Skip to main content

Part of the book series: The Collected Works of Eugene Paul Wigner ((2875,volume A / 1))

  • 2226 Accesses

Abstract

The articles written before 1931 can be regarded to a large extent as precursors to Wigner’s seminal work “Gruppentheorie and ihre Anwendung auf die Quantenmechanik der Atomspektren”, [1] which appeared in that year. The importance of this book can scarcely be overstated. In the preface to the English edition [2], which was published 28 years later, Wigner remarks that there was a great reluctance among physicists toward accepting group-theoretical arguments and the group-theoretical point of view. He also comments that this antipathy has subsequently vanished. One of the reasons for this is, of course, the influence that his book had on a generation of physicists. However, at the time of its publication, and for some years afterwards, opposition to group theory was real enough. In the rush to fit theory to experiment, simplicity in the mathematical treatment counted for more than elegance and generality. The uncompromising tone of Weyl’s treatise on group theory and quantum mechanics [3] scarcely made the subject more accessible to physicists. They were more impressed by the success Slater [4] achieved in obtaining expressions for the energies of spectroscopic terms by elementary mathematical methods. Condon and Shortley [5] explicitly rejected the group-theoretical approach. Their algebraic methods were extended by Racah [6], and is was not until he published his fourth article [7] on complex spectra that group theory became an accepted part of theoretical atomic spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Wigner: Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Vieweg, Braunschweig 1931

    Book  Google Scholar 

  2. E. P. Wigner: Group Theory. Academic Press, New York 1959

    MATH  Google Scholar 

  3. H. Weyl: Gruppentheorie und Quantenmechanik. Hirzel, Leipzig 1928

    MATH  Google Scholar 

  4. J. C. Slater: The Theory of Complex Spectra. Phys. Rev. 34, 1293–1322 (1929)

    Article  ADS  MATH  Google Scholar 

  5. E. U. Condon and G. H. Shortley: The Theory of Atomic Spectra. Cambridge University Press, Cambridge 1935

    Google Scholar 

  6. G. Racah: Theory of Complex Spectra I—III. Phys. Rev. 61, 186–197 (1942); ibid. 62, 438–462 (1942); ibid. 63, 367–382 (1943)

    Google Scholar 

  7. G. Racah: Theory of Complex Spectra IV. Phys. Rev. 76, 1352–1365 (1949)

    Article  ADS  MATH  Google Scholar 

  8. E. Wigner: Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen. Z. Phys. 43 624–652 (1927); volume I, part II

    Google Scholar 

  9. J. v. Neumann and E. Wigner: Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons, III. Z. Phys. 51 844–858 (1928); volume I, part II

    Google Scholar 

  10. E. Wigner: Berichtigung zu der Arbeit: Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen. Z. Phys. 45 601–602 (1927); volume I, part II

    Google Scholar 

  11. C. L. B. Shudeman: Equivalent Electrons and their Spectroscopic Terms. J. Franklin Inst. Philadelphia 224, 501–518 (1937)

    Article  Google Scholar 

  12. J. v. Neumann and E. Wigner: Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons, II. Z. Phys. 49 73–94 (1928); volume I, part II

    Google Scholar 

  13. J. v. Neumann and E. Wigner: Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons, I. Z. Phys. 47, 203–220 (1928); volume I, part II

    Google Scholar 

  14. E. Wigner: Uber nicht kombinierende Terme in der neueren Quantentheorie, I. Z. Phys. 40 492–500 (1926); volume I, part II

    Google Scholar 

  15. E. Wigner: Uber nicht kombinierende Terme in der neueren Quantentheorie, II. Z. Phys. 40 883–892 (1927); volume I, part II

    Google Scholar 

  16. D.E. Rutherford: Substitutional Analysis. Edinburgh University Press, Edinburgh 1948, equation (16.1)

    Google Scholar 

  17. W. Heisenberg and P. Jordan: Anwendung der Quantenmechanik auf das Problem der anomalen Zeemaneffekte. Z. Phys. 37, 263–277 (1926)

    Article  ADS  MATH  Google Scholar 

  18. E. Back and A. Landé: Zeemaneffekt und Multipletstruktur der Spektrallinien. Springer, Berlin 1925, p. 79

    Book  Google Scholar 

  19. A. R. Edmonds: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton 1957

    Google Scholar 

  20. H. C. Burger and H. B. Dorgelo: Beziehung zwischen inneren Quantenzahlen und Intensitäten von Mehrfachlinien. Z. Phys. 23, 258–268 (1924)

    Article  ADS  Google Scholar 

  21. F. Hund: Linienspektren und periodisches System der Elemente. Springer, Berlin 1927

    Book  MATH  Google Scholar 

  22. C. Eckart: The Application of Group Theory to the Quantum Dynamics of Monatomic Systems. Rev. Mod. Phys. 2, 305–380 (1930)

    Article  ADS  MATH  Google Scholar 

  23. E. P. Wigner: On the Matrices which Reduce the Kronecker Products of Representations of S. R. [Simply Reducible] Groups, unpublished manuscript of 1940, printed in Quantum Theory of Angular Momentum, eds. L. C. Biedenharn and H. van Dam. Academic Press, New York 1965; volume I, part III

    Google Scholar 

  24. H. Minh Die Intensitäten der Zeemankomponenten. Z. Phys. 31, 340–354 (1925)

    Google Scholar 

  25. R. de L. Kronig: Uber die Intensität der Mehrfachlinien und ihrer Zeemankomponenten. Z. Phys. 31, 885–897 (1925)

    Article  ADS  MATH  Google Scholar 

  26. P. Jordan and E. Wigner: Über das Paulische Aquivalenzverbot. Z. Phys. 47 631–651 (1928); volume I, part II

    Google Scholar 

  27. P. Jordan and O. Klein: Zum Mehrkörperproblem der Quantentheorie. Z. Phys. 45, 751–765 (1927)

    Article  ADS  MATH  Google Scholar 

  28. P. A. M. Dirac: On the Theory of Quantum Mechanics. Proc. Roy. Soc. London A 112, 661–677 (1927)

    Article  ADS  Google Scholar 

  29. H. A. Kramers: Quantum Mechanics. North-Holland, Amsterdam 1958, p. 328

    Google Scholar 

  30. W. Heisenberg: Zum Paulischen Ausschliessungsprinzip. Ann. Phys. 10, 888–904 (1931)

    Article  Google Scholar 

  31. J. Sugar and C. Corliss: Atomic Energy Levels of the Iron-Period Elements: Potassium through Nickel. J. Phys. Chem. Reference Data 14, Supp. no. 2 (1985)

    Google Scholar 

  32. M. H. Johnson: The Vector Model and the Pauli Principle. Phys. Rev. 43, 627631 (1933); Note on Almost Closed Shells. Phys. Rev. 43, 632–635 (1933)

    Google Scholar 

  33. D. M. Brink and G. R. Satchler: Holes and Particles in Shell Models. Nuovo Cimento 4, 549–557 (1956)

    Article  Google Scholar 

  34. A. de-Shalit and I. Talmi: Nuclear Shell Theory. Academic Press, New York 1963

    Google Scholar 

  35. R. D. Lawson: Theory of the Nuclear Shell Model. Clarendon, Oxford 1980

    Google Scholar 

  36. B. R. Judd: Second Quantization and Atomic Spectroscopy. Johns Hopkins, Baltimore 1967

    Google Scholar 

  37. M. C. Downer and A. Bivas: Third-and Fourth-Order Analysis of the Intensities and Polarization Dependence of Two-Photon Absorption Lines of Gd3+ in LaF3 and Aqueous Solutions. Phys. Rev. B 28, 3677–3696 (1983)

    Article  ADS  Google Scholar 

  38. Am. J. Phys. 36, 69 (1968)

    Google Scholar 

  39. E. Wigner and E. E. Witmer: Uber die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik. Z. Phys. 51 859–886 (1928); volume I, part II

    Google Scholar 

  40. F. Hund: Zur Deutung der Molekelspektren, IV. Z. Phys. 51, 759–795 (1928)

    Article  ADS  MATH  Google Scholar 

  41. R. de L. Kronig: Zur Deutung der Bandspektren. Z. Phys. 46, 814–825 (1928)

    Article  ADS  MATH  Google Scholar 

  42. F. A. Jenkins: Report of Subcommittee f (Notation for the Spectra of Diatomic Molecules)of the Joint Commission for Spectroscopy. J. Opt. Soc. Am. 43, 425426 (1953)

    Google Scholar 

  43. W. A. Bingel: Theorie der Molekülspektren. Verlag Chemie, Weinheim 1967

    Google Scholar 

  44. E. Wigner: Uber die Erhaltungssätze in der Quantenmechanik. Nachrichten d. Gesell. d. Wissenschaften z. Göttingen, Math.-Phys. Klasse 375–381 (1927); volume I, part II

    Google Scholar 

  45. F. Hund: Zur Deutung der Molekelspektren, I. Z. Phys. 40 742–764 (1927), figure 11

    Google Scholar 

  46. R. Döpel, K. Gailer, and E. Wigner: Über die experimentelle Prüfung des Spinerhaltungssatzes. Phys. Z. 35 336–337 (1934); volume I, part II

    Google Scholar 

  47. R. Döpel and K. Gaiter: Experimentelle Prüfung des Spin-Erhaltungssatzes beim Atomstoss. Physik. Z. 34, 827–831 (1933)

    Google Scholar 

  48. K. Gailer: Uber die wechselseitige Lichtanregung bei den Atomstössen He bzw. H auf Be, Mg, Ca, Sr, Ba. Z. Phys. 108, 580–591 (1938)

    Article  ADS  Google Scholar 

  49. K. Gailer: Experimenteller Beitrag zur Frage der Gültigkeit des Spinerhaltungssatzes. Physik. Z. 39, 407–409 (1938)

    Google Scholar 

  50. W. Kuhn: Uber die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien. Z. Phys. 33, 408–412 (1925)

    Article  ADS  MATH  Google Scholar 

  51. F. Reiche and W. Thomas: Uber die Zahl der Dispersionselektronen, die einem stationären Zustand zugeordnet sind. Z. Phys. 34, 510–525 (1925)

    Article  ADS  MATH  Google Scholar 

  52. E. Wigner: Uber eine Verschärfung des Summensatzes. Phys. Z. 32 450–453 (1931); volume I, part II

    Google Scholar 

  53. V. Fock: Uber die Anwendbarkeit des quantenmechanischen Summensatzes. Z. Phys. 89, 744–749 (1934)

    Article  ADS  Google Scholar 

  54. E. Wigner: Über die Eigenschwingungen symmetrischer Systeme. Nachrichten d. Gesell. d. Wissenschaften z. Göttingen, Math.-Phys. Klasse 133–146 (1930); volume I, part II

    Google Scholar 

  55. R. S. Knox and A. Gold: Symmetry in the Solid State. Benjamin, New York 1964, p. 177

    MATH  Google Scholar 

  56. J. E. Rosenthal and G. M. Murphy: Group Theory and the Vibrations of Poly-atomic Molecules. Rev. Mod. Phys. 8, 317–346 (1936)

    Article  ADS  Google Scholar 

  57. D. M. Dennison: Molecular Structure of Methane. Astrophys. J. 62, 84–103 (1925)

    Article  ADS  Google Scholar 

  58. H.A. Jahn: Rotation und Schwingung des Methanmoleküls. Ann. Phys. 23, 529–556 (1935)

    Article  Google Scholar 

  59. L. Tisza: Zur Deutung der Spektren mehratomiger Moleküle. Z. Phys. 82, 48–72 (1933)

    Article  ADS  Google Scholar 

  60. E. Wigner: Über die Operation der Zeitumkehr in der Quantenmechanik. Nachrichten d. Gesell. d. Wissenschaften z. Göttingen, Math.-Phys. Klasse 546–559 (1932); volume I, part II

    Google Scholar 

  61. H. A. Kramers: Théorie Générale de la Rotation Paramagnétique dans les Cristaux. Proc. K. Ned. Akad. Wet. 33, 959–972 (1930)

    MATH  Google Scholar 

  62. J. S. Bell: Particle-Hole Conjugation in the Shell Model. Nucl. Phys. 12, 117–124 (1959)

    Article  MATH  Google Scholar 

  63. G. Racah: Theory of Complex Spectra. Phys. Rev. 63 371 (1943), equation (19)

    Google Scholar 

  64. J.0. Hirschfelder and E. Wigner: Separation of Rotational Coödinates from the Schrödinger Equation for N particles. Proc. Nat. Acad. Sci. 21 113–119 (1935); volume I, part II

    Google Scholar 

  65. C. Eckart: The Kinetic Energy of Polyatomic Molecules. Phys. Rev. 46, 383–387 (1934)

    Article  ADS  Google Scholar 

  66. J. H. Van Vleck: The Rotational Energy of Polyatomic Molecules. Phys. Rev. 47, 487–494 (1935)

    Article  ADS  Google Scholar 

  67. C.F. Curtiss, J.O. Hirschfelder, and F. T. Adler: The Separation of the Rotational Coordinates from the N-Particle Schroedinger Equation. J. Chem. Phys. 18, 1638–1641 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  68. C. Eckart: Some Studies Concerning Rotating Axes and Polyatomic Molecules. Phys. Rev. 47, 552–558 (1935)

    Article  ADS  Google Scholar 

  69. P. R. Bunker: Molecular Symmetry and Spectroscopy. Academic Press, New York 1979, pp. 137–153

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Judd, B.R. (1993). Applied Group Theory 1926–1935. In: Wightman, A.S. (eds) The Collected Works of Eugene Paul Wigner. The Collected Works of Eugene Paul Wigner, vol A / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02781-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02781-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08154-5

  • Online ISBN: 978-3-662-02781-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics