Advertisement

Cell Surface Actions of Steroids: A Complementary Mechanism for Regulation of Spermatogenesis?

  • Focko F. G. Rommerts
Part of the Schering Foundation Workshop book series (SCHERING FOUND, volume 4)

Abstract

The question about the concentration of androgen required for maintenance of spermatogenesis has not yet been solved (Rommerts 1988a). Under normal physiological conditions androgen concentrations in the testis are more than 20-fold higher than in peripheral organs. However, results of various studies show that spermatogenesis can also proceed at approximately 20% of the normal testicular an-drogen level although the production of spermatozoa is diminished (Sun et al. 1989). In this situation, these reduced local androgen concentrations are still several fold higher than the normal peripheral concentrations. Irrespective of the exact minimal level of testosterone required for maintenance of spermatogenesis (with or without the support of FSH), it is difficult to understand easily why androgen-sensitive cells in the testis are triggered in a manner differing from that of other androgen target cells (Sun et al. 1989). Of special relevance to this question is the current opinion that androgen action in various target cells is mediated by only one receptor (Brinkmann et al. 1992).

Keywords

Androgen Receptor Sertoli Cell GABAA Receptor Germinal Cell Testicular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aragonés A, Gonzalez CB, Spinedi NC, Lantos CP (1991) Regulatory effects of 5ß-reduced steroids. J Steroid Biochem Molec Biol 39: 253–263PubMedCrossRefGoogle Scholar
  2. Baulieu EE (1991) Neurosteroids: a new function in the brain. Biol Cell 71: 3–10PubMedCrossRefGoogle Scholar
  3. Blackmore PF, Neulen J, Lattanzio F, Beebe SJ (1991) Cell surface-binding sites for progesterone mediate calcium uptake in human sperm. J Biol Chem 266: 18655–18659PubMedGoogle Scholar
  4. Blok LJ, Bartlett JMS, Bolt-de Vries J, Themmen APN, Brinkmann AO, Weinbauer GF, Nieschlag E, Grootegoed JA (1992) Int J Androl, in pressGoogle Scholar
  5. Borski RJ, Helms LMH, Richmann III NH, Grau EG (1991) Cortisol rapidly reduces prolactin release and cAMP and 45Ca2+ accumulation in the cichlid fish pituitary in vitro. Proc Natl Acad Sci USA 88: 2758–2762PubMedCrossRefGoogle Scholar
  6. Brann DW, Putnam CD, Mahesh VB (1990) gamma-Aminobutyric AcidA receptors mediate 3-hydroxy-5-pregnan-20-one-induced gonadotropin secretion. Endocrinology 126: 1854–1859Google Scholar
  7. Bression D, Michard M, Dafniet GM, Pagesy P, Peillon F (1986) Evidence for a specific estradiol binding site on rat pituitary membranes. Endocrinology 119: 1048–1051.PubMedCrossRefGoogle Scholar
  8. Brinkmann AO, Jenster G, Kuiper GGJM, Ris-Stalpers C, van Laar JH, Faber PW, Trapman J (1992) Structure and function of the human androgen receptor. In: Nieschlag E, Habenicht OF (eds) Spermatogenesis - fertilization - contraception: Molecular, cellular and endocrine events in the testis ( 1992 ) Springer Verlag Verlag, Heidelberg, Berlin.Google Scholar
  9. Campbell SMC, Wiebe JP (1989) Stimulation of spermatocyte development in prepubertal rats by the Sertoli cell steroid, 3-hydroxy-4-pregnen-20-one. Biol Reprod 40: 897–905PubMedCrossRefGoogle Scholar
  10. Clermont Y, Harvey SC (1965) Duration of the cycle of the seminiferous epithelium of normal, hypophysectomized and hypophysectomized hormone treated albino rats. Endocrinology 76: 80–59PubMedCrossRefGoogle Scholar
  11. Cowley JJ, Brooksbank BWL (1991) Human exposure to putative pheromones and changes in aspects of social behaviour. J Steroid Biochem Molec Biol 39: 647–659PubMedCrossRefGoogle Scholar
  12. Damassa DA, Lin T-M, Sonnenschein C, Soto AM (1991) Biological effects of sex hormone-binding globulin on androgen-induced proliferation and androgen metabolism in LNCaP prostate cells. Endocrinology 129: 75–84PubMedCrossRefGoogle Scholar
