Skip to main content

Magnetic Resonance Spectroscopy

  • Chapter
Inborn Metabolic Diseases

Summary

Information about intracellular metabolites and pH can be obtained directly and non-invasively from human tissues in vivo by using 31P magnetic resonance spectroscopy. These data can be used in the diagnosis of inherited metabolic conditions which result in abnormal cellular energetics. Defects in the glycogenolytic, glycolytic and oxidative phosphorylation pathways, and other types of disorders, lead to abnormalities identifiable in the magnetic resonance spectra. Because the overall response of the tissue to the basic biochemical abnormality is observed, magnetic resonance spectroscopy should prove to be particularly valuable in the identification and study of new and unusual disorders not easily diagnosed by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Radda GK (1986) The use of NMR spectroscopy for the understanding of disease. Science 233: 640–645

    Article  PubMed  CAS  Google Scholar 

  2. Radda GK, Bore PJ, Rajagopalan B (1984) Clinical aspects of 37P NMR spectroscopy. Br Med Bull 40: 155–159

    PubMed  CAS  Google Scholar 

  3. Radda GK, Rajagopalan B, Taylor DJ (1989) Biochemistry in vivo: an appraisal of clinical magnetic resonance spectroscopy. Magn Reson Quart 5: 122–151

    CAS  Google Scholar 

  4. Radda GK, Taylor DJ (1985) Applications of nuclear magnetic resonance spectroscopy in pathology. Int Rev Exp Pathol 27: 1–58

    Article  PubMed  CAS  Google Scholar 

  5. Bottomley PA (1989) Human in vivo NMR spectroscopy in diagnostic medicine: clinical tool or research probe? Radiology 170: 1–15

    PubMed  CAS  Google Scholar 

  6. Arnold DL, Tylor DJ, Radda GK (1985) Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 18: 189–196

    Article  PubMed  CAS  Google Scholar 

  7. Taylor DJ, Brosnan MJ, Arnold DL, Bore PJ, Styles P, Walton J, Radda GK (1989) Ca’-+-ATPase deficiency in a patient with an exertional muscle pain syndrome. J Neurol Neurosurg Psychol 51: 1425–1433

    Google Scholar 

  8. Oberhaensli RD, Rajagopalan B, Taylor DJ, Radda GK, Collins J, Leonard JV (1988) Study of liver metabolism in glucose-6-phosphatase deficiency (glycogen storage disease type 1A) by 31P magnetic resonance spectroscopy. Pediatr Res 23: 375–380

    Article  PubMed  CAS  Google Scholar 

  9. Oberhaensli RD, Rajagopalan B, Taylor DJ, Radda GK, Collins JE, Leonard JV, Schwartz H, Herschkowitz N (1987) Study of hereditary fructose intolerance using 31P magnetic resonance spectroscopy. Lancet 2: 931–934

    Article  PubMed  CAS  Google Scholar 

  10. Oberhaensli RD, Rajagopalan B, Taylor DJ, Collins J, Leonard JV, Radda GK (1987) Study of inborn errors of carbohydrate metabolism by 31-phosphorus magnetic resonance spectroscopy (31P MRS). Eur J Clin Invest 17: A48

    Google Scholar 

  11. Ross BD, Radda GK, Gadian DG, Rocker G, Esiri M, Falconer-Smith J (1981) Examination of a case of suspected McArdle’s syndrome by 31P NMR. N Engl J Med 304: 1338–1342

    Article  PubMed  CAS  Google Scholar 

  12. Argov Z, Bank WJ, Maris J, Chance B (1987) Muscle energy metabolism in McArdle’s syndrome by in vivo phosphorus magnetic resonance spectroscopy. Neurology 37: 1720–1724

    Article  PubMed  CAS  Google Scholar 

  13. Argov Z, Bank WJ, Maris J, Leigh JS, Chance B (1987) Muscle energy metabolism in human phosphofructokinase deficiency as recorded by 31P nuclear magnetic resonance spectroscopy. Ann Neurol 22: 46–51

    Article  PubMed  CAS  Google Scholar 

  14. Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK (1983) Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med 1: 77–94

    PubMed  CAS  Google Scholar 

  15. Argov Z, Bank WJ, Boden B, Ro YI, Chance B (1987) Muscle 31P-NMR in partial glycolytic block: in vivo study of phosphoglycerate mutase deficient patient. Arch Neurol 44: 614–617

    Article  PubMed  CAS  Google Scholar 

  16. Lewis SF, Haller RG, Cook JD, Nunnally RL (1985) Muscle fatigue in McArdle’s disease studied by 31P-NMR: effect of glucose infusion. J Appl Physiol 59: 1991–1994

    PubMed  CAS  Google Scholar 

  17. Edwards RHT, Dawson MJ, Wilkie DR, Gordon RE, Shaw D (1982) Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet 1: 725–731

    Article  PubMed  CAS  Google Scholar 

  18. Frostick SP, Taylor DJ, Dolecki M, Radda GK (1987) 31-Phosphorus MRS studies of denervation and reinnervation of the anterior deltoid. In: Book of abstracts of the 6th annual meeting, Society of Magnetic Resonance in Medicine. Society of Magnetic Resonance in Medicine, Berkeley, California, p 575

    Google Scholar 

  19. Griffiths RD, Cady EB, Edwards RHT, Wilkie DR (1985) Muscle energy metabolism in Duchenne dystrophy studied by 31P NMR: controlled trials show no effect of allopurinol or ribose. Muscle Nerve 8: 760–767

    Article  PubMed  CAS  Google Scholar 

  20. Newman RJ, Bore PJ, Chan L, Gadian DG, Styles P, Taylor DJ, Radda GK (1982) Nuclear magnetic resonance studies of forearm muscle in patients with Duchenne dystrophy. Br Med J 284: 1072–1074

    Article  CAS  Google Scholar 

  21. Younkin DP, Berman P, Sladky J, Chee C, Bank W, Chance B (1987) 37P NMR changes in Duchenne muscular dystrophy: age related metabolic changes. Neurology 37: 165–169

    Article  PubMed  CAS  Google Scholar 

  22. Chance B, Leigh JS, Smith DS, Nioka S, Clark BJ (1986) Phosphorus magnetic resonance studies of the role of mitochondria in the disease process. Ann NY Acad Sci 488: 140–153

    Article  CAS  Google Scholar 

  23. Argov Z, Bank WJ, Maris J, Peterson P, Chance B (1987) Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology 37: 257–262

    Article  PubMed  CAS  Google Scholar 

  24. Taylor DJ, Styles P, Matthews PM, Arnold DL, Gadian DG, Radda GK (1986) Energetics of human muscle: exercise-induced ATP depletion. Magn Reson Med 3: 44–54

    Article  PubMed  CAS  Google Scholar 

  25. Arnold DL, Matthews PM, Radda GK (1984) Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med 1: 307–315

    Article  PubMed  CAS  Google Scholar 

  26. Radda GK, Bore PJ, Gadian D, Ross BD, Styles P, Taylor DJ, Morgan-Hughes J (1982) 31-P NMR examination of two patients with NADH-CoQ reductase deficiency. Nature 295: 608–609

    Article  PubMed  CAS  Google Scholar 

  27. Hayes DJ, Hilton-Jones D, Arnold DL, Galloway GJ, Styles P, Duncan J, Radda GK (1985) A mitochondria) encephalomyopathy. A combined 31P magnetic resonance and biochemical investigation. J Neurol Sci 71: 283–290

    Article  Google Scholar 

  28. Hayes DJ, Taylor DJ, Bore PJ, Hilton-Jones D, Arnold DL, Squier MV, Gent AE, Radda GK (1987) An unusual metabolic myopathy: a malate-aspartate shuttle defect. J Neurol Sci 82: 27–39

    Article  PubMed  CAS  Google Scholar 

  29. Eleff S, Kennaway NG, Buist NRM, Darley-Usmar VM, Capaldi RA, Bank WJ, Chance B (1984)’ÚP-NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sci USA 81: 3529–3533

    Article  Google Scholar 

  30. Argov Z, Maris J, Fishbeck K, Bank W, Chance B (1985) In vivo study of lipid myopathies by ‘1P magnetic resonance imaging. Ann Neurol 18: 119–120

    Google Scholar 

  31. Rajagopalan B, Brindle KM, Harington RM, Oberhaensli R, Pippard MJ, Weatherall DJ, Radda GK (1988) An investigation into the nature of intracellular iron in iron overload. Clin Sci 74 [Suppl 18]: 60 P

    Google Scholar 

  32. Gadian DG, Radda GK, Ross BD, Hockaday J, Bore P, Taylor D, Styles P (1981) Examination of a myopathy by nuclear magnetic resonance. Lancet 2: 774–775

    Article  PubMed  CAS  Google Scholar 

  33. Duboc D, Jehenson P, Tran Dinh S, Marsac C, Syrota A, Fardeau M (1987) Phosphorus NMR spectroscopy study of muscular enzyme deficiencies involving glycogenolysis and glycolysis. Neurology (NY) 37: 663–671

    Article  CAS  Google Scholar 

  34. Chance B, Eleff S, Bank W, Leigh JS Jr, Warnell R (1982) 31P NMR studies of control of mitochondria] function in phosphofructokinase-deficient human skeletal muscle. Proc Natl Acad Sci USA 79: 7714–7718

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, D.J. (1990). Magnetic Resonance Spectroscopy. In: Fernandes, J., Saudubray, JM., Tada, K. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02613-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02613-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02615-1

  • Online ISBN: 978-3-662-02613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics