gamma knife dose characterstics. Med Phys (to be published)Google Scholar
  44. Nedzi LA, Kooy H, Alexander E, Loeffer JS (1990) Dose volume consideration in field shaping for stereotactic radiosurgery using a linear accelerator. Radiosurgery update Pine Manor College, Chestnut Hill, Mass., June 1990Google Scholar
  45. Nedzi LA, Kooy H, Alexander E, Loeffler JS (1990) Variables associated with the development of complications from radiosurgery of intracranial tumors. Int J Radiat Oncol Biol Phys 19:149CrossRefGoogle Scholar
  46. Olivier A, de LA, Peters T, Pike B, Ethier R, Melanson D, Bertrand G, Podgorsak E (1987) Combined use of digital subtraction angiography and MRI for radiosurgery and stereoencephalography. Appl Neurophysiol 50: 92–99PubMedGoogle Scholar
  47. Olson LE, Arndt J, Fransson A, Nordell B (1992) Threedimensional dose mapping from gamma knife treatment using a dosimeter gel and MR-imaging. Radiother Oncol 24: 82–86CrossRefGoogle Scholar
  48. Patil AA (1989) Radiosurgery with the linear accelerator. Neurosurgery 25: 143PubMedCrossRefGoogle Scholar
  49. Peters TM, Clark J, Pike B, Drangova M, Olivier A (1987) Stereotactic surgical planning with magnetic resonance imaging, digital subtraction angiography and computed tomography. Appl Neurophysiol 50: 33–38PubMedGoogle Scholar
  50. Pike B, Peters TM, Podgorsak E, Pla C, Oliver A de la (1987) Stereotactic external beam calculations for radiosurgical treatment of brain lesions. Appl Neurophysiol 50: 269–273PubMedGoogle Scholar
  51. Podgorsak EB, Olivier A, Pla M, Lefebvre PY, Hazel J (1988) Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 14: 115–126PubMedCrossRefGoogle Scholar
  52. Podgorsak EB, Pike, GB, Olivier, A, Pla, M, Souhami L (1989) Radiosurgery with high energy photon beams: a comparison among techniques. Int J Radiat Oncol Biol Phys 16: 857–865PubMedCrossRefGoogle Scholar
  53. Polock P, Lunsford LD, Konziolka DS, Maitz AH, Flickinger JC (1993) Patient outcomes after stereotactic radiosurgery for “operable” arteriovenous malformationsGoogle Scholar
  54. Rabinowitz I, Broomberg J, Goitein M, McCarthy K, Leong J (1985) Accuracy of radiation field alignment in clinical practice. Int J Radiat Oncol Biol Phys 11: 1857–1867PubMedCrossRefGoogle Scholar
  55. Rand RW, Khonsary A, Brown WJ, Winter J, Snow HD (1987) Leksell stereotactic radiosurgery in the treatment of eye melanoma. Neurol Res 9: 142–146PubMedGoogle Scholar
  56. Rice RK, Hansen JL, Svensson GK, Sisson RL (1987) Measurements of dose distributions in small beams of 6-MV xrays. Phys Med Biol 32: 1087–1099PubMedCrossRefGoogle Scholar
  57. Saw CB, Ayyangar K, Suntharalingam N (1987) Coordinate transformation and calculation of the angular and depth parameters for a stereotactic system. Med Phys 14: 1042–1044PubMedCrossRefGoogle Scholar
  58. Schad LR, Ehricke H, Wowra B et al. (1992) Correction of spatial distortion in magnetic resonance angiography for radiosurgical treatment planning of cerebral arteriovenous malformations. Magn Reson Imaging 10: 609–621PubMedCrossRefGoogle Scholar
  59. Schell MC, Smith V, Larson DA, Flickinger J, Wu A (1991) Evaluation of radiosurgery techniques with cumulative dose volume histograms in linac-based stereotactic external beam irradiation. Int J Radiat Oncol Biol Phys 20: 1325–1330PubMedCrossRefGoogle Scholar
  60. Schell MC, Evans JH, Martel MK, Wu A (1993) A methodology for the analysis of stereotactic radiosurgery beam data. Med Phys 20: 932Google Scholar
  61. Schwade JG, Houdek PV, Landy HJ et al. (1990) Small-field stereotactic external beam radiation therapy of intracranial lesions: fractionated treatment with a fixed-halo immobilization device. Radiology 176: 563–565PubMedGoogle Scholar
  62. Serago CF, Lewin AA, Houdek PV et al. (1992) Stereotactic radiosurgery: dose-volume analysis of linear accelerator techniques. Med Phys 19: 181–185PubMedCrossRefGoogle Scholar
  63. Siddon RL, Barth NH (1987) Stereotaxic localization of intracranial targets. Int J Radiat Oncol Biol Phys 13: 1241–1246PubMedCrossRefGoogle Scholar
  64. Smith V, Larson D, Schell MC (1993) Role of tertiary collimation used for linac-based radiosurgery. Radiat Oncol Invest 1: 71–75CrossRefGoogle Scholar
  65. Sturm V, Kober B, Hover KH et al. (1987) Stereotactic percutaneous single dose irradiation of brain metastases with a linear accelerator. Int J Radiat Oncol Biol Phys 13: 279–282PubMedCrossRefGoogle Scholar
  66. Tsai J, Buck BA, Svensson GK, Alexander E, Cheng C, Mannarino EG, Loeffler JS (1991) Quality assurance in stereotactic radiosurgery using a standard linear accelerator. Int J Radiat Oncol Biol Phys 21: 737–748PubMedCrossRefGoogle Scholar
  67. Van Dyk J, Barnett RB, Cygler JE, Shragge PC (1993) Commissioning quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys 26: 261–273PubMedCrossRefGoogle Scholar
  68. Wallner KE, Galcich JH, Malkin MG, Arbit E, Krol G, Rosenblum MK (1989a) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16: 1405–1409PubMedCrossRefGoogle Scholar
  69. Wallner KE, Galcich JH, Malkin MG, Arbit E, Krol G, Rosenblum MK (1989b) Inability of computed tomography appearance of recurrent malignant astrocytoma to predict survival following reoperation. J Clin Oncol 7: 1492–1496PubMedGoogle Scholar
  70. Weaver KA, Smith V, Lewis J et al. (1990) A CT-based computerized treatment planning system for I-125 stereotactic brain implants. Int J Radiat Oncol Biol Phys 18: 445PubMedCrossRefGoogle Scholar
  71. Winston KR, Lutz W (1988) Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery 22: 454–464PubMedCrossRefGoogle Scholar
  72. Wu A, Maitz A, Kalend AM, Lunsford LD, Flickinger JC, Bloomer WD (1990) Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 18: 941–949PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Michael C. Schell
    • 1
  • Andrew Wu
    • 2
  1. 1.Department of Radiation OncologyUniversity of Rochester Cancer CenterRochesterUSA
  2. 2.Division of Radiation Oncology, Allegheny General HospitalMedical Center of PennsylvaniaPittsburghUSA

Personalised recommendations