  13. Dulka JG, Stacey NE, Sorensen PW, Van der Kraal(GJ (1987) A steroid sex pheromone synchronizes male-female spawning readiness in goldfish. Nature 325: 251–253Google Scholar
  14. Erdö SL, Joo F, Wolff JR (1989) Immunohistochemical localization of glutamate decarboxylase in the rat oviduct and ovary: Further evidence for non-neural GABA systems. Cell Tissue Res 255: 431–434Google Scholar
  15. Erdö SL, Weckerle L (1990) GABAA type binding sites on membranes of spermatozoa. Life Sci 47: 1147–1151PubMedCrossRefGoogle Scholar
  16. Erdö SL, Wolff JR (1990) Gamma-aminobutyric acid outside the mammalian brain. J Neurochem 54: 363–372PubMedCrossRefGoogle Scholar
  17. Finidori-Lepicord J, Schordevet-Statkine S, Hanoune J, Baulieu EE (1981) Steroid hormone as a regulatory agent of adenylate cyclase. Inhibition by progesterone of the membrane bound enzyme in Xenopus Leavis oocytes. Nature 292: 255–256Google Scholar
  18. Grootegoed JA, Peters HJ, Mulder E, Rommerts FFG, Molen HJ van der (1977) Absence of a nuclear androgen receptor in isolated germinal cells of rat testis. Molec Cell Endocr 9: 159–167PubMedCrossRefGoogle Scholar
  19. Hansson V, Ritzen EM, French FS, Nayfeh SN (1975) Androgen transport and receptor mechanisms in testis and epididymis. In: Greep RO, Astwood EB (eds) Handbook of Physiology, Sect VII Endocrinology, Vol V Male Reproductive System. Waverley Press, Baltimore, pp 173–201Google Scholar
  20. Kirkness EF (1989) Steroid modulation reveals further complexity of GABAA receptors. Trends Pharmac Sciences 10: 6–7CrossRefGoogle Scholar
  21. Knobil E, Neill JD (1988) The physiology of reproduction. Raven Press,New York, pp 753–975Google Scholar
  22. Koenig H, Fan C-C, Goldstone AD, Lu CY, Trout JJ (1989) Polyamines mediate androgenic stimulation of calcium fluxes and membrane transport in rat heart myocytes. Circ Res 64: 415–426PubMedCrossRefGoogle Scholar
  23. Lüddens H, Wisden W (1991) Function and pharmacology of multiple GABAA receptor subunits. Trends Pharmac Sciences 12: 49–51CrossRefGoogle Scholar
  24. McEwen BS (1991) Non-genomic and genomic effects of steroids on neural activity. Trends Pharmac Sciences 12: 141–147CrossRefGoogle Scholar
  25. Miura T, Yamauchi K, Takahashi H, Nagahama Y (1991a) Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel ( Anguilla japonica ). Proc Natl Acad Sci USA 88: 5774–5778Google Scholar
  26. Miura T, Yamauchi K, Takahashi H, Nagahama Y (199 lb) Involvement of steroid hormones in gonadotropin-induced testicular maturation in male Japanese eel (Anguilla japonica). Biomed Res 12: 241–248Google Scholar
  27. Nabekura J, Oomura Y, Minami T, Mizuno Y, Fukuda A (1986) Mechanism of the rapid effect of 17ß-estradiol on medial Amygadala neurons. Science 233: 226–227PubMedCrossRefGoogle Scholar
  28. Nagahama Y, Yamashita M (1988) Mechanism of synthesis and action of 17,20ß-dihydroxy-4-pregnen-3one, a teleost maturation-inducing substance. J Fish Physiol Biochem 7: 193–200CrossRefGoogle Scholar
  29. Nemere I, Norman AW (1991) Steroid hormone actions at the plasma membrane: induced calcium uptake and exocytotic events. Mol Cell Endocr 80: C165 - C169CrossRefGoogle Scholar
  30. Orchinik M, Murray TF, Moore FL (1991) A corticosteroid receptor in neuronal membranes. Science 252: 1848–1851PubMedCrossRefGoogle Scholar
  31. Pasmanik M, Callard GV (1988) A high abundance androgen receptor in goldfish brain: Characteristics and seasonal changes. Endocrinology 123: 1162–1171Google Scholar
  32. Pietras R, Szego C (1977) Specific binding sites for oestrogen at the outer surface of isolated endometrial cells. Nature 265: 69–72PubMedCrossRefGoogle Scholar
  33. Ramirez V, Dluzen D (1987) Is progesterone a pre-hormone in the CNS? J Steroid Biochem 27: 589–598PubMedCrossRefGoogle Scholar
