Skip to main content

Food and Crop Spoilage on Storage

  • Chapter
Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

As all places where organisms develop, the food product can be regarded as an ecological resource. When fungi colonise such environments, spoilage of food and crops is the result. The interactions between spoilage of food and fungi have been described by Pitt and Hocking (1997) and Samson et al. (2001). Prior to spoilage the fungi can be present on or inside the crop in low numbers or as survival structures. Spoilage fungi are also introduced to an empty habitat when the food is treated by pasteurisation treatments. Food products include two main groups, namely the living crop and the processed food. Colonisation of food products, therefore, is very diverse. This chapter will evaluate different fungal-food relationships. At first, the relationship between the living crop and fungi will be illustrated. Then the association of fungi with different types of processed food will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler L, Gustafsson L (1980) Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of the yeast Debaryomyces hansenii. Arch Microbiol 124:123–130

    Article  CAS  Google Scholar 

  • Adler L, Blomberg A, Nilsson A (1985) Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 162:300–306

    PubMed  CAS  Google Scholar 

  • Barbosa-Cànovas GV, Pothakamury U, Palou E, Swanson B (1998) High hydrostatic pressure food processing. In: Barbosa-Cnovas GV, Pothakamury U, Palou E, Swanson B (eds) Nonthermal preservation of foods. Marcel Dekker, New York, pp 9–52

    Google Scholar 

  • Bayne HG, Michener HD (1979) Heat resistance of Byssochlamys ascospores. Appl Environ Microbiol 37:449–453

    PubMed  CAS  Google Scholar 

  • Berbee ML, Yoshimura A, Sugiyama J, Taylor JW (1995) Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia 87:210–222

    Article  CAS  Google Scholar 

  • Beuchat LR (1986) Extraordinary heat resistance of Talaromyces flavus and Neosartorya fischeri ascospores in fruit products. J Food Sci 51:1506–1510

    Article  Google Scholar 

  • Beuchat LR (1988a) Thermal tolerance of Talaromyces flavus ascospores as affected by growth medium and temperature, age and sugar content in the inactivation medium. Trans Br Mycol Soc 90:359–374

    Article  CAS  Google Scholar 

  • Beuchat LR (1988b) Influence of organic acids on heat resistance characteristics of Talaromyces flavus ascospores. Int J Food Microbiol 6:97–105

    Article  PubMed  CAS  Google Scholar 

  • Beuchat LR (1992) Survival of Neosartorya fischeri and Talaromyces flavus ascospores in fruit powders. Lett Appl Microbiol 14:238–240

    Article  Google Scholar 

  • Beuchat LR, Kuhn GD (1997) Thermal sensitivity of Neosartorya fischeri ascospores in regular and reduced-sugar grape jelly. J Food Protection 60: 1577–1579

    Google Scholar 

  • Börner H (1963) Untersuchungen über die Bildung antiphytotischer und antimicrobieller Substanzen durch Mikroorganism im Bodem und ihre mögliche Bedeutung für die Bodenmüdigkeit beim Apfels Pirus malus L. Phytopathol Z 49:1–28

    Article  Google Scholar 

  • Bröker U, Spicher G, Ahrens E (1987) Zur Frage der Hitzeresistenz der Erreger der Schimmelbildung bei Backwaren. 2. Mitteilung: Einfluß endogener Faktoren auf die Hitzeresistenz von Schimmelsporen. Getreide Mehl Brot 41:278–284

    Google Scholar 

  • Brownlee C, Jennings DH (1981) The content of soluble carbohydrates and their translocation in mycelium of Serpula lacrimans. Trans Br Mycol Soc 77:615–619

    Article  CAS  Google Scholar 

  • Butz P, Funtenberger S, Haberditzl T, Tausher B (1996) High pressure inactivation of Byssochlamys nivea ascospores and other heat resistant moulds. Lebensm Wiss Technol 29:404–410

    Article  CAS  Google Scholar 

  • Casella MLA, Matasci F, Schmidt-Lorenz W (1990) Influence of age, growth medium, and temperature on heat resistance of Byssochlamys nivea ascospores. Lebensm-Wiss Technol 23:404–411

    Google Scholar 

  • Cheng L, Moghraby J, Piper PW (1999) Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii. FEMS Microbiol Lett 170:89–95

    Article  PubMed  CAS  Google Scholar 

  • Clipson NJW, Jennings DH (1992) Dendryphiella salina and Debaryomyces hansenii: models for ecophysical adaptation to salinity by fungi that grow in the sea. Can J Bot 70:2097–2105

    Article  Google Scholar 

  • Clouston JG, Wills PA (1970) Kinetics of initiation of germination of Bacillus pumilus spores by hydrostatic pressure. J Bacteriol 103:140–143

    PubMed  CAS  Google Scholar 

  • Conner DE, Beuchat LR (1987a) Heat resistance of Neosartorya fischeri as affected by sporulation and heating medium. Int J Food Microbiol 4:303–312

    Article  Google Scholar 

  • Conner DE, Beuchat LR (1987b) Efficacy of media for promoting ascospore formation by Neosartorya fischeri, and the influence of age and culture temperature on heat resistance of ascospores. Food Microbiol 4:229–238

    Article  Google Scholar 

  • Conner DE, Beuchat LR, Chang CJ (1987) Age-related changes in ultrastructure and chemical composition associated with changes in heat resistance of Neosartorya fischeri ascospores. Trans Br Mycol Soc 89: 539–550

    Article  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  PubMed  CAS  Google Scholar 

  • D’Enfert C, Fontaine T (1997) Molecular characterisation of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Mol Microbiol 24:203–216

    Article  PubMed  Google Scholar 

  • De Koe W, Samson RA, Van Egmond HP, Gilbert J, Sabrino M (2001) Mycotoxins and phycotoxins, a perspective at the turn of the millennium. In: Proc 10th Int IUAPX Symp on Mycotoxins and Phycotoxins, Guaruja, De Koe Publishers, Wageningen, 574 pp

    Google Scholar 

  • DeVirgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219: 179–186

    Article  CAS  Google Scholar 

  • De Vries RP (2000) Accessory enzymes from Aspergillus involved in xylan and pectin degradation. PhD Thesis, Wageningen University, 192 pp

    Google Scholar 

  • De Vries RP, Visser J (2001) Enzymes from Aspergilli involved in the degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev in press

    Google Scholar 

  • Eckert JW, Ratnayake M (1994) Role of volatile compounds from wounded oranges in induction of germination of Penicillium digitatum conidia. Phytopathology 84:746–750

    Article  CAS  Google Scholar 

  • Elliot B, Haltiwanger RS, Futcher B (1996) Synergy between trehalose and Hsp104 for thermotolerance in Saccharomces cerevisiae. Genetics 144:923–933

    Google Scholar 

  • Enigl DC, King AD, Török T (1993) Talaromyces trachyspermis, a heat-resistant mold isolated from fruit juice. J Food Protection 56:1039–1042

    Google Scholar 

  • Feofilova EP (1992) Trehalose, stress and anabiosis. Mikrobiologiya 61:741–755

    CAS  Google Scholar 

  • Filtenborg O, Frisvad JC, Thrane U (1996) Moulds in food spoilage. Int J Food Microbiol 33:85–102

    Article  PubMed  CAS  Google Scholar 

  • Filtenborg O, Frisvad JC, Samson RA (2001) Specific association of fungi to foods and influence of physical environmental factors. In: Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) Introduction to foodand airborne fungi, 6th edn. Centraalbureau voor Schimmelcultures, Utrecht, pp 306–320

    Google Scholar 

  • Flaishman MA, Kolattukudy PE (1994) Timing of fungal invasion using host’s ripening hormones as a signal. Proc Natl Acad Sci USA 91:6579–6583

    Article  PubMed  CAS  Google Scholar 

  • Flannigan B, Samson RA, Miller JD (2001) Microorganisms in home and indoor work environments. Diversity, health impacts, investigation and control. Taylor and Francis, London

    Book  Google Scholar 

  • Frisvad JC, Filtenborg O (1988) Specific mycotoxin producing Penicillium and Aspergillus mycoflora of different foods, Proc Jpn Assoc Mycotoxicol Suppl 1, 163–166

