Skip to main content

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 23))

Abstract

The scanning tunnelling microscope, or STM, has emerged over the last few years as a fascinating new technique for examining conducting solid surfaces with high resolution [10.1–5]. A sharpened metal wire is brought close enough to the surface so that the electrons “tunnel” across the narrow gap (0.5–1.5 nm). A small bias potential (2 mV-2 V) provides the necessary potential difference for tunnelling to occur. As a result of the exponential dependence of tunnelling current on separation, the tip height above the surface can be kept constant by using a feedback controller. The tunnel current is monitored and applied to a “PI” controller which in turn drives a piezoelectric arm attached to the tip. By scanning another set of piezoelectric arms, the tip can be rastered in an XY plane whilst simultaneously following the surface corrugations. In this way, a three-dimensional image of the surface can be formed by plotting z(x, y). The imaging is non-destructive since the tip does not normally touch the surface during the scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel: Phys. Rev. lett. 49, 57 (1982)

    Article  Google Scholar 

  2. G. Binnig, H. Rohrer: Surf. Sci. 126, 236 (1983)

    Article  CAS  Google Scholar 

  3. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel: Phys. Rev. Lett. 50, 120 (1983)

    Article  CAS  Google Scholar 

  4. P.K. Hansma, J. Tersoff: J. Appl. Phys. 61(2), RI (1986)

    Google Scholar 

  5. C.F. Quate: Physics Today (August 1986) p.26

    Google Scholar 

  6. P. Lustenberger, H. Rohrer, R. Christoph, H. Siegenthaler: J. Electroanal. Chem. 243, 225 (1988)

    Article  CAS  Google Scholar 

  7. R. Sonnenfeld, P.K. Hansma. Science 232, 211 (1986)

    CAS  Google Scholar 

  8. W. Baumeister: Ultramicroscopy 25, 103 (1988)

    Article  Google Scholar 

  9. Proceedings of the Second International Conference on Scanning Tunnelling Microscopy, ed. by R.M. Feenstra, J. Vac. Sci. Technol. A6(2), 259–556 (1988)

    Google Scholar 

  10. S. Hosaki, S. Hosoki, K. Takata, K. Horiuchi, N. Natsuaki: Appl. Phys. Lett. 53 (6), 487 (1988)

    Article  Google Scholar 

  11. B.A. Sexton, G.F. Cotterill. J. Vac. Sci. Technol. A7, 2734 (1989)

    CAS  Google Scholar 

  12. L. Vasquez, A. Bartolome, R. Garcia, A. Buendia, A.M. Baro: Rev. Sci. Instrum. 59, 1286 (1988)

    Article  Google Scholar 

  13. C.A. Lang, J.K.H. Horber, T.W. Hansch, W.M. Heckl, H. Mohwald: J. Vac. Sci. Technol. A6 (2), 368 (1988)

    Article  CAS  Google Scholar 

  14. Xian-Liang Wu, C.M. Lieber: J. Phys. Chem. 92, 5556 (1988)

    Article  Google Scholar 

  15. R. Young, J. Ward, F. Scire: Rev. Sci. Instrum. 47, 1303 (1976)

    Article  Google Scholar 

  16. Proceedings of the First International Conference on Scanning Tunnelling Microscopy, ed. by N. Garcia, Surf. Sci. 181, 1–412 (1987)

