Advertisement

The Mathematical Papers

  • George W. Mackey
Part of the The Collected Works of Eugene Paul Wigner book series (WIGNER, volume A / 1)

Abstract

Eugene Wigner is above all a theoretical physicist. However he was one of the two men (Hermann Weyl was the other) who introduced a powerful new mathematical tool into quantum mechanics in its earliest years. This is the theory of group representations, invented by Frobenius in 1896, and apparently not applied outside of pure group theory until E. Artin’s startling application to number theory in 1923. Wigner’s first application of this theory to quantum mechanics was published only four years later in 1927. Weyl’s contribution was of a completely different character and was made a few months after Wigner’s.

Keywords

Hilbert Space Irreducible Representation Finite Group Unitary Representation Adjoint Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Wigner: Über nicht kombinierende Terme in der neueren Quantentheorie. Z. Phys. 40 492–500 (1926); volume I, part IIGoogle Scholar
  2. [2]
    E. Wigner: Über nicht kombinierende Terme in der neueren Quantentheorie II. Teil. Z. Phys. 43 883–892 (1927); volume I, part IIGoogle Scholar
  3. [3]
    W. Heisenberg: Mehrkörperproblem und Resonanz in der Quantenmechanik. Z. Phys. 38, 411–426 (1926)ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    E. Wigner: Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen. Z. Phys. 43 624–652; volume I, part II Google Scholar
  5. [5]
    J. von Neumann und E. Wigner: Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons. Z. Phys. 47 203–220 (1928); volume I, part IIGoogle Scholar
  6. [6]
    J. von Neumann und E. Wigner: Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons II. Z. Phys. 49 73–94 (1928); volume I, part IIGoogle Scholar
  7. [7]
    J. von Neumann und E. Wigner: Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons III. Z. Phys. 51 844–858 (1928); volume I, part II Google Scholar
  8. [8]
    E. Wigner: Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Vieweg, Braunschweig 1931CrossRefGoogle Scholar
  9. [9]
    J. C. Slater: The theory of complex spectra. Phys. Rev. 34, 1293–1322 (1929)ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    H. Weyl: Quantenmechanik und Gruppentheorie. Z. Phys. 46, 1–46 (1927)ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Jordan and E. Wigner: Uber das Paulische Aquivalenzverbot. Z. Phys. 47 631–651 (1928); volume I part IIGoogle Scholar
  12. [12]
    M. H. Stone: Linear transformations in Hilbert space III. Operational methods and group theory. Proc. Nat. Acad. Sci. USA 16, 172–175 (1930)ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    J. von Neumann: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 570–578 (1931)MathSciNetCrossRefGoogle Scholar
  14. [14]
    E. U. Condon and G. H. Shortley: The theory of atomic spectra. Cambridge University Press, Cambridge 1935Google Scholar
  15. [15]
    C. Eckart: The application of group theory to the quantum dynamics of monatomic systems. Rev. Mod. Phys. 2, 305–380 (1930)ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    E. Wigner: Uber die elastischen Eigenschwingungen symmetrischer Systeme. Nachr. Ges. Wiss. Gött., Math-Phys. Klasse (1930) 133–146; volume I, part IIGoogle Scholar
  17. [17]
    E. Wigner: Uber die Operation der Zeitumkehr in der Quantenmechanik. Nachr. Ges. Wiss. Gött., Math.-Phys. Klasse (1932) 546–559; volume I part IIGoogle Scholar
  18. [18]
    E. Wigner: On the interaction of electrons in metals. Phys. Rev. 46 1002–1011 (1934); volume IV, part II Google Scholar
  19. [19]
    L.P. Bouckaert, R. Smoluchowski and E. Wigner: Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev. 50 58–67 (1936); volume IV, part IIGoogle Scholar
  20. [20]
    E. Wigner: On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei. Phys. Rev. 51 106–119 (1937); volume II Google Scholar
  21. [21]
    E. Wigner: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40 149–204 (1939); volume I, part III Google Scholar
  22. [22]
    J. von Neumann and E. Wigner: Minimally almost periodic groups. Ann. Math. 41 746–750 (1940); volume I part III Google Scholar
  23. [23]
    E. Wigner: On representations of certain finite groups. Am. J. Math. 63 57–63 (1941); volume I, part IIIGoogle Scholar
  24. [24]
    E. Wigner: On the matrices which reduce the Kronecker products of S.R. groups. Unpublished manuscript of circa 1940, printed in: Quantum theory of angular momentum, eds. L. C. Biedenharn and H. van Dam. Academic Press, New York 1965; volume I, part IIIGoogle Scholar
  25. [25]
    G. Racah: Theory of complex spectra I. Phys. Rev. 61, 186–197 (1942)ADSCrossRefGoogle Scholar
  26. [26]
    G. Racah: Theory of complex spectra II. Phys. Rev. 62, 438–462 (1942)ADSCrossRefGoogle Scholar
  27. [27]
    G. Racah: Theory of complex spectra III. Phys. Rev. 63, 367–382 (1943)ADSCrossRefGoogle Scholar
  28. [28]
    G. Racah: Theory of complex spectra IV. Phys. Rev. 76, 1352–1365 (1949)ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    V. Bargmann and E. Wigner: Group theoretical discussion of relativistic wave equations. Proc. Nat. Acad. Sci. 34 211–223 (1948); volume III, part IGoogle Scholar
  30. [30]
    T. D. Newton and E. Wigner: Localized states for elementary systems. Rev. Mod. Phys. 21 400–406 (1949); volume I, part III Google Scholar
  31. [31]
    G. Mackey: Imprimitivity for representations of locally compact groups I. Proc. Nat. Acad. Sci. 35, 537–544 (1949)MathSciNetADSCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Wightman: On the localizability of quantum mechanical systems. Rev. Mod. Phys. 34, 845–872 (1962)MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    G. Mackey: Infinite-dimensional group representations. Bull. Amer. Math. Soc. 69, 628–686 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    E. Inönü and E. Wigner: Representations of the Galilei group. Il Nuovo Cimento IX 705–718 (1952); volume I, part IIIGoogle Scholar
  35. [35]
    E. Inönü and E. Wigner: On the contraction of groups and their representations. Proc. Nat. Acad. Sci. 39 510–524 (1953); volume I, part III Google Scholar
  36. [36]
    E. Inönü and E. Wigner: On a particular type of convergence to a singular matrix. Proc. Nat. Acad. Sci. 40 119–121 (1954); volume I, part IIIGoogle Scholar
  37. [37]
    V. Bargmann: On unitary ray representations of continuous groups. Ann. Math. 59, 1–46 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    I. Segal: A class of operator algebras which are determined by groups. Duke Math. J. 18, 221–265 (1951)zbMATHGoogle Scholar
  39. [39]
    G. Mackey: On the analogy between semi-simple Lie groups and certain related semi direct groups. Lie groups and their representations. Proc. Summer School on Group Representations of the Bolyai Janos Math. Soc., Budapest (1971) 339363. Halsted, New York 1975Google Scholar
  40. [40]
    E. Wigner: The interpretation of Racah’s coefficients. Symposium on New Research Techniques in Physics, July 15–29, 1952. Published at Rio de Janeiro 1954; volume I, part IIIGoogle Scholar
  41. [41]
    J. Talman: Special functions — a group theoretic approach. Based on 1955 lectures by E. Wigner. Benjamin, New York 1968Google Scholar
  42. [42]
    E. Hewitt and E. Wigner: Note on a theorem of Magnus. Proc. Amer. Math. Soc. 8 740–744 (1957); volume I, part IIIGoogle Scholar
  43. [43]
    E. Wigner: Unitary representations of the inhomogeneous Lorentz group including reflections. In: Group theoretical concepts and methods in elementary particle physics, Feza Gursey (ed.). Gordon and Breach, New York 1964, pp. 37–80; volume I, part IIIGoogle Scholar
  44. [44]
    A. Saenz and E. Wigner: Unimodular matrices homomorphic to Lorentz transformations in n > 2 spacelike dimensions. Z. Naturforsch. 22 1293–1299 (1967); volume I, part IIIGoogle Scholar
  45. [45]
    E. Wigner: Condition that the irreducible representations of a group, considered as representations of a subgroup, do not contain any representation of the subgroup more than once. In: Spectroscopic and group theoretic methods in physics, F. Bloch et al. (ed.). North-Holland, Amsterdam 1968, pp. 131–136; volume I part IIIGoogle Scholar
  46. [46]
    E. Wigner: Restriction of irreducible representations of groups to a subgroup. Proc. Royal Soc. 322 181–189 (1971); volume I, part IIIGoogle Scholar
  47. [47]
    F. Goldrich and E. Wigner: Condition that all irreducible representations of a compact Lie group, if restricted to a subgroup, contain no representation more than once. Can. J. Math. 24 432–438 (1972); volume I, part IIIGoogle Scholar
  48. [48]
    G. Mackey: Symmetric and anti symmetric Kronecker squares and intertwining numbers of induced representations of finite groups. Amer. J. Math. 75, 387–405 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    G. Mackey: Multiplicity free representations of finite groups. Pacific J. Math. 8, 503–510 (1958)MathSciNetzbMATHGoogle Scholar
  50. [50]
    E. Wigner: Symmetry principles in old and new physics. Bull. Amer. Math. Soc. 74 793–815 (1968); volume III, part IGoogle Scholar
  51. [51]
    E. Wigner: Reduction of direct products and restrictions of representations to subgroups: the everyday tasks of the quantum theorists. Siam J. Appl. Math. 25 169–185 (1973); volume I, part IIIGoogle Scholar
  52. [52]
    J. von Neumann and E. Wigner: Über merkwürdige diskrete Eigenwerte. Phys. Z. 30 465–467 (1929); volume I, part III. This paper contains an error which is discussed in Belazs’ annotation, volume IV, part IGoogle Scholar
  53. [53]
    J. von Neumann and E. Wigner: Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z. 30 467–470 (1929); volume I, part IIIGoogle Scholar
  54. [54]
    P. Jordan, J. von Neumann and E. Wigner: On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35 29–64 (1934); volume I, part IIIGoogle Scholar
  55. [55]
    E. Wigner: On a modification of the Rayleigh-Schrödinger perturbation theory. Magy. Tud. Akad. Mat. Természettudomânyi Ert. 53 475–482 (1935); volume IV, part IGoogle Scholar
  56. [56]
    E. Wigner: Application of the Rayleigh-Schrödinger perturbation theory to the hydrogen atom. Phys. Rev. 94 77–78 (1954); volume I part IIIGoogle Scholar
  57. [57]
    E. Wigner: Normal form of antiunitary operators. J. Math. Phys. 1 409–413 (1960); volume I, part IIIGoogle Scholar
  58. [58]
    E. Wigner: Phenomenological distinction between unitary and antiunitary symmetry operators. J. Math. Phys. 1 414–416 (1960); volume I, part IIIGoogle Scholar
  59. [59]
    E. Wigner: On weakly positive matrices. Can. J. Math. 15 313–317 (1963); volume I, part IIIGoogle Scholar
  60. [60]
    E. Wigner: On a generalization of Euler’s angles. In: Group theory and its Applications. Academic Press, New York 1968, pp.119–129; volume I, part IIIGoogle Scholar
  61. [61]
    H.Schweinler and E. Wigner: Orthogonalization methods. J. Math. Phys. 11, 1693–1694 (1970); volume I, part IIIGoogle Scholar
  62. [62]
    E. Wigner: On a class of analytic functions from the quantum theory of collisions. Ann. Math. 53 36–67 (1951); volume I, part IIIGoogle Scholar
  63. [63]
    E. Wigner: On the connection between the distribution of poles and residues for an R-function and its invariant derivative. Ann. Math. 55 7–18 (1952); volume I, part IIIGoogle Scholar
  64. [64]
    E. Wigner: Derivative matrix and scattering matrix. Revista Mexicana de Fisica 1 91–101 (1952); volume I, part IIIGoogle Scholar
  65. [65]
    W. Schützer and J. Tiomno: On the connection of the scattering and derivative matrices with causality. Phys. Rev. 83, 249–251 (1951)ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    M. Gell-Mann, M. Goldberger and W. Thirring: Use of causality conditions in quantum theory. Phys. Rev. 95, 1612–1627 (1954)MathSciNetADSCrossRefzbMATHGoogle Scholar
  67. [67]
    E. Wigner: Simplified derivation of the properties of elementary transcendentals. Amer. Math. Monthley 59 669–683 (1952); volume I, part IIIGoogle Scholar
  68. [68]
    J. von Neumann and E. Wigner: Significance of Loewner’s theorem in the quantum theory of collisions. Ann. Math. 59 418–433 (1954); volume I, part IIIGoogle Scholar
  69. [69]
    K. Loewner: Uber monotone Matrixfunktionen. Math. Z. 38, 177–216 (1933)MathSciNetCrossRefGoogle Scholar
  70. [70]
    E. Wigner: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62 548–564 (1955); volume I, part IIIGoogle Scholar
  71. [71]
    E. Wigner: Characteristic vectors of bordered matrices with infinite dimensions, II. Ann. Math. 65 203–207 (1957); volume I, part IIIGoogle Scholar
  72. [72]
    E. Wigner: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67 325–327 (1958); volume I, part IIIGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • George W. Mackey

There are no affiliations available

Personalised recommendations