    Google Scholar 

  • Frisvad JC, Filtenborg O (1993) Mycotoxin production by Penicillium and Aspergillus species associated with different foods and other substrates. In: K. Scudamore (ed) Occurrence and significance of mycotoxins. Central Science Laboratory, Slough, UK, pp 138–145

    Google Scholar 

  • Frisvad JC, Thrane U (2001) Mycotoxin production by common filamentous fungi. In: Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) Introduction to food- and airborne fungi, 6th edn. Centraalbureau voor Schimmelcultures Utrecht, pp 321–331

    Google Scholar 

  • Frisvad JC, Samson RA (1991) Filamentous fungi in foods and feeds: ecology, spoilage and mycotoxin production. In: Arora DK, Mukerji KG, Marth EH (eds) Handbook of applied mycology, vol 3. Foods and feeds. Marcel Dekker, New York, pp 31–68

    Google Scholar 

  • Gadd GM, Chalmers K, Reed RH (1987) The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol Lett 48:249–254

    Article  CAS  Google Scholar 

  • Gaxiola R, Corona M, Zinker S (1996) A halotolerant mutant of Saccharomyces cerevisiae. J Bacteriol 178: 2978–2981

    PubMed  CAS  Google Scholar 

  • Gélinas P, Fiset G, LeDuy A, Goulet J (1989) Effect of growth conditions and trehalose content on cryotolerance of baker’s yeast in frozen doughs. Appl Environ Microbiol 55:2453–2459

    PubMed  Google Scholar 

  • Gould GW, Sale JH (1970) Initiation of germination of bacterial spores by hydrostatic pressure. J Gen Microbiol 60:335–346

    Article  PubMed  CAS  Google Scholar 

  • Gravesen S, Frisvad JC, Samson RA (1994) Microfungi. Munksgaard, Copenhagen

    Google Scholar 

  • Hallsworth JE, Magan N (1994) Effects of KC1 concentrations on accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi. Lett Appl Microbiol 18:8–11

    Article  CAS  Google Scholar 

  • Hallsworth JE, Magan N (1996) Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 62:2435– 2442

    PubMed  CAS  Google Scholar 

  • Hosono K (2000) Effect of nystatin on the release of glycerol from salt-stressed cells of the salt-tolerant yeast Zygosaccharomyces rouxii. Arch Microbiol 173: 284–287

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K, Ikeda Y (1966) Trehalase in conidia of Aspergillus or Y zae . J Bacteriol 91:1883–1887

    PubMed  CAS  Google Scholar 

  • Hottiger T, Schmutz P, Wiemken A (1987) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169:5518–5522

    PubMed  CAS  Google Scholar 

  • Hottiger T, DeVirgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the stability of proteins in vivo. Eur J Biochem 219:187–193

    Article  PubMed  CAS  Google Scholar 

  • Iwaki T, Higashida Y, Tsuji T, Tamai Y, Watanabe Y (1998) Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae. Yeast 14:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH (1977) Why fruits rot, seeds mold and meat spoils. Am Nat 111:691–713

    Article  CAS  Google Scholar 

  • Jennings DH, Burke RM (1990) Compatible solutes — the mycological dimension and their role as physiological buffering agents. New Phytol 116:277–283

    Article  CAS  Google Scholar 

  • Katan T (1985) Heat activation of dormant ascospores of Talaromyces flavus. Trans Br Mycol Soc 84:748–750

    Article  Google Scholar 

  • Kavanagh J, Larchet N, Stuart M (1963) Occurrence of a heat-resistant species of Aspergillus in canned strawberries. Nature 198:1322

    Article  Google Scholar 

  • Kim J, Parvaneh A, Harding T, Hefner-Gravink A, Klionsky D (1996) Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications. Appl Environ Microbiol 62:1563–1569

    PubMed  CAS  Google Scholar 

  • Kim YK, Li D, Kolattukudy PA (1998) Induction of Ca2-calmodulin signalling by hard-surface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria. J Bacteriol 180:5144–5150

    PubMed  CAS  Google Scholar 

  • King AD, Halbrook U (1987) Ascospore heat resistance and control measures for Talaromyces flavus isolated from fruit juice concentrate. J Food Sci 52:1252–1254

