Geometry II pp 1-138 | Cite as

Geometry of Spaces of Constant Curvature

  • D. V. Alekseevskij
  • E. B. Vinberg
  • A. S. Solodovnikov
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 29)


Spaces of constant curvature, i.e. Euclidean space, the sphere, and Lobachevskij space, occupy a special place in geometry. They are most accessible to our geometric intuition, making it possible to develop elementary geometry in a way very similar to that used to create the geometry we learned at school. However, since its basic notions can be interpreted in different ways, this geometry can be applied to objects other than the conventional physical space, the original source of our geometric intuition.


Riemannian Manifold Dihedral Angle Homogeneous Space Constant Curvature Vector Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleksandrov, A.D. (1950): Convex Polyhedra. Gostekhizdat, Moscow. German transi.: Akademie Verlag, Berlin 1958, Zb1. 41, 509Google Scholar
  2. Alekseevskij, D.V. (1973): S“ and En are the only Riemannian spaces admitting an essentially conformal transformation. Usp. Mat. Nauk 28, No.5, 225–226 (Russian), Zb1. 284. 53035Google Scholar
  3. Alekseevskij, D.V. (1975): Homogeneous Riemannian spaces of negative curvature. Mat. Sb., Nov. Ser. 96, 93–117. English transl.: Math. USSR, Sb. 25 (1975), 87109 (1976)Google Scholar
  4. Allendoerfer, C.B., Weil A. (1943): The Gauss-Bonnet theorem for Riemannian polyhedra. Trans. Am. Math. Soc. 53, 101–129, Zb1. 60, 381Google Scholar
  5. Andreev, E.M. (1970a): On convex polyhedra in Lobachevsky spaces. Mat. Sb., Nov. Ser 81(123), 445–478. English transi.: Math. USSR, Sb. 10, 413–440 (1970), Zb1. 194, 234Google Scholar
  6. Andreev, E.M. (1970b): On convex polyhedra of finite volume in Lobachevsky spaces. Mat. Sb., Nov. Ser. 83(125), 256–260. English transl.: Math. USSR, Sb. 12, 255–259 (1971), Zb1. 203, 549Google Scholar
  7. Andreev, E.M. (1970c): Intersection of plane boundaries of acute-angled polyhedra. Mat. Zametki 8, 521–527. English transi.: Math. Notes 8, 761–764 (1971), Zb1. 209, 265Google Scholar
  8. Aomoto, K. (1977): Analytic structure of Schläfli function. Nagoya Math.J. 68, 1–16, Zb1. 382. 33010Google Scholar
  9. Beardon, A.F. (1983): The Geometry of Discrete Groups. Springer, New York Berlin Heidelberg, Zb1. 528. 30001Google Scholar
  10. Berger, M. (1978): Géométrie, vols. 1–5. CEDIC/Fernand Nathan, Paris, Zb1.382. 51011, Zb1.382.51012, Zb1.423,51001, Zb1.423.51002, Zb1. 423. 51003Google Scholar
  11. Böhm, J., Hertel, E. (1981): Polyedergeometrie in n-dimensionalen Räumen konstanter Krümmung. Birkhäuser, BaselzbMATHGoogle Scholar
  12. Borisenko, A.A. (1974): On complete surfaces in spaces of constant curvature. Ukr. Geom. Sb. 15, 8–15 (Russian), Zb1. 312, 53042Google Scholar
  13. Borisenko, A.A. (1981): On surfaces of non-positive exterior curvature in spaces of constant curvature. Mat. Sb. 114 (156), 339–354. English transi.: Math. USSR, Sb. 42, 297–310 (1982), Zb1. 473. 53049Google Scholar
  14. Bourbaki, N. (1969): Groupes et algèbres de Lie. Chap. 4–6. Hermann, Paris, Zb1. 186, 330Google Scholar
  15. Busemann, H., Kelly P.J (1953): Projective Geometry and Projective Metrics. Academic Press, New York, Zb1. 52, 373Google Scholar
  16. Cartan, E. (1928): Leçons sur la géometrie des espaces de Riemann. Gauthier-Villars, Paris, Jbuch 54, 755Google Scholar
  17. Cheeger, J., Ebin, D.G. (1975): Comparison Theorems in Riemannian Geometry, North-Holland, AmsterdamzbMATHGoogle Scholar
  18. Chern, S. (1944): A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. Math., II. Ser, 45, 747–752, Zb1. 60, 381Google Scholar
  19. Coxeter, H.S.M. (1934): Discrete groups generated by reflections. Ann. Math., II. Ser. 35, 588–621, Zb1. 10, 11Google Scholar
  20. Coxeter, H.S.M. (1935): The functions of Schläfli and Lobatchevsky. Q. J. Math., Oxf., Ser 6, 13–29, Zb1. 11, 170Google Scholar
  21. Coxeter, H.S.M. (1957): Non-Euclidean Geometry, 3rd edition. University of Toronto Press, Toronto, Zb1.60,328Google Scholar
  22. Dubrovin, B.A., Novikov, S.P, Fomenko, A.T. (1979): Modern Geometry. Nauka, Moscow. English transl.: Springer, New York Berlin Heidelberg 1984, Zb1.433. 53001Google Scholar
  23. Efimov, N.V. (1978): Higher Geometry. Nauka, Moscow. English transi.: Mir, Moscow 1990, Zb1. 457. 51001Google Scholar
  24. Fenchel, W. (1989): Elementary Geometry in Hyperbolic Spaces. Walter de Gruyter, Berlin New YorkCrossRefGoogle Scholar
  25. Gantmakher, F.R. (1967): Theory of Matrices, 2nd. ed. Nauka, Moscow. French transi.: Dunod, Paris 1966, Zb1.50,248; Zb1.145,36Google Scholar
  26. Gorbatsevich, V.V., Onishchik, A.L. (1988): Lie groups of transformations. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 20, 103–240. English transi. in: Encycl. Math. Sci. 20. Springer, Berlin Heidelberg New York Tokyo (in preparation), Zb1.65622003Google Scholar
  27. Gromoll, D., Klingenberg, W., Meyer, W. (1968): Riemannsche Geometrie im Grossen. Springer, Berlin Heidelberg New York, Zb1. 155, 307Google Scholar
  28. Günther, P. (1960): Einige Sätze über das Volumenelement eines Riemannschen Raumes. Publ. Math., Debrecen 7, 78–93, Zb1. 97, 373Google Scholar
  29. Haagerup, U., Munkholm, H.D. (1981): Simplices of maximal volume in hyperbolic n-space. Acta Math. 147, 1–11, Zb1. 493. 51016Google Scholar
  30. Hodgson, C.D., Rivin, I., Smith, W.D. (1992): A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere. Bull. Am. Math. Soc. 27, 246–251zbMATHCrossRefMathSciNetGoogle Scholar
  31. Kagan, V.F. (1949): Foundations of Geometry, part 1. Gostekhizdat, Moscow Leningrad (Russian), Zb1. 49, 380Google Scholar
  32. Kagan, V.F. (1956): Foundations of Geometry, part 2. Gostekhizdat, Moscow Leningrad (Russian), Zb1. 49, 380Google Scholar
  33. Karpelevich, F.I. (1953): Surfaces of transitivity of a semi-simple subgroup of the group of motions of a symmetric space. Dokl. Akad. Nauk SSSR 93, 401–404 (Russian), Zb1. 52, 389Google Scholar
  34. Kellerhals, R. (1989): On the volume of hyperbolic polyhedra. Math. Ann. 285, 541–569, Zb1. 664. 51012Google Scholar
  35. Kellerhals, R. (1991): On the volumes of hyperbolic 5-orthoschemes and the trilogarithm. Preprint. Max-Planck-Institut für Mathematik. BonnGoogle Scholar
  36. Klein, F. (1928): Vorlesungen über Nicht-Euklidische Geometrie. Verlag von J.Springer, Berlin,Jbuch 54, 593Google Scholar
  37. Kobayashi, Sh., Nomizu, K. (1963): Foundations of Differential Geometry. Vol.l. Interscience Publishers, New York London Sydney, Zb1. 119, 375Google Scholar
  38. Kobayashi, Sh., Nomizu, K. (1969): Foundations of Differential Geometry. Vol.2. Interscience Publishers, New York London Sydney, Zb1. 175, 485Google Scholar
  39. Kuiper, N.H. (1949): On conformally flat spaces in the large. Ann. Math., II. Ser. 50, 916–924, Zb1. 41, 93Google Scholar
  40. Lobachevskij, N.I. (1949a): Imaginary Geometry. Complete Works. Vol.l. Moscow Leningrad, 16–70 (Russian)Google Scholar
  41. Lobachevskij, N.I. (1949b): Applications of Imaginary Geometry to Certain Integrals. Complete Works. Vol.3. Moscow Leningrad, 181–294 (Russian)Google Scholar
  42. Maier, W. (1954): Inhaltsmessung im R3 fester Krümmung. Ein Beitrag zur imaginären Geometrie. Arch. Math. 5, 266–273, Zb1. 55, 381Google Scholar
  43. Milnor, J. (1982): Hyperbolic geometry: the first 150 years. Bull. Am. Math. Soc., New Ser. 6, 9–24, Zb1. 486. 01006Google Scholar
  44. Rashevskij, P.K. (1967): Riemannian Geometry and Tensor Calculus, 2nd ed. Nauka, Moscow. German transl.: VEB Deutscher Verlag der Wissenschaften, Berlin 1959, Zb1.52,388, Zb1.92,392, Zb1.152,390Google Scholar
  45. Rivin, I. (1992): Some applications of Lobachevsky’s volume formula. Preprint. NECGoogle Scholar
  46. Research Institute and Mathematics Department, Princeton University Rozenfel’d, B.A. (1966): Multi-Dimensional Spaces. Nauka, Moscow (Russian), Zb1. 143, 438Google Scholar
  47. Rozenfel’d, B.A. (1969): Non-Euclidean Spaces. Nauka, Moscow (Russian), Zb1. 176, 189Google Scholar
  48. Schläfli, L. (1858): On the multiple integral f f… f dx dy… dz whose limits are pi = a l + biy +… + hiz @ 0, p2 @ 0,…,p„ 0 and x2 + y2 +… + z2 * 1. Q. J. Math. 2, 269–300Google Scholar
  49. Schläfli, L. (1860): On the multiple integral f f… f dx dy… dz whose limits are pi = al + biy +… + hlz @ 0, p2 0,…,pß 0 and x2 + y2 +… + z2 * 1. Q. J. Math. 3, 54–68; 97–108Google Scholar
  50. Shabat, B.V. (1985): Introduction to Complex Analysis, Vol. 1–2. Nauka, Moscow. French transl.: Mir, Moscow 1990, Zb1.574.30001, Zb1. 578. 32001Google Scholar
  51. Shirokov, P.A. (1983): A Short Outline of the Foundations of Lobachevskij Geometry, 2nd ed. Nauka, Moscow. English transl.: P. Nordhoff Ltd., Groningen 1964, Zb1.68,142Google Scholar
  52. Solodovnikov, A.S. (1969): The group of projective transformations in a complete analytic Riemannian space. Dokl. Akad. Nauk SSSR 186, 1262–1265. English transl.: Sov. Math., Dokl. 10, 750–753 (1969), Zb1. 188, 540Google Scholar
  53. Vinberg, E.B. (1985): Hyperbolic reflection groups. Usp. Mat. Nauk. 40, No. 1, 29–66. English transl.: Russ. Math. Surv. 40, No. 1, 31–75 (1985), Zb1. 579. 51015Google Scholar
  54. Vinberg, E.B. (1991): The volume of polyhedra on a sphere and in Lobachevsky space. Proc. First Siberian Winter School “Algebra and Analysis” (Kemerovo, 1987). Amer. Math. Soc. Transl. 148, 15–18MathSciNetGoogle Scholar
  55. Vinberg, E.B., Onishchik A.L. (1988): Foundations of the theory of Lie groups. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. Fundam. Napravleniya 20, 5–102. English transi. in: Encycl. Math. Sci. 20. Springer, Berlin Heidelberg New York Tokyo (in preparation), Zb1. 656. 22002Google Scholar
  56. Volkov, Yu.A., Vladimirova, S.M. (1971): Isometric immersions of a Euclidean plane in Lobachevsky space. Mat. Zametki 10, 327–332. English transi.: Math. Notes 10, 619–622, Zb1. 235. 53041Google Scholar
  57. Wolf, J.A. (1967): Spaces of Constant Curvature. McGraw-Hill, New York, Zb1. 162, 533Google Scholar
  58. Zagier, D. (1986): Hyperbolic manifolds and special values of Dedekind zeta-functions. Invent. Math. 83, 285–301, Zb1. 591. 12014Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • D. V. Alekseevskij
  • E. B. Vinberg
  • A. S. Solodovnikov

There are no affiliations available

Personalised recommendations