Skip to main content

Flow Pattern Transitions in Gas-Liquid Systems: Measurement and Modeling

  • Chapter
Multiphase Science and Technology

Abstract

The need for reliable design methods has been the driving force behind a very large research effort in two-phase gas-liquid flow over the past 25 years. This work has been carried out at universities, national laboratories, and at industrial research and design organizations in many countries of the world. The result of this effort has been an extraordinary number of publications on the subject. Over 7500 papers, theses, and reports have appeared in these 25 years. Furthermore, the rate of publication has been increasing in recent years. Most predictive correlations that have been proposed as a result of all this work have been based largely on experiment and are valid only under conditions near that of the experiment. It is precisely for this reason that so many publications result. Each time a new condition is to be investigated new experiments are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, S. S., G. A. Gregory, and G. W. Govier 1973, An Analysis of Horizontal Stratified Two-Phase Flow in Pipes. Can. J. Chem. Eng. vol. 51, p. 280.

    Article  Google Scholar 

  • Akagawa, K., and T. Sakaguchi 1966, Fluctuation of Void Ratio in Two-Phase Flow. Bull. ASME, vol. 9, p. 104.

    Google Scholar 

  • Albertson, M. L., J. R. Barton, and D. B. Simons 1966, Fluid,Mechanics for Engineers. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Baker, O. 1954, Simultaneous Flow of Oil and Gas. Oil Gas J. vol. 53, p. 185.

    Google Scholar 

  • Baker, O. 1958, Multiphase Flow in Pipelines 1958, Pipeline News, June, 23.

    Google Scholar 

  • Barnea, D., O. Shoham, and Y. Taitel 1980, Flow Pattern Characterization in Two-Phase Flow by Electrical Conductance Probe. Int. J. Multiphase Flow Vol. 6, p. 387.

    Article  Google Scholar 

  • Barnea, D., O. Shoham, and Y. Taitel 1982, Flow Pattern Transition for Downward Inclined Two-Phase Flow; Horizontal to Vertical. Chem. Eng. Sci. vol. 37, p. 735.

    Article  CAS  Google Scholar 

  • Barnea, D., O. Shoham, and Y. Taitel 1982b, Flow Pattern Transition for Vertical Downward Two-Phase Flow. Chem. Eng. Sci. vol. 37, p. 741.

    Article  CAS  Google Scholar 

  • Bergles, A. E., and M. Suo 1966, Investigation of Boiling-Water Flow Regimes at High Pressure. Dynatech Report No. NYC-3304–8, HTFS 1909.

    Google Scholar 

  • Bergles, A. E., J. P. Roos, and J. G. Bourne 1968, Investigation of Boiling Flow Regimes and Critical Heat Flux. AEC Report NYO-3304–13, Dynatech Corporation, Cambridge, Ma.

    Google Scholar 

  • Breber, G. J., W. Palen, and J. Taborek 1980, Prediction of Horizontal Tube-side Condensation of Pure Components Using Flow Regime Criteria. J. Heat Transfer, vol. 102, p. 471.

    Article  CAS  Google Scholar 

  • Brock, R. R. 1970, Periodic Permanent Roll Waves. Proc. Am. Soc. Civ. Eng. vol. 96, HYD 12, p. 25–65.

    Google Scholar 

  • Brodkey, R. S. 1967, The Phenomena of Fluid Motion. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Butterworth, D. 1972, A Visual Study of Mechanism in Horizontal Air-Water Flow. Atomic Energy Research Establishment Report M2556, Harwell, England.

    Google Scholar 

  • Calder, A. C. 1976, Flow-Regime Characterization for Horizontal To-Phase Steam Flow. University of California, Lawrence Livermore Laboratory, VCRL-52186.

    Google Scholar 

  • Calderbank, P. H. 1958, Physical Rate Processes in Industrial Fermentation. I. The Interfacial Area in Gas Area in Gas-Liquid Contracting with Mechanical Agitation. Trans. Inst. Chem. Eng. vol. 36, p. 443.

    Google Scholar 

  • Chaudry, A. B., A. C. Emerton, and R. Jackson 1965, Flow Regimes in the Concurrent Upward Flow of Water and Air. Paper presented at the Symposium on Two-Phase Flow, Exeter, England.