    Article  Google Scholar 

  • King AD, Whitehand LC (1990) Alteration of Talaromyces flavus heat resistance by growth conditions and heating medium composition. J Food Sci 55:830–832

    Article  Google Scholar 

  • Kolattukudy PA, Rogers LM, Li D, Hwang CS, Flaishman MA (1995) Surface signalling in pathogenesis. PNAS 92:4080–4087

    Article  PubMed  CAS  Google Scholar 

  • Kotzekidou P (1997) Heat resistance of Byssochlamys nivea, Byssochlamys fulva and Neosartorya fischeri isolated from canned tomato paste. J Food Sci 62: 410–412

    Article  CAS  Google Scholar 

  • Luxo C, Fernanda Nobre M, Da Costa MS (1993) Intracellular polyol accumulation by yeast-like fungi of the genera Geotrichum and Endomyces in response to water stress (NaCI). Can J Microbiol 39:868–873

    Article  CAS  Google Scholar 

  • Membré JM, Kubaczka M, Chéne C (1999) Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Appl Environ Microbiol 65:4921–4925

    PubMed  Google Scholar 

  • Miller JD, Trendholm HL (1994) Mycotoxins in grain, compounds other than aflatoxin. Eagan Press, St Paul, MN

    Google Scholar 

  • Miraglia M, Van Egmond HG, Brera C, Gilbert J (1998) Mycotoxins and phycotoxins — developments in chemistry, toxicology and food safety. Alaken Press, Denver, CO

    Google Scholar 

  • Nakayama A, Yano Y, Kobayashi S, Ishikawa M, Sakai K (1996) Comparison of pressure resistances of spores of six Bacillus strains with their heat resistances. Appl Environ Microbiol 62:3897–3900

    PubMed  CAS  Google Scholar 

  • Nagtzaam MPM, Bollen GJ (1994) Long shelf life of Talaromyces flavus in coating material of pelleted seed. Eur J Plant Pathol 100:279–282

    Article  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  PubMed  CAS  Google Scholar 

  • Olliver M, Rendle T (1934) A new problem in fruit preservation. Studies on Byssochlamys fulva and its effects on tissues of processed fruit. J Soc Chem Ind 53: 166–172

    CAS  Google Scholar 

  • O’Rourke SM, Herskowitz I (1998) The Hogl MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12:2874–2886

    Article  PubMed  Google Scholar 

  • Palou E, Lopez-Malo A, Welti-Chanes J, Barbosa-Cànovas GV, Davidson PM, Swanson BG (1997) Effect of water activity on high hydrostatic pressure inhibition of Zygosaccharomyces baillii. Lett Appl Microbiol 24:417–420

    Google Scholar 

  • Palou E, Lopez-Malo A, Barbosa-Cànovas GV, Welti Chanes J, Davidson PM, Swanson BG (1998) Effect of oscillatory high hydrostatic pressure treatments on Byssochlamys nivea ascospores suspended in fruit juice concentrates. Lett Appl Microbiol 27:375–378

    Article  PubMed  CAS  Google Scholar 

  • Pitt JI, Hocking AD (1997) Fungi and food spoilage, 2nd edn. Blackie Academic and Professional, London

    Book  Google Scholar 

  • Podila GK, Rogers LM, Kolatokuddy PA (1993) Chemical signals from avocado wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol 103:267–272

    PubMed  CAS  Google Scholar 

  • Prista C, Almagro A, Loureira-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63: 4005–4009

    PubMed  CAS  Google Scholar 

  • Put HMC, Kruiswijk JT (1964) Disintegration and organoleptic deterioration of processed strawberries caused by the mould Byssochlamys nivea. J Appl Bacteriol 27:53–58

    Article  Google Scholar 

  • Put HMC, De Jong J (1980) The heat resistance of selected yeasts causing spoilage of canned soft drinks and fruit products. In: Skinner FA, Passmore SM, Davenport RR (eds) Biology and activities of yeasts. Soc Appl Bacteriol Symp Series No 9. Academic Press, London

    Google Scholar 

  • Rajashekhara E, Suresh ER, Ethiraj S (1998) Thermal death rate of ascospores of Neosartorya fischeri ATCC 200957 in the presence of organic acids and preservatives in fruit juices. J Food Prot 61:1358–1362

    PubMed  CAS  Google Scholar 

  • Raso J, Barbosa-Cànovas G, Swanson BG (1998) Sporulation temperature affects initiation of germination and inactivation by high hydrostatic pressure of Bacillus cereus. J Appl Microbiol 85:17–24

    Article  PubMed  CAS  Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. J Biol Chem 275:8290–8300

    Article  PubMed  CAS  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2001) Introduction to food- and airborne fungi. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • Schroeder HW, Boller RA (1971) The aflatoxin problem in the Southwest in 1969–70. In: Proc Joint Meeting US-Japanese Toxic Microorganisms Panel, Tokyo, Japan

    Google Scholar 

  • Scott VN, Bernard DT (1987) Heat resistance of Talaromyces flavus and Neosartorya fisheri isolated from commercial fruit juices. J Food Prot 50:18–20

    Google Scholar 

  • Scholte RPM, Samson RA, Dijksterhuis J (2001) Spoilage fungi in the industrial processing of food. In: Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) Introduction to food- and airborne fungi, 6th edn. Centraalbureau voor Schimmelcultures, Utrecht, pp 339–356

    Google Scholar 

  • Setlow P (1992) I will survive: protecting and repairing spore DNA. J Bacteriol 174:2737–2741

    PubMed  CAS  Google Scholar 

  • Shen B, Hohmann S, Jensen RG, Bohner HJ (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121:45–52

    Article  PubMed  CAS  Google Scholar 

  • Sinha KK, Bhatnagar D (1998) Mycotoxins in agriculture and food safety. Marcel Dekker, New York

    Google Scholar 

  • Simmons EG (1986) Alternaria themes and variations (22–26), Mycotaxon 25:287–308

    Google Scholar 

  • Simmons EG (1992) Alternaria taxonomy: current status, viewpoints, challenge. In: Chelkowski J, Visconti A (eds) Alternaria biology, plant diseases and metabolites. Elsevier, Amsterdam

    Google Scholar 

  • Simmons EG (1993) Alternaria themes and variations (63–72) Mycotaxon 48:91–107

    Google Scholar 

  • Simmons EG (1994) Alternaria themes and variations (106–111) Mycotaxon 50:409–427

    Google Scholar 

  • Simmons EG (1995) Alternaria themes and variations (112–144) Mycotaxon 55:55–163

    Google Scholar 

  • Simmons EG (1999a) Alternaria themes and variations (226–235). Classification of citrus pathogens. Mycotaxon 70:263–323

    Google Scholar 

  • Simmons EG (1999b) Alternaria themes and variations (236–243). Host specific toxin producers. Mycotaxon 70:325–369

    Google Scholar 

  • Simmons EG, Roberts RG (1993) Alternaria themes and variations (73). Mycotaxon 48:109–140

    Google Scholar 

  • Snowdon AL (1990) A colour atlas of post-harvest diseases and disorders of fruits and vegetables, vol 1. General introduction and fruits. Wolfe Scientific Ltd, London

    Google Scholar 

  • Smelt JPPM (1998) Recent advances in the microbiology of high pressure processing. Trends Food Sci Technol 9:152–158

    Article  CAS  Google Scholar 

  • Smid EJ, Hendriks L, Boerrigter HAM, Gorris LGM (1996) Surface disinfection of tomatoes using the natural plant compound trans-cinnamaldehyde. Postharvest Biol Technol 9:343–350

    Article  CAS  Google Scholar 

  • Smid EJ, Van Beek JAM, Gorris LGM (1993) Biological control of Penicillium hirsutum by antagonistic soil bacteria. In: Fokkema NJ, Köhl J, Elad Y (eds) Biological control of foliar and post-harvest diseases, vol 16. IOBC/WPRS Bulletin, Wageningen, The Netherlands, pp190–193

    Google Scholar 

  • Spicher G (1991) Kampf der Konidien. Brot Backwaren 7–8:236–242

    Google Scholar 

  • Splittstoesser DF, Splittstoesser CM (1977) Ascospores of Byssochlamys fulva compared with those of a heat resistant Aspergillus. J Food Sci 4:685–688

    Article  Google Scholar 

  • Splittstoesser DF, Lammers JM, Downing DL, Churey JJ (1989) Heat resistance of Eurotium herbariorum, a xerophilic mold. J Food Sci 54:683–685

    Article  CAS  Google Scholar 

  • Splittstoesser DF, Nielsen PV, Churey JJ (1993) Detection of viable ascospores of Neosartorya. J Food Prot 56:599–603

    Google Scholar 

  • Splittstoesser DF, King AD (1984) Enumeration of Byssochlamys and other heat resistant moulds. In: Speck ML (ed) Compendium of methods for the microbiological examination of foods, 2nd edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Steels H, James SA, Roberts IN, Stratford M (2000) Sorbic acid resistance: the inoculum effect. Yeast 16:1173– 1183

    Article  PubMed  CAS  Google Scholar 

  • Sussman S, Halvorson HO (1966) Spores, their dormancy and germination. Harper and Row, New York

    Google Scholar 

  • Teusink B, Walsh MC, Van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. TIBS 23:162–169

    PubMed  CAS  Google Scholar 

  • Thevelein JM, Van Asshe JA, Carlier AR, Heremans K (1979) Heat activation of Phycomyces blakesleeanus spores: thermodynamics and effect of alcohols, furfural, and high pressure. J Bacteriol 139: 478–485

    PubMed  CAS  Google Scholar 

  • Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? TIBS 20:3–10

    PubMed  CAS  Google Scholar 

  • Tournas V (1994) Heat-resistant fungi of importance to the food and beverage industry. Crit Rev Microbiol 20:243–263

    Article  PubMed  CAS  Google Scholar 

  • Van Dijck P, Colavizza D, Smet P, Thevelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cereviviae cells. Appl Environ Microbiol 61:109–115

    PubMed  Google Scholar 

  • Van der Spuy JE, Matthee FN, Crafford DJA (1975) The heat resistance of moulds Penicillium vermiculatum Dangeard and Penicillium brefeldianum Dodge in apple juice. Phytophylactica 7:105–108

    Google Scholar 

  • Varga J, Kevei F, Hamari Z, Tóth B, Téren J, Croft JH, Kozakiewicz Z (2000) Genotypic and phenotypic variability among black Aspergilli. In: Samson, RA, Pitt JI (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Publishers, Amsterdam, pp 397–411

    Google Scholar 

  • Watanabe Y, Yamaguchi M, Sanemitsu Y, Tamai Y (1991) Characterisation of plasma membrane protonATPase from salt-tolerant yeast Zygosaccharomyces rouxii cells. Yeast 7:599–606

    Article  CAS  Google Scholar 

  • Watanabe Y, Miwa S, Tamai Y (1995) Characterization of Na+/H(+)-antiporter gene closely relate salt-tolerance of yeast Zygosaccaromyces rouxii. Yeast 11:829–838

    Article  PubMed  CAS  Google Scholar 

  • Watson DH (1998) Natural toxicants in food. Sheffield Academic Press, Sheffield

    Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 68:209–217

    Article  Google Scholar 

  • Wildman JD, Clark PB (1947) Some examples of the occurrence of machinery slime in caning factories. J Ass Off Anal Chem 30:582–585

    CAS  Google Scholar 

  • Wolschek MF, Kubicek CP (1997) The filamentous fungus Aspergillus niger contains two “differentially regulated” trehalose-6-phosphate synthase-encoding genes, tpsA and tpsB. J Biol Chem 272:2729–2735

    Article  PubMed  CAS  Google Scholar 

  • Wuytack EY, Boven S, Michiels CW (1998) Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Appl Environ Microbiol 64:3220–3224

    PubMed  CAS  Google Scholar 

  • Wuytack EY, Soons J, Poschet F, Michiels CW (2000) Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Appl Environ Microbiol 66:257–261

    Article  PubMed  CAS  Google Scholar 

  • Zook CD, Parish ME, Braddock RJ, Balaban MO (1999) High pressure inactivation kinetics of Saccharomyces cerevisiae ascospores in orange and apple juices. J Food Sci 64:533–535

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dijksterhuis, J., Samson, R.A. (2002). Food and Crop Spoilage on Storage. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03059-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03059-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07650-3

  • Online ISBN: 978-3-662-03059-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics