Skip to main content

Defense Mechanisms in Leaves and Fruit of Trees to Fungal Infection

  • Chapter
Defense Mechanisms of Woody Plants Against Fungi

Part of the book series: Springer Series in Wood Science ((SSWOO))

Abstract

Most biotic, foliar diseases of trees are caused by fungi. In order to establish infection, the fungal pathogen must overcome natural host defense mechanisms. Disease resistance is the ability of the host to prevent or resist disease. In foliar diseases of trees, host and nonhost resistance is dependent on the characteristics of the entire leaf including both biochemical and structural mechanisms as preexisting barriers or induced responses from host-pathogen interactions. The apoplast, or the extracellular matrix that includes cell wall, intercellular spaces, and xylem, is considered to have a central role in the interface of plants with the environment and in the defense of plants against pathogens (Bowles 1990). Studies on plant resistance have focused on either preinfectional host mechanisms that prevent and inhibit pathogen penetration or postinfectional host responses to disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PB, Sproston T, Tietz H, Major RT 1962 Studies on the disease resistance of Ginkgo biloba. Phytopathology 52: 233 - 236

    Google Scholar 

  • Adaskaveg JE, Feliciano Ai, Ogawa JM 1989 Comparative studies of resistance in peach genotypes to Monilinia fructicola. Phytopathology 79: 1183 - 1184

    Google Scholar 

  • Adaskaveg JE, Ogawa JM 1988 Ultrastructural study of shot hole disease of almond and the causal organism Stigmina carpophila. Phytopathology 78: 1519

    Google Scholar 

  • Aist JR 1976 Papillae and related wound plugs of plant cells. Annu Rev Phytopathol 14: 145163

    Google Scholar 

  • Aist JR 1983 Structural responses as resistant mechanisms. In: Bailey JA, Deverall BJ (eds) The dynamics of host defence. Academic Press, New York London, 33 - 70

    Google Scholar 

  • Akai S 1959 Histology of defense in plants. In: Horsfall JG, Dimond AE (eds) Plant pathology, vol 1. Academic Press, New York London, 435 - 467

    Google Scholar 

  • Albersheim P, Anderson A 1971 Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA 68: 1815 - 1819

    Article  PubMed  CAS  Google Scholar 

  • Atkinson P, Blakeman JP 1982 Seasonal occurrence of an antimicrobial flavanone, sakuranetin, associated with glands on leaves of Ribes nigrum. New Phytol 92: 63 - 74

    Article  CAS  Google Scholar 

  • Bach WJ, Wolf FA 1928 The isolation of the fungus that causes citrus melanose and the pathological anatomy of the host. J Agr Res 37: 243 - 252

    Google Scholar 

  • Bailey JA, Mansfield JW 1982 Phytoalexins. Wiley & Sons, New York, 334 pp

    Google Scholar 

  • Baker EA 1971 Chemical and physical characteristics of cuticular membranes. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic Press, New York London, 55 - 65

    Google Scholar 

  • Barlass M, Miller RM, Douglas, TJ 1987 Development of methods for screening grapevines for resistance to infection by downy mildew. II. Resveratrol production. Am J Enol Viticult 38: 65-68

    Google Scholar 

  • Bateman DR, Van Etten HD, English PD, Nevins DJ, Albersheim P 1969 Susceptibility to enzymatic degradation of cell walls from bean plants resistant and susceptible to Rhizoctonia solani Kuhn. Plant Physiol 44: 641 - 648

    Article  PubMed  CAS  Google Scholar 

  • Bayles, CJ, Ghemawat MS, Aist JR 1990 Inhibition by 2-deoxy-D-glucose of callose formation, papilla deposition, and resistance to powdery mildew in and ml-o barley mutant. Physiol Mol Plant Pathol 36: 63 - 72

    Article  CAS  Google Scholar 

  • Beckman CH 1980 Defenses triggered by the invader: physical defences. In: Horsfall JG, Cowling EB (eds) Plant disease: an advanced treatise, vol 5. Academic Press, New York London, 225 - 267

    Google Scholar 

  • Beckman CH, Mueller WC, McHardy WE 1972 The localization of stored phenols in plant hairs. Physiol Plant Pathol 2: 69 - 74

    Article  CAS  Google Scholar 

  • Biggs AR, Northover J 1989 Association fo sweet cherry epidermal characters with resistance to Monilinia fructicola. Hort Sci 24: 126 - 127

    Google Scholar 

  • Bingham RT, Hoff RJ, McDonald GI 1971 Disease resistance in forest trees. Annu Rev Phytopathol 9: 433 - 452

    Article  Google Scholar 

  • Blakeman JP 1971 The chemical environment of the leaf surface in relation to growth of pathogenic fungi. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface microorganisms. Academic Press, New York London, 255 - 268

    Google Scholar 

  • Blakeman JP 1981 Microbial ecology of the phylloplane. Academic Press, New York London, 502 pp

    Google Scholar 

  • Blakeman JP, Atkinson P 1981 Antimicrobial substances associated with the aerial surfaces of plants. In: Blakeman JP (ed) Microbial ecology of the phylloplane. Academic Press, New York London, 245 - 263

    Google Scholar 

  • Boller T 1987 Hydrolytic enzymes in plant disease resistance. In: Kosuge T, Nester EW (eds) Plant-microbe interactions: molecular and genetic perspectives, vol 2. MacMillan, New York, 385 - 413

    Google Scholar 

  • Bowles DJ 1990 Defense-related proteins in higher plants. Annu Rev Biochem 59: 873 - 907

    Article  PubMed  CAS  Google Scholar 

  • Brown AE, Swinburne TR 1973 Factors affecting the accumulation of benzoic acid in Bramleys seedling apples infected with Nectria galligena. Physiol Plant Pathol 3: 91 - 99

    Article  CAS  Google Scholar 

  • Brown JF, Shipton WA, White NH 1966 The relationship between hypersensitive tissue and resistance in wheat seedlings infected with Puccinia graminis tritici. Ann Appl Biol 58: 279 - 290

    Article  Google Scholar 

  • Brown W 1922 Studies in the physiology of parasitism. VIII. On the exosmosis of nutrient substances from the host tissue into the infection drop. Ann Bot 34: 101 - 119

    Google Scholar 

  • Byrde RJW 1957 The varietal resistance of fruits to brown rot. II. The nature of resistance in some varieties of cider apple. J Hort Sci 32: 227 - 238

    Google Scholar 

  • Byrde RJW, Fielding AH, Williams AH 1960 The role of oxidized polyphenols in the varietal resistance of apples to brown rot. In: Bridham JB (ed) Phenolics in plants in health and disease. Pergamon, New York, 95 - 99

    Google Scholar 

  • Byrde RJW, Willetts HJ 1977 The brown rot fungi of fruit: their biology and control. Pergamon, New York, 171 pp

    Google Scholar 

  • Campbell CL, Huang J-S, Payne G 1980 Defense at the perimeter: the outer walls and gates. In: Horsfall JG, Cowling EB (eds) Plant disease: an advanced treatise, vol 5. Academic Press, New York London, 103 - 120

    Google Scholar 

  • Campbell R 1972 Electron microscopy of the epidermis and cuticle of the needles of Pinus nigra • var. maritima in relation to infection by Lophodermella sulcigena. Ann Bot 36:307-314 Carroll FE, Müller E, Sutton BC 1977 Preliminarty studies on the incidence of endophytes in some European conifers. Sydowia 29: 87 - 103

    Google Scholar 

  • Chang PLY, Trevithick JR 1974 How important is secretion of exo-enzymes through apical cell walls of fungi? Arch Microbiol 101: 281 - 293

    Article  PubMed  CAS  Google Scholar 

  • Christensen JJ, DeVay JE 1955 Adaptation of plant pathogen to host. Annu Rev Plant Physiol 6: 367 - 392

    Article  CAS  Google Scholar 

  • Cohen LI 1967 The pathology of Hypodermella laricis on larch, Larix occidentalis. Am J Bot 54: 118 - 124

    Article  Google Scholar 

  • Cohen Y, Eyal H, Hanania J 1990 Ultrastructure, autofluorescence, callose deposition and lignification in susceptible and resistant muskmelon leaves infected with the powdery mildew fungus Sphaerotheca fuliginea. Physiol Mol Plant Pathol 36: 191 - 204

    Article  CAS  Google Scholar 

  • Cooper RM 1983 The mechanisms and significance of enzymic degradation of host cell walls by parasites. In: Callow JA (ed) Biochemical plant pathology. Wiley & Sons, New York, 101 - 135

    Google Scholar 

  • Cooper RM, Wardman PA, Skeleton JEM 1981 The influence of cell walls from host and non-host plants on the production and activity host plants on the production and activity of polygalacturonide-degrading enzymes from fungal pathogens. Physiol Plant Pathol 18: 239255

    Google Scholar 

  • Cowling EB 1975 Physical and chemical constraints in the hydrolysis of cellulose and lignocellulosic materials. In: Wilkie CR (ed) Biochemical and bioengineering symposium 5. Wiley & Sons, New York, 163 - 181

    Google Scholar 

  • Coxon DT 1982 Phytoalexins from other plant families. In: Bailey JA, Mansfield JW (eds) Phytoalexins. Wiley & Sons, New York, 106 - 132

    Google Scholar 

  • Cruickshank IAM 1977 A review of the role of phytoalexins in disease resistance mechanisms. Pontif Acad Sci Scr Varia 41: 509 - 561

    Google Scholar 

  • Cruickshank JAM 1980 Phytoalexins. Annu Rev Phytopathol 1: 351 - 374

    Article  Google Scholar 

  • Crute IR, DeWitt PJGM, Wade M 1985 Mechanisms by which genetically controlled resistance and virulence influence host colonization by fungal and bacterial parasites. In: Fraser RSS (ed) Mechanisms of resistance to plant diseases. Nijhoff Junk, Boston, 197 - 309

    Chapter  Google Scholar 

  • Cunningham HS 1928 A study of the histologic changes induced in leaves by certain leafspotting fungi. Phytopathology 18: 717 - 751

    Google Scholar 

  • Curtis KM 1928 The morphological aspect of resistance to brown rot in stone fruit. Ann Bot 42: 39 - 68

    Google Scholar 

  • Darvill AG, McNeil M, Albersheim P, Delmer DP 1980 The primary walls of flowering plants. In: Tolbert NE (ed) The biochemistry of plants, vol 1. Academic Press, New York London, 91 - 162

    Google Scholar 

  • Dercks W, Creasy LL 1989 The significance of stilbene phytoalexins in the Plasmopara viticola — grapevine interaction. Physiol Mol Plant Pathol 34: 189 - 202

    Article  CAS  Google Scholar 

  • Deverall BJ 1976 Current perspectives in research on phytoalexins. In: Friend J, Threlfall DR (eds) Biochemical aspects of plant-parasite relationships. Academic Press, New York London, 207 - 223

    Google Scholar 

  • Dickman MB, Patil SS, Kolattukudy PE 1982 Purification and characterization of an extracellular cutinolytic enzyme from Colletotrichum gloeosporioides on Carica papaya. Physiol Plant Pathol 20: 333 - 337

    Article  CAS  Google Scholar 

  • Dix NJ 1974 Identification of a water-soluble fungal inhibitor in the leaves of Acer platanoides L. Ann Bot 38: 505 - 514

    CAS  Google Scholar 

  • Dix NJ 1979 Inhibition of fungi by gallic acid in relation to growth on leaves and litter. Trans Brit Mycol Soc 73: 329 - 336

    Article  CAS  Google Scholar 

  • Dormaar JF 1970 Seasonal pattern of water-soluble constituents from leaves of Populus X Northwest (Hort.). J Soil Sci 21: 105 - 110

    Article  CAS  Google Scholar 

  • Edwards MC, Bowling DJF 1986 The growth of rust germ tubes toward stomata in relation to pH gradients. Physiol Mol Plant Pathol 29: 185 - 196

    Article  Google Scholar 

  • Ejólfsson R 1970 Recent advances in chemistry of cyanogenic glycosides. Fortschr Chem Org Naturst 28: 74 - 108

    Google Scholar 

  • Fawcett CH, Spencer DM 1967 Antifungal phenolic acids in apple fruits after infection with Sclerotinia fructigena. Ann Appl Biol 60: 87 - 96

    Article  PubMed  CAS  Google Scholar 

  • Fawcett CH, Spencer DM 1968 Sclerotinia fructigena infection and chlorogenic acid content in relation to antifungal compounds in apple fruits. Ann Appl Biol 61: 245 - 253

    Article  PubMed  CAS  Google Scholar 

  • Fisher RW, Corke ATK 1971 Infection of Yarlington Mill fruit by the apple scab fungus. Can J Plant Sci 51: 535 - 542

    Article  Google Scholar 

  • Flores G, Hubbes M 1980 The nature and role of phytoalexin produced by aspen ( Populus tremuloides Michx. ). Eur J For Pathol 10: 95-103

    Google Scholar 

  • Franich RA, Carson MJ, Carson SD 1986 Synthesis and accumulation of benzoic acid in Pinus radiata needles in response to tissue injury by dothistromin, and correlation with resistance of P. radiata families to Dothistroma pini. Physiol Mol Plant Pathol 28: 267 - 286

    Article  CAS  Google Scholar 

  • Franich RA, Gadgel PD, Shain L 1983 Fungistatic effects of Pinus radiata needle epicuticular fatty and resin acids on Dothistroma pini. Physiol Plant Pathol 23: 183 - 195

    Article  CAS  Google Scholar 

  • Franich RA, Gaskin RE, Wells LG, Zabkiewicz, JA 1982 Effect of Pinus radiata needle monoterpenes