Skip to main content

Part of the book series: Universitext ((UTX))

  • 1197 Accesses

Abstract

Problem 3 in the introduction is a special case of the following general filtering problem: Suppose the state X t R n at time t of a system is given by a stochastic differential equation

EquationSource%MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGKbGaamiwamaaBaaaleaacaWG0baabeaaaOqaaiaadsgacaWG0baa % aiabg2da9iaadkgacaGGOaGaamiDaiaacYcacaWGybWaaSbaaSqaai % aadshaaeqaaOGaaiykaiabgUcaRiabeo8aZjaacIcacaWG0bGaaiil % aiaadIfadaWgaaWcbaGaamiDaaqabaGccaGGPaGaam4vamaaBaaale % aacaWG0baabeaaaaa!4B88!EquationSource$$\[\frac{{d{X_t}}}{{dt}} = b(t,{X_t}) + \sigma (t,{X_t}){W_t}\]$$
((6.1))

where b : R n+1R n,σ : R n+1R n×p satisfy conditions (5.14), (5.15) and W t is p-dimensional white noise. As discussed earlier the Ito interpretation of this equation is

EquationSource%MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaado % facaWGzbGaam4uaiaadsfacaWGfbGaamytaiaacMcacaaMf8Uaamiz % aiaadIfadaWgaaWcbaGaamiDaaqabaGccqGH9aqpcaWGIbGaaiikai % aadshacaGGSaGaamiwamaaBaaaleaacaWG0baabeaakiaacMcacaWG % KbGaamiDaiabgUcaRiabeo8aZjaacIcacaWG0bGaaiilaiaadIfada % WgaaWcbaGaamiDaaqabaGccaGGPaGaamizaiaadwfadaWgaaWcbaGa % amiDaaqabaaaaa!5449EquationSource$$\[(SYSTEM)\quad d{X_t} = b(t,{X_t})dt + \sigma (t,{X_t})d{U_t}\]$$
((6.2))

where U t is p-dimensional Brownian motion. We also assume that the distribution of X 0 is known and independent of U t . Similarly to the 1-dimensional situation (3.20) there is an explicit several-dimensional formula which expresses the Stratonovich interpretation of (6.1):

EquationSource% MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadI % fadaWgaaWcbaGaamiDaaqabaGccqGH9aqpcaWGIbGaaiikaiaadsha % caGGSaGaamiwamaaBaaaleaacaWG0baabeaakiaacMcacaWGKbGaam % iDaiabgUcaRiabeo8aZjaacIcacaWG0bGaaiilaiaadIfadaWgaaWc % baGaamiDaaqabaGccaGGPaGaeSigI8MaamizaiaadkeadaWgaaWcba % GaamiDaaqabaaaaa!4D86!EquationSource$$\[d{X_t} = b(t,{X_t})dt + \sigma (t,{X_t}) \circ d{B_t}\]$$

in terms of Ito integrals as follows:

EquationSource% MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGKb % GaamiwamaaBaaaleaacaWG0baabeaakiabg2da9maaGaaabaGaamOy % aaGaay5adaGaaiikaiaadshacaGGSaGaamiwamaaBaaaleaacaWG0b % aabeaakiaacMcacaWGKbGaamiDaiabgUcaRiabeo8aZjaacIcacaWG % 0bGaaiilaiaadIfadaWgaaWcbaGaamiDaaqabaGccaGGPaGaamizai % aadwfadaWgaaWcbaGaamiDaaqabaGccaGGSaGaaGjbVlaadEhacaWG % ObGaamyzaiaadkhacaWGLbaabaWaaacaaeaacaWGIbaacaGLdmaada % WgaaWcbaGaamyAaaqabaGccaGGOaGaamiDaiaacYcacaWG4bGaaiyk % aiabg2da9iaadkgadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamiDai % aacYcacaWG4bGaaiykaiabgUcaRmaalaaabaGaaGymaaqaaiaaikda % aaWaaabCaeaadaaeWbqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS % qaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa % am4AaaqabaaaaaqaaiaadUgacqGH9aqpcaaIXaaabaGaamOBaaqdcq % GHris5aaWcbaGaamOAaiabg2da9iaaigdaaeaacaWGWbaaniabggHi % LdGccqaHdpWCdaWgaaWcbaGaam4AaiaadQgaaeqaaOGaai4oaiaaig % dacqGHKjYOcaWGPbGaeyizImQaamOBaaaaaa!839C! EquationSource$$\[\begin{array}{l} d{X_t} = \widetildeb(t,{X_t})dt + \sigma (t,{X_t})d{U_t},\;where \\ {\widetildeb_i}(t,x) = {b_i}(t,x) + \frac{1}{2}\sum\limits_{j = 1}^p {\sum\limits_{k = 1}^n {\frac{{\partial {\sigma _{ij}}}}{{\partial {x_k}}}} } {\sigma _{kj}};1 \le i \le n \\ \end{array}\]
((6.3))

(See Stratonovich (1966)). From now on we will use the Ito interpretation (6.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Øksendal, B. (1992). The Filtering Problem. In: Stochastic Differential Equations. Universitext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02847-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02847-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53335-1

  • Online ISBN: 978-3-662-02847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics