Skip to main content

Physiological Conditions and Methodological Prerequisits for the In-Vivo Measurement of Substrate Transport in Tumors

  • Conference paper
  • 37 Accesses

Abstract

During the last decades scintigraphy has emerged to play an essential role in tumor detection and staging. In view of the recent rapid development of newer imaging techniques, it appears useful to reflect on the clinical applicability of the specific potential of scintigraphy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barcroft H (1974) Circulation in skeletal muscle. In: Hamilton WF, Dow PH (eds) Circulation Vol 11. Baltimore. Williams & Wilkins, pp 1353–1386 (Handbook of Physiology)

    Google Scholar 

  2. Beck RE, Schultz IS (1972) Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry. Biochim Biophys Acta 255; 273–303

    Article  PubMed  CAS  Google Scholar 

  3. Bischoff KB (1975) Some fundamental considerations of the applications of pharacok inetics to cancer chemotherapy. Cancer Chemother Rep 59; 777–793

    PubMed  CAS  Google Scholar 

  4. Bolstad. I (1977) Varpro Package. Computer Science Opt. Stanford Univ.

    Google Scholar 

  5. Chamayou JMF (1979) Numerical experiments in identification of parameters in differential and partial differential equations. Comput Phys Comm 17; 217–226

    Article  CAS  Google Scholar 

  6. Crone C (1963) Permeability of capillaries in cations organs as determined by use of the indicator diffusion method. Acta Physiol Scand 58; 292–305

    Article  PubMed  CAS  Google Scholar 

  7. Eichling JO,.Raichle ME, Grubb RL Jr., Ter-Pogossain MM (1974) Evidence of the limitations of water as a freshly diffusible tracer in brain in the rhesus monkey. Circulation Res 35; 358–364

    Article  Google Scholar 

  8. Foster DO, Pardee AB (1969) Transport of amino acids by confluent and nonconfuent 3T3 and polyoma virus-transformed 3T3 cells growing an glass cover slips. J Riot Chem 244; 2675–81

    CAS  Google Scholar 

  9. Getbard AS, Benua RS, Laughlin JS, Rosen G, Reiman RE, McDonaldJM (1979) Quantitative scanning of osteogenic sarcoma with nitrogen-13 labeled L-glutamate. J Nucl Med 20; 782–784

    Google Scholar 

  10. Goldstein H, McNeil BJ, Zufall E, Treves S (1980) Is there still a place for bone scanning in Ewing’s sarcoma? J Nucl Med 21: 10–12

    PubMed  CAS  Google Scholar 

  11. Golub GH, Pereyra V (1973) The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate. SIAM J Numer Anal 10; 413–432

    Article  Google Scholar 

  12. Hatanaka M (1974) Transport of sugars in tumor membranes. Biochim Biophys Acta (Review on Cancer) 355: 77–104

    Article  CAS  Google Scholar 

  13. Hubner KF, King P, Gibbs WD, Partain CL, Washburn LC, Hayes RL, Holloway E (1980) Clinical investigations with “C-labeled amino acids using positron emission computerized tomography in patients with neoplastic diseases. IAEA-SM-247/90

    Google Scholar 

  14. Isselbacher KJ (1972) Increased uptake of amino acids and 2-Deoxy-D-Glucose by virus-transformed cells in culture. Proc Natl Acad Sci US 69, 3; 585–589

    Article  CAS  Google Scholar 

  15. Knapp WH, Helus F, Ostertag H, Tillmanns H, Kibler W (1982) Uptake and turnover of L) 1N)-Glutamate in the nomial human heart and in patients with coronary artery disease. Eur J Nucl Med 7; 211–215

    PubMed  CAS  Google Scholar 

  16. Knapp WH, Helus F, Sinn HJ,Matzku S, Ostertag H, Brandeis WE, Braun A (1983) °N L-glutamate uptake in malignancy. Submitted for publication

    Google Scholar 

  17. McKillop JH, Etcubanas E, Coils ML (1981) The indications for and limitations of bone scintigraphy in osteogemic sarcoma: a review of 55 patients. Cancer 48: 1133–1138

    Article  Google Scholar 

  18. Oberdorfer F, Helus F, Maier-Borst W, Silvester DJ (1982) The synthesis of (1-“C) butanol. Radiochem Radioanal Letters 53, 4; 237–252

    CAS  Google Scholar 

  19. Raichle ME, EichlingJO, Grubb RL Jr (1974) Brain permeability of water. Arch Neurol 30; 319–321

    Article  PubMed  CAS  Google Scholar 

  20. Raichle ME, Eichling JO, Straatmann MG, Welch MJ, Larson KB, Ter-Pogossian MM (1976) Blood-brain barrier permeability of 11C-labeled alcohols and 11O-labeled water. Am J Physiol 2; 543–552

    Google Scholar 

  21. Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197; 1205–1210

    PubMed  CAS  Google Scholar 

  22. Rosen G, Gelbard AS, Benua RS, Laughlin.1, Reiman RE, McDonaldJM (1979) N-13 glutamate scanning to detect the early response of bone tumors to chemotherapy. Proc Am Assoc Cancer Res., March 1979; 189

    Google Scholar 

  23. Sejrsen P (1970) Single injection, external registration method for measurement of capillary extraction. In: Crone C, Lassen N (eds) Capillary Permeability, Academic, New York, pp. 256–260

    Google Scholar 

  24. Sokoloff L, Reivich M, Kennedy C, DesRosiem Ml-1, Patlak CS, Pettigrew KD, Sakurada D, Shinohara M (1977) The (10C)Deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28; 897–916

    Google Scholar 

  25. Som P, Atkins HL, Bandoypadhyay D, Fowler 1S, Mac Gregor RR, Matsui K, Oster ZH, Sacker DF, Shiue CY, Tamer H, Wan C-N, Wolf AP, Zabinski SV (1980) A Fluorinated glucose analog, 2-Fluoro-2-deoxy-D-glucose (F-18): Nontoxic tracer for rapid tumor detection. J Nucl Med 21; 670–675

    Google Scholar 

  26. Swabb EA, Wei J, Guillino PM (1974) Diffusion and convection in normal and neo-plastic tissues. Cancer Res 34; 2814–2822

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knapp, W.H., Chamayou, J.M.F., Ostertag, H., Helus, F., Matzku, S. (1984). Physiological Conditions and Methodological Prerequisits for the In-Vivo Measurement of Substrate Transport in Tumors. In: Knapp, W.H., Vyska, K. (eds) Current Topics in Tumor Cell Physiology and Positron-Emission Tomography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02393-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02393-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13007-9

  • Online ISBN: 978-3-662-02393-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics