Skip to main content

On Information Contained in the Erosion Curve

  • Conference paper

Part of the NATO ASI Series book series (NATO ASI F,volume 126)

Abstract

An erosion curve can be associated with any binary planar shape. This curve is the function which maps a given radius to the area of the shape eroded by a sphere with this radius. Note the analogy with the approach whereby a shape is quantified by granulometry. Under some regularity conditions the erosion curve of a given shape can be expressed as an integral of the quench function along the skeleton of this shape. This paper describes the relationship between sets with the same erosion curve. It is shown that this curve is not affected if the arcs of the skeleton are bent: the erosion curve quantifies “soft” shapes. In the generic case, there are five possible cases of behaviour of the second derivative of the erosion curve: each case corresponds to a different behaviour of the skeleton and the associated quench function. Finally, it is shown how to reconstruct the family of shapes with a given erosion curve.

Keywords

  • mathematical morphology
  • erosion curve
  • granulometry
  • skeleton
  • quench function
  • shape index
  • isoperimetrical deficiency index
  • elongation index
  • concavity index
  • stretching index
  • spectral function.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-03039-4_12
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   349.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-03039-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   499.00
Price excludes VAT (USA)
Hardcover Book
USD   449.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubin J-P., Frankowska, H. (1990). Set-Valued Analysis, Birkhauser, Boston.

    Google Scholar 

  2. Calabi, L., Riley, J.A. (1967). The skeletons of stable plane sets, Technical Report AF 19 ( 628–5711 ), Parke Math. Lab. Inc., Massachusetts.

    Google Scholar 

  3. Coster, M., Chermant, J.L. (1985). Précis d’Analyse d’Images, CNRS Ed., Paris.

    Google Scholar 

  4. Dieudonné, J. (1969). Eléments d’Analyse, volume I, Gauthier-Villars, Paris.

    Google Scholar 

  5. Lantuéjoul, Ch. (1978). La squelettisation et son application aux mesures topologiques des mosaiques polycristallines, Thèse Ecole des Mines de Paris.

    Google Scholar 

  6. Lantuéjoul, Ch., Maisonneuve, F. (1984). Geodesic methods in quantitative image analysis, Pattern Recognition, 17, pp. 177–187.

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Matheron, G. (1975). Random Sets and Integral Geometry, John Wiley and Sons, New York.

    MATH  Google Scholar 

  8. Matheron, G. (1977). La formule de Steiner pour les érosions, Technical Report 496, Centre de Géostatistique, Ecole des Mines de Paris.

    Google Scholar 

  9. Matheron, G. (1978). The infinitesimal erosions. In: Miles, R.E., Serra, J. (eds.), Lecture Notes in Biomathematics. 23, Geometrical Probability and Biological Structures: Buffon’s 200th Anniversary, Springer Verlag, Berlin.

    Google Scholar 

  10. Matheron, G. (1978). Quelques propriétés topologiques du squelette, Technical Report 560, Centre de Géostatistique, Ecole des Mines de Paris.

    Google Scholar 

  11. Matheron, G. (1988). Examples of topological properties of skeletons. In: Serra, J. (ed.), Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances, Academic Press, London.

    Google Scholar 

  12. Matheron, G. (1988). On the negligibility of the skeleton and the absolute continuity of erosions. In: Serra, J. (ed.), Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances, Academic Press, London.

    Google Scholar 

  13. Mattioli, J. (1991). Squelette, érosion et fonction spectrale par érosion d’une forme binaire planaire, Technical Report ASRF-91–8, Thomson-CSF, L.C.R., Orsay.

    Google Scholar 

  14. Mattioli, J. (1992). Etude de la fonction: r - Vl n l (X e rB) pour X C 1R’ compact simplement connexe, Technical Report ASRF-92–3, Thomson-CSF, L.C.R., Orsay.

    Google Scholar 

  15. Mattioli, J., Schmitt, M. (1993). Inverse problems for granulometries by erosion, Journal of Mathematical Imaging and Vision, to appear.

    Google Scholar 

  16. Mattioli, J., Schmitt, M., Pernot, E., Vallet, F. (1991). Shape discrimination based on mathematical morphology and neural networks. In: Proc. Int. Conf. on Artificial Neural Networks, Helsinki, pp. 112–117.

    Google Scholar 

  17. Riley, J. (1965). Plane graphs and their skeletons, Technical Report 60429, Park Math. Lab. Inc., Massachusetts.

    Google Scholar 

  18. Riley, J., Calabi, L. (1964). Certain properties of circles inscribed in simple closed curves, Technical Report 59281, Park Math. Lab. Inc., Massachusetts.

    Google Scholar 

  19. Rudin, W. (1966). Real and Complex Analysis, Mc Graw-Hill, New York.

    MATH  Google Scholar 

  20. Santalo, L.A. (1976). Integral Geometry and Geometric Probability, Addison Wesley, London.

    MATH  Google Scholar 

  21. Schmitt, M. (1989). Des algorithmes morphologiques à l’intelligence artificielle. Thèse Ecole des Mines de Paris.

    Google Scholar 

  22. Schmitt, M. (1990). Connexité du squelette d’un compact convexe. Technical Report ASRF-90, Thomson-CSF, L.C.R., Orsay.

    Google Scholar 

  23. Schmitt, M. (1991). On two inverse problems in mathematical morphology. In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing. Marcel Dekker. Inc., New York.

    Google Scholar 

  24. Schmitt, M., Mattioli, J. (1991). Shape recognition combining mathematical morphology and neural networks. In: SPIE: Application of Artificial Neural Network, Orlando.

    Google Scholar 

  25. Schmitt, M., Vincent, L. (1993). Morphological Image Analysis: A Practical and Algorithmic Handbook, Cambridge University Press, to appear.

    Google Scholar 

  26. Serra, J. (1982). Image Analysis and Mathematical Morphology, Academic Press, London.

    MATH  Google Scholar 

  27. Stoyan, D., Kendall, W.S., Mecke, J. (1987). Stochastic Geometry and Its Applications, John Wiley and Sons, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mattioli, J., Schmitt, M. (1994). On Information Contained in the Erosion Curve. In: O, YL., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds) Shape in Picture. NATO ASI Series, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03039-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03039-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08188-0

  • Online ISBN: 978-3-662-03039-4

  • eBook Packages: Springer Book Archive