    Google Scholar 

  17. IBM J. Res. Dev. 30, Nos.4 and 5, 353–572 (1986)

    Google Scholar 

  18. J. Simmons: J. Appl. Phys. 41, 1915 (1970)

    Article  Google Scholar 

  19. Modem Piezoelectric Ceramics, Vemitron Piezoelectric Division, 232 Forbes Road, Bedford, Ohio 44146, USA

    Google Scholar 

  20. Piezoelectric Ceramics, J. Van Randeraat, R.E. Setterington ( Mullard Ltd., London 1974 )

    Google Scholar 

  21. G. Binnig, D.P.E. Smith: Rev. Sci. Instrum. 57, 1688 (1986)

    Article  CAS  Google Scholar 

  22. E.W. Muller, T.T. Tsong: Field Ion Microscopy ( Elsevier, New York 1969 )

    Google Scholar 

  23. H. Liu, F. Fan, C.W. Lin, AJ. Bard: J. Am. Chem. Soc. 108, 3838 (1986)

    Article  CAS  Google Scholar 

  24. B.A. Sexton: Unpublished results

    Google Scholar 

  25. S. Park, C.F. Quate: Rev. Sci. Instrum. 58 (11), 2010 (1987)

    Article  CAS  Google Scholar 

  26. M. Salmeron, D.S. Kaufman, B. Marchon, S. Ferrer: Appl. Surf. Sci. 28, 279 (1987)

    Article  CAS  Google Scholar 

  27. M. Salmeron, B. Marchon, S. Ferrer, D.S. Kaufman: Phys. Rev. B35, 3036 (1987)

    Google Scholar 

  28. V.M. Hallmark, S. Chiang, J.F. Rabolt, J.D. Swalen, R.J. Wilson: Phys. Rev. Lett. 59, 2879 (1987)

    Article  CAS  Google Scholar 

  29. R.C. Jaklevic, L. Elie: Phys. Rev. Lett. 60, 120 (1988)

    Article  CAS  Google Scholar 

  30. G. Binnig, H. Fuchs, Ch. Gerber, E. Stoll, E. Tosatti: Europhys. Leu. 1, 31 (1986)

    Article  CAS  Google Scholar 

  31. Sang-il Park, C.F. Quate: Appl. Phys. Leu. 48, 112 (1986)

    Article  CAS  Google Scholar 

  32. R. Sonnenfeld, P.K. Hansma: Science 232, 211 (1986)

    Article  CAS  Google Scholar 

  33. E. Ganz, K. Sattler, J. Clarke: Phys. Rev. Leu. 60, 1856 (1988)

    Article  CAS  Google Scholar 

  34. J. Tersoff: Phys. Rev. Lett. 57, 440 (1986)

    Article  CAS  Google Scholar 

  35. B.A. Sexton, G.F. Cotterill, S. Fletcher, M.D. Home: J. Vac. Sci. Technol. A8 (1), 544 (1990)

    Article  CAS  Google Scholar 

  36. S. Okayama, M. Komuro, W. Mizutani, H. Tokumoto, M. Okano, K. Shimizu, Y. Kobayashi, F. Matsumoto, S. Waikiyama, M. Shigeno, F. Sakai, S. Fujiwara, O. Kitamura, M. Ono, K. Kajimura: J. Vac. Sci. Technol. A6(2), 440 (1988)

    Google Scholar 

  37. WJ. Kaiser, L.D. Bell, M.H. Hecht, F.J. Grunthaner: J. Vac. Sci. Technol. A6(2) 519 (1988)

    Google Scholar 

  38. R.S. Becker, J.A. Goluvchenko, E.G. McRae, B.S. Swartentruber: Phys. Rev. Leu. 55, 2028 (1985)

    Article  CAS  Google Scholar 

  39. Th. Berghaus, A. Brodde, H. Neddermeyer, St. Tosch: Surf. Sci. 184, 273 (1987)

    CAS  Google Scholar 

  40. R.J. Hamers, R.M. Tromp, J.E. Demuth: Phys. Rev. B 34, 5343 (1986)

    Article  CAS  Google Scholar 

  41. E.J. Van Loenen, J.E. Demuth, R.M. Tromp, R.J. Hamers: Phys. Rev. Lett. 58(4), 373 (1987)

    Google Scholar 

  42. R.J. Wilson, S. Chiang: Phys. Rev. Lett. 58, 369 (1987)

    Article  CAS  Google Scholar 

  43. J.A. Stroscio, R.M. Feenstra, A.P. Fein: Phys. Rev. Lett. 57, 2579 (1986)

    Article  CAS  Google Scholar 

  44. J.A. Kubby, J.E. Griffith, R.S. Becker, J.S. Vickers: Phys. Rev. B36, 6079 (1987)

    Google Scholar 

  45. R.M. Feenstra, J.A. Stroscio, J. Tersoff, A.P. Fein: Phys. Rev. Leu. 58, 1192 (1987)

    Article  CAS  Google Scholar 

  46. J. Tersoff, D.R. Hamann: Phys. Rev. Lett. 50, 1998; Phys. Rev. B 31, 805 (1985)

    CAS  Google Scholar 

  47. R. Wolkow, Ph. Avouris: Phys. Rev. Lett. 60, 1049 (1988)

    Article  CAS  Google Scholar 

  48. G. Binnig, C.F. Quate, Ch. Gerber: Phys. Rev. Lett. 56, 930 (1986)

    Article  Google Scholar 

  49. R. Sonnenfeld, B.C. Schardt: Appl. Phys. Lett. 49, 1172 (1986)

    Article  CAS  Google Scholar 

  50. P. Lustenberger, H. Rohrer, R. Christoph, H. Siegenthaler: J. Electroanal. Chem. 243, 225 (1988)

    Article  CAS  Google Scholar 

  51. S. Morita, I. Otsuka, T. Okada, H. Yokoyama, T. Iwasaki, N. Mikoshiba: Japan J. Appl. Phys. 26, L1853 (1987)

    Article  CAS  Google Scholar 

  52. M.HJ. Hottenhuis, M.A.J. Mickers, J.W. Gerritsen, J.P. Van der Eerden: Surf. Sci. 206, 259 (1988)

    Article  CAS  Google Scholar 

  53. M.A. Baro, G. Binnig, H. Rohrer, Ch. Gerber, E. Stoll, A. Baratoff, F. Salvan: Phys. Rev. Lett. 52, 1304 (1984)

    Article  CAS  Google Scholar 

  54. H. Ohtani, P.J. Wilson, S. Chiang, C.M. Mate: Phys. Rev. Lett. 60, 2398 (1988)

    Article  Google Scholar 

  55. J.A. Stroscio, R.M. Feenstra, A.P. Fein: Phys. Rev. Lett. 58, 1668 (1987)

    Article  CAS  Google Scholar 

  56. U. Staufer, R. Wiesendanger, L. Eng, L. Rosenthaler, H.R. Hidber, H.J. Guntherodt, N. Garcia: J. Vac. Sci. Technol. A6(2), 537 (1988)

    Google Scholar 

  57. E.E. Ehrichs, R.M. Silver, A.L. DeLozanne: J. Vac. Sci. Technol. A6(2), 540 (1988)

    Google Scholar 

  58. Unpublished results, this laboratory

    Google Scholar 

  59. G. Travaglini, H. Rohrer, M. Amrein, H. Gross: Surf. Sci. 181, 380 (1987)

    Article  CAS  Google Scholar 

  60. M. Amrein, A. Stasiak, H. Gross, E. Stoll, G. Travaglini: Science 240, 514 (1988)

    Article  CAS  Google Scholar 

  61. R. Guckenberger, C. Kosslinger, W. Baumeister: J. Vac. Sci. Technol. A6(2), 383 (1988)

    Google Scholar 

  62. T. Sleator, R. Tycko: Phys. Rev. Lett. 60, 1418 (1988)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sexton, B.A. (1992). Scanning Tunnelling Microscopy. In: O’Connor, D.J., Sexton, B.A., Smart, R.S.C. (eds) Surface Analysis Methods in Materials Science. Springer Series in Surface Sciences, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02767-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02767-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02769-1

  • Online ISBN: 978-3-662-02767-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics