Soliton-like Excitations and Their Interactions in the Continuum Model of Polyacetylene

  • Y. Onodera
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 30)


Polyacetylene is a long-chain polyene synthesized by acetylene polymerization. As a consequence of its one-dimensional geometrical structure and its conjugate double bond of it electrons, any local modification in the geometrical configuration of the chain exerts a strong influence on the electronic energy levels, often giving rise to bound levels. The electrons, in turn, favor local distortions of the chain. In short, polyacetylene is a nonlinear system, where electrons and atomic displacements are strongly coupled.


Electronic Energy Level Displacement Pattern Soliton Model Steep Descent Path Conjugate Double Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. P. Su, J. R. Schrieffer, and A. J. Heeger: Phys. Rev. Lett. 42, 1698 (1979);CrossRefGoogle Scholar
  2. W. P. Su, J. R. Schrieffer, and A. J. Heeger: Phys. Rev. Lett.and Phys. Rev. B 22, 2099 (1980);Google Scholar
  3. W. P. Su, J. R. Schrieffer, and A. J. Heeger: Phys. Rev. Lett.28, 1138 (E) (1983)Google Scholar
  4. 2.
    M. J. Rice: Phys. Lett. 71A, 152 (1979)CrossRefGoogle Scholar
  5. 3.
    For a review, see, e.g., D. Baeriswyl, G. Harbeke, H. Kiess, and W. Meyer: in Electronic Properties of Polymers, edited by J. Mort and G. Pfister ( Wiley, New York, 1982 ) p. 267Google Scholar
  6. 4.
    H. Takayama, Y. R. Lin-Liu, and K. Maki: Phys. Rev. B 21, 2388 (1 980)Google Scholar
  7. 5.
    W. P. Su and J. R. Schrieffer: Proc. Natl. Acad. Sci. USA 77, 5626 (1980)CrossRefGoogle Scholar
  8. 6.
    S. A. Brazovskii and N. N. Kirova: JETP Lett. 33, 4 (1981)Google Scholar
  9. 7.
    D. K. Campbell and A. R. Bishop: Phys. Rev. B 24, 4859 (1981)CrossRefGoogle Scholar
  10. 8.
    D. K. Campbell and A. R. Bishop: Nucl. Phys. B 200, 297 (1982)CrossRefGoogle Scholar
  11. 9.
    A. R. Bishop and D. K. Campbell: in Nonlinear Problems: Present and Future, edited by A. R. Bishop, D. K. Campbell, and B. Nicolaenko ( North-Holland, Amsterdam, 1982 ) p. 195Google Scholar
  12. 10.
    S. Etemad, A. Feldblum, A. G. MacDiarmid, T.-C. Chung, and A. J. Heeger: J. Phys.(Paris) 44, C3–413 (1983)CrossRefGoogle Scholar
  13. 11.
    J. H. Kaufman, J. W. Kaufer, A. J. Heeger, R. Kaner, and A. G. MacDiarmid: Phys. Rev. B 26, 2327 (1982).CrossRefGoogle Scholar
  14. 12.
    Y. R. Lin-Liu and K. Maki: Phys. Rev. B 22, 5754 (1980)CrossRefGoogle Scholar
  15. 13.
    Y. Onodera and S. Okuno: J. Phys. Soc. Jpn 52, 2478 (1983)CrossRefGoogle Scholar
  16. 14.
    S. Okuno and Y. Onodera: J. Phys. Soc. Jpn 52, 3495 (1983).CrossRefGoogle Scholar
  17. 15.
    G. L. Lamb, Jr.: Elements of Soliton Theory ( Wiley, New York, 1980 )Google Scholar
  18. 16.
    I. S. Frolov: Dokl. Akad. Nauk USSR 207, 44 (1972)Google Scholar
  19. 17.
    R. F. Dashen, B. Hasslacher, and A. Neveu: Phys. Rev. D 12, 2443 (1975)CrossRefGoogle Scholar
  20. 18.
    Y. Onodera: Phys. Rev. B 30, in press (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Y. Onodera
    • 1
  1. 1.Physics DepartmentTokyo Metropolitan UniversitySetagaya-ku Tokyo 158Japan

Personalised recommendations