  34. Rauh JJ, Lummis SCR, Sattelle DB (1990) Pharmacological and biochemical properties of insect GABA receptors. Trends Pharmac Sciences 11: 325329Google Scholar
  35. Risley MS (1983) Spermatogenic cell differentiation in vitro. Gamete Res 4: 331–346CrossRefGoogle Scholar
  36. Rommerts FFG (1988a) How much androgen is required for maintenance of spermatogenesis? J Endocr 116: 7–9PubMedCrossRefGoogle Scholar
  37. Rommerts FFG (1988b) Testomania. In: Cooke BA, Sharpe RM (eds) The Molecular and cellular endocrinology of the testis, Raven Press, New York, vol 50, pp 1–10Google Scholar
  38. Rommerts FFG, Krüger BCh, Grootegoed JA, Molen van der HJ (1979) Reversible interaction between androgen binding protein and testicular macromolecules causing inhibition of androgen binding activity. Steroids 33: 659673Google Scholar
  39. Rommerts FFG, Krüger BCh, Grootegoed JA, Molen HJ van der (1980) Modulation of the binding activity of androgen binding protein by testicular macromolecules and testosterone. In: Steinberger A, Steinberger E (eds) Testicular development, structure, and function. Raven Press, New York, pp 331–336Google Scholar
  40. Rosner W (1990) The functions of corticosteroid-binding globulin and sex hormone-binding globulin: recent advances. Endocr Rev 11: 80–91PubMedCrossRefGoogle Scholar
  41. Schulz RW (1984) Serum levels of 11-oxo testosterone in male and 17ß-estradiol in female rainbow trout (salmo gairdneri) during the first reproductive cycle. Gen Comp Endocrinol 56: 111–120PubMedCrossRefGoogle Scholar
  42. Schumacher M (1990) Rapid membrane effects of steroid hormones: an emerging concept in neuroendocrinology. Trends Neuro Sciences 13: 359–362CrossRefGoogle Scholar
  43. Schumacher M, Coirini H, Pfaff DW, McEwen BS (1990) Behavioral effects of progesterone associated with rapid modulation of oxytocin receptors. Science 250: 691–694PubMedCrossRefGoogle Scholar
  44. Segal J (1990) In vivo effect of 3,5,3’-triiodothyronine on calcium uptake in several tissues in the rat: Evidence for a physiological role for calcium as the first messenger for the prompt action of thyroid hormone at the level of the plasma membrane. Endocrinology 127: 17–24PubMedCrossRefGoogle Scholar
  45. Shepherd GM, Firestein S (1991) Toward a pharmacology of odor receptors and the processing of odor images. J Steroid Biochem Molec Biol 39: 583592Google Scholar
  46. Sheridan PJ (1991) Can a single androgen receptor fill the bill? Mol Cell Endocr 76: C39 - C45CrossRefGoogle Scholar
  47. Snyder SH, Sklar PB, Pevsner J (1988) Molecular mechanisms of olfaction. J Biol Chem 263: 13971–13974PubMedGoogle Scholar
  48. Steinsapir J, Socci R, Reinach P (1991) Effects of androgen on intracellular calcium of LNCaP cells. Biochem Biophys Res Commun 179: 90–96PubMedCrossRefGoogle Scholar
  49. Sun Y-T, Irby DC, Robertson DM, de Kretser DM (1989) The effects of exogenously administered testosterone on spermatogenesis in intact and hypophysectomized rats. Endocrinology 125: 1000–1010PubMedCrossRefGoogle Scholar
  50. Tanaka C (1985) Gamma-aminobutyric acid in peripheral tissues. Life Sci 37: 2221–2235PubMedCrossRefGoogle Scholar
  51. Tata JR (1984) What is so unique about hormone action? Mol Cell Endocr 36: 17–27CrossRefGoogle Scholar
  52. Vonderhaar BK, Banerjee R (1991) Is tamoxifen also an anti lactogen? Mol Cell Endocr 79: C159 - C163CrossRefGoogle Scholar
  53. Wehling M, Käsmayr J, Theisen K (1990) Aldosterone influences free intracellular calcium in human mononuclear leukocytes in vitro. Cell Calcium 11: 585–571CrossRefGoogle Scholar
  54. Wiebe JP, Wood PH (1987) Selective suppression of follicle stimulating hormone by 3-hydroxy-4-pregnen-20-one, a steroid found in Sertoli cells. Endocrinology 120: 2259–2264PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Focko F. G. Rommerts

There are no affiliations available

Personalised recommendations