    Google Scholar 

  • Chu, K. T. 1973, Statistical Characteristics and Modelling of Wavy Liquid Film in Vertical Two-Phase Flow. Ph.D. thesis, University of Houston.

    Google Scholar 

  • Clay, P. H. 1950, The Mechanism of Emulsion Formation in Turbulent Flow, Part I. Proc. R. Soc. London Ser. A, vol. 200, p. 375.

    Article  Google Scholar 

  • Collins, R., F. F. DeMoraes, J. F. Davidson, and D. Harrison 1978, The Motion of a Large Gas Bubble Rising through Liquid Flowing in a Tube. U. Fluid Mech. vol. 89, p. 497.

    Article  Google Scholar 

  • Davis, E. J., and M. M. David 1961, Heat Transfer to High-Quality Steam-Water Mixtures Flowing in a Horizontal Rectangular Duct. Can. J. Chem. Eng. vol. 39, p. 99.

    Article  CAS  Google Scholar 

  • Derbyshire, R. T. P., G. F. Hewitt, and B. Nicholls 1969, X-Radiography of Two-Phase Gas-Liquid Flow. Atomic Energy Research Establishment Report M-1321; Harwell, England.

    Google Scholar 

  • Dukler, A. E. 1969, Gas Liquid Flow in Pipelines. I. Research Results. New York: American Gas Association.

    Google Scholar 

  • Dukler, A. E., and M. G. Hubbard 1975, A Model for Gas-Liquid Slug Flow in Horizontal and Near-Horizontal Tubes. Ing. Eng. Chem. Fundamentals vol. 14, p. 337.

    Article  CAS  Google Scholar 

  • Dukler, A. E., M. Wicks, and R. G. Cleveland 1964, Frictional Pressure Drop in Two-Phase Flow. A. A Comparison of Existing Correlations for Pressure Loss and Holdup. AIChEJ. vol. 10, p. 38.

    Article  CAS  Google Scholar 

  • Dukler, A. E., M. Wicks, and R. G. Cleveland 1964, Friction Pressure Drop in Two-Phase Flow. B. An Approach through Similarity Analysis. AIChEJ. vol. 10, p. 44.

    Article  CAS  Google Scholar 

  • Duns, Jr,.H., and N. C. J. Ros 1963, Vertical Flow of Gas and Liquid Mixtures from Boreholes. Proc. 6th World Petroleum Congress, Frankfurt.

    Google Scholar 

  • Fernandes, R. 1981, Experimental and Theoretical Studies of Isothermal Upwards Gas-Liquid Flow in Vertical Tubes, Ph.D. thesis, University of Houston.

    Google Scholar 

  • Fiori, M. P., and A. E. Bergles 1966, A Study of Boiling Water Flow Regimes at Low Pressure. Report 5382–40, Department of Mechanical Engineering, MIT.

    Google Scholar 

  • Fulford, G. D. 1964, The Flow of Liquids in Thin Films. Adv. Chem. Eng. vol. 5, p. 151.

    Article  CAS  Google Scholar 

  • Gazley, C. 1949, Interfacial Shear and Stability in Two-Phase Flow. Ph.D. thesis, University of Delaware, Newark.

    Google Scholar 

  • Golan, L. P., and A. H. Stenning 1969, Two-Phase Vertical Flow Maps. Proc. Inst. Mech. Eng. vol. 184, p. 108.

    Google Scholar 

  • Gould, T. L. 1974, Vertical Two-Phase Flow Steam-Water Flow in Geothermal Wells. J. Pet. Technol. vol. 26, p. 833.

    Google Scholar 

  • Govier, G. W., and K. Aziz 1972, The Flow of Complex Mixtures in Pipes. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Govier, G. W., B. A. Radford, and J. Sc. Dunn 1957, The Upward Vertical Flow of Air-Water Mixtures: I. Effect of Air and Water Rates on Flow Pattern Holdup and Pressure Drop. Can J. Chem. Eng. vol. 35, pp. 58–70.

    CAS  Google Scholar 

  • Grace, J. R., and D. Harrison 1967, Influence of Bubble Shape on the Rising Velocities of Large Bubbles. Chem. Eng. Sci. vol. 22, p. 1337.

    Article  CAS  Google Scholar 

  • Griffith, P., and G. B. Wallis 1961, Two-Phase Slug Flow. J. Heat Transfer vol. 83, p. 307.

    Article  CAS  Google Scholar 

  • Griffith, P., and J. Snyder 1964, The Bubbly-Slug Transition in a High-Velocity Two-Phase Flow. MIT Report 5003–29.

    Google Scholar 

  • Haberstrah, R. E., and P. Griffith 1965, The Slug Annular Two-Phase Flow Regime Transition. ASME Paper 65HT-52.

    Google Scholar 

  • Harmathy, T. Z. 1960, Velocity of Large Drops and Bubbles in Media of Infinite or Restricted Extent. AIChE J. vol. 6, p. 281.

    Article  CAS  Google Scholar 

  • Hewitt, G. F., and N. S. Hall-Taylor 1970, Annular Two-Phase Flow. New York: Pergamon.

    Google Scholar 

  • Hewitt, G. F. 1978, Measurement of Two-Phase Flow Parameters. New York: Academic.

    Google Scholar 

  • Hewitt, G. F., and D. N. Roberts 1969, Studies of Two-Phase Flow Patterns by Simultaneous X-Rays and Flash Photography. Atomic Energy Research Establishment Report M-2159; Harwell, England.

    Google Scholar 

  • Hinze, J. O. 1955, Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes. AIChE J. vol. 1, p. 289.

    Article  CAS  Google Scholar 

  • Hoogendorn, C. J., and A. A. Buitelaar 1961, The Effect of Gas Density and Gradual Vaporization on Gas-Liquid Flow in Horizontal Pipes. Chem. Eng. Sci. vol. 16, p. 208.

    Article  Google Scholar 

  • Hsu, Y. Y., and R. W. Graham 1963, A Visual Study of Two-Phase Flow in a Vertical Tube with Heat Addition. NASA Technical Note D-1564.

    Google Scholar 

  • Hsu, Y. Y., F. F. Simon, and R. W. Graham 1963, Application of Hot-Wire Anemometry for Two-Phase Flow Measurements. Paper presented at the ASME Winter Meeting, Philadelphia, PA.

    Google Scholar 

  • Hubbard, M. G., and A. E. Dukler 1966, The Characterization of Flow Regimes for Horizontal Two-Phase Flow. Proceedings of the Heat Transfer and Fluid Mechanics Institute- (Saad, M. A. and J. A. Moller, eds.), Stanford: Stanford University Press.

    Google Scholar 

  • Isbin, H. S., R. H. Moen, R. O. Wickey, D. R. Mosher, and H. C. Larson 1959, Two-Phase Steam-Water Pressure Drop. Chem. Eng. Sgmp. Ser. vol. 55, no. 23, p. 75.

    Google Scholar 

  • Jeffreys, J. 1925, On the Formation of Water Waves by Wind. Proc. R. Soc. London vol. A107, p. 189.

    Article  Google Scholar 

  • Jeffreys, H. 1926, On the Formation of Waves by Wind. Proc. R. Soc. London vol. A100, P. 241.

    Google Scholar 

  • Jones, O.C., and N Zuber 1975, The Interrelation between Void Fraction Fluctuations and Flow Pattern in Two-Phase Flow. Int. J. Multiphase Flow vol. 2, p. 273.

    Article  Google Scholar 

  • Kordyban, E. S., and T. Ranov 1970, Mechanism of Slug Formation in Horizontal Two-Phase Flow. J. Basic Eng. Ser. D. vol. 92, No. 4, p. 85.

    Google Scholar 

  • Levich, V. G. 1962, Physicochemical Hydrodynamics. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Lockhart, R. W., and R. C. Martinelli 1949, Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes. Chem. Eng. Frog. vol. 45, p. 39.

    Google Scholar 

  • Mandhane J. M., G. A. Gregory, and K. Aziz 1974, A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes. Int. J. Multiphase Flow vol. 1, p. 537.

    Article  Google Scholar 

  • Martin, C. S. 1973, Transition from Bubbly to Slug Flow of a Vertically Downward Air-Water Flow. Proc. ASME Symposium, Atlanta.

    Google Scholar 

  • Milne-Thomson, L. M. 1960, Theoretical Hydrodynamics. New York: Macmillan.

    Google Scholar 

  • Miyagi, O. 1925, On Air Bubbles Rising in Water. Phil. Mag. vol. 50, No. 295, p. 112.

    CAS  Google Scholar 

  • Moissis, R., and P. Griffith 1962, Entrance Effects in a Two-Phase Slug Flow. J. Heat Transfer vol. 84, p. 29.

    Article  Google Scholar 

  • Nicklin, D. J., J. O. Wilkes, and J. F. Davidson 1962, Two-Phase Flow in Vertical Tubes. Trans. Inst. Chem. Eng. vol. 40, p. 61.

    CAS  Google Scholar 

  • Oshinowo, T. and M. E. Charles 1974, Vertical Two-Phase Flow. II. Holdup and Pressure Drop. Can. J. Chem. Eng. vol. 56, p. 438.

    Article  Google Scholar 

  • Palen, J. W., G. Breber, and J. Taborek 1977, Prediction of Flow Regimes in Horizontal Tube-Side Condensation. Paper presented at 17th National Heat Transfer Conf. AIChE/ASME, Salt Lake City.

    Google Scholar 

  • Patel, R. P. 1971, Turbulent Jets and Wall Jets in Uniform Streaming Flow. Aeronaut. Q. vol. 23, p. 311.

    Google Scholar 

  • Pushkina, O. L., and Y. L. Sorokin 1962, Breakdown of Liquid Film Motion in Vertical Tubes. Heat Trans. Sov. Res. vol. 1, p. 151.

    Google Scholar 

  • Radovcich, N. A. and R. Moissis 1962, The Transition from Two–Phase Bubble Flow to Slug Flow. MIT Report 7–7673–22.

    Google Scholar 

  • Raisson, C. 1965 Flow Regime Studies up to Critical Heat Flux Conditions at 80 kg/m2. CEA Grenoble, Report No. TT22.

    Google Scholar 

  • Schlichting, H. 1968, Boundary Layer Theory. New York: McGraw-Hill.

    Google Scholar 

  • Sevik, M., and S. H. Park 1973, The Splitting of Drops and Bubbles by Turbulent Fluid Flow. J. Fluid Eng. vol. 95, p. 53.

    Article  Google Scholar 

  • Shah, M. M. 1975, Visual Observations in an Ammonia Evaporator. ASHRAE Trans. vol. 81, Part 1, p. 295.

    Google Scholar 

  • Shoham, O. 1983, Flow Pattern Transitions and Characterization in Gas-Liquid Two-Phase Flow in Inclined Pipes. Ph.D. dissertation, Tel Aviv University.

    Google Scholar 

  • Soliman, H. M., and N. Z. Azer 1971, Flow Patterns during Condensation inside a Horizontal Tube. ASHRAE Trans. vol. 77, p. 210.

    Google Scholar 

  • Solomon, J. V. 1962, Construction of a Two-Phase Flow Regime Transition Detector. M. Sc. thesis, Medhanical Engineering Department, MIT.

    Google Scholar 

  • Spedding, P. L., and V. T. Nguyen 1980, Regime Maps for Air-Water Two-Phase Flow. Chem. Eng. Sci. vol. 35, p. 779.

    Article  CAS  Google Scholar 

  • Sternling, V. C., 1965, Two-Phase Flow Theory and Engineering Decisions. Award lecture presented at AIChE annual meeting.

    Google Scholar 

  • Stewart, R. W. 1967, Mechanics of the Air-Sea Interface; Boundary Layers and Turbulence. Phys. Fluids vol. 10, p. 547.

    Article  Google Scholar 

  • Stoker, J. J. 1957, Water Waves. New Ycrk: Interscience.

    Google Scholar 

  • Streeter, V. L. 1961, Handbook of Fluid Dynamics. New York: McGraw-Hill

    Google Scholar 

  • Taitel, Y. 1977, Flow Pattern Transition in Rough Pipes. Int. J. Multiphase Flow vol. 3, p. 597.

    Article  Google Scholar 

  • Taitel, Y. and A. E. Dukler 1976, A Model for Predicting Flow Regime Transitions in Horizontal and Near-Horizontal Gas-Liquid Flow. AIChE J. vol. 22, p. 47.

    Article  CAS  Google Scholar 

  • Taitel, Y., and A. E. Dukler 1977, A Model for Slug Frequency during Gas Liquid Flow in Horizontal and Near-Horizontal Pipes. Int. J. Multiphase Flow vol. 3, p. 585.

    Article  CAS  Google Scholar 

  • Taitel, Y., D. Barnea, and A. E. Dukler 1980, Modeling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes. AIChE J. vol. 26, p. 345.

    Article  CAS  Google Scholar 

  • Taitel, Y., N. Lee, and A. E. Dukler 1978, Transient Gas-Liquid Flow in Horizontal Pipes-Modeling Flow Pattern Transitions. AIChE J. vol. 24, p. 920.

    Article  Google Scholar 

  • Tong, L. S. 1965, Boiling Heat Transfer and Two-Phase Flow. New York: Wiley.

    Google Scholar 

  • Travis, D. P., and W. M. Rohsenow 1973, Flow Regimes in Horizontal Two-Phase Flow with Condensation. ASHRAE-Trans. vol. 79, p. 31.

    Google Scholar 

  • Turner, R. G., M. G. Hubbard, and A. E. Dukler 1969, Analysis and Prediction of Minimum Flow Rate for the Continuous Removal of Liquid from Gas Wells. J. Pet. Tecnol. vol. 21, p. 1475.

    CAS  Google Scholar 

  • Tutu, N. K., 1982, Pressure Fluctuations and Flow Pattern Recognition in Vertical Two-Phase Gas-Liquid Flows. Int. J. Multiphase Flow vol. 8, p. 443.

    Article  CAS  Google Scholar 

  • Venkateswararao, P., R. Semiat, and A. E. Dukler 1982, Flow Pattern Transition for Gas-Liquid Flow in a Vertical Rod Bundle. Int. J. Multiphase Flow vol. 8, P. 509.

    Article  CAS  Google Scholar 

  • Wallis, G. B. 1969, One-Dimensional Two-Phase Flow. New York: McGraw-Hill

    Google Scholar 

  • Wallis, G. B., and J. E. Dobson 1973, The Onset of Slugging in Horizontal Stratified Air-Water Flow. Int. J. Multiphase Flow vol. 1, P. 173.

    Article  Google Scholar 

  • Weisman, J., D. Duncan, J. Gibson, and T. Crawford 1979, Effect of Fluid Properties and Pipe Diameter on Two-Phase Flow Pattern in Horizontal Lines. Int. J. Multiphase Flow vol. 5, p. 437.

    Article  CAS  Google Scholar 

  • Weisman, J., and S. Y. Rang 1981, Flow Pattern Transitions in Vertical and Upwardly Inclined Lines. Int. J. Multiphase Flow vol.. 7, p. 271.

    Article  CAS  Google Scholar 

  • Williams, C. L., and A. C. Peterson, Jr. 1978, Two-Phase Flow Pattern with High-Pressure Water in a Heated Four-Rod Bundle. LVucl. Sci. Eng. vol. 68, p. 155.

    CAS  Google Scholar 

  • Zahn, W. R. 1964, A Visual Study of Two-Phase Flow while Evaporating in Horizontal Tubes, J. Heat Transfer vol. 86c, p. 417.

    Article  CAS  Google Scholar 

  • Zuber, N., and J. Hench 1962, Steady-State and Transient Void Fractions of Bubbling Systems and their Operating Limit. Steady-State Operation. General Electric Co. Report 62GL100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dukler, A.E., Taitel, Y. (1986). Flow Pattern Transitions in Gas-Liquid Systems: Measurement and Modeling. In: Hewitt, G.F., Delhaye, J.M., Zuber, N. (eds) Multiphase Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01657-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01657-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01659-6

  • Online ISBN: 978-3-662-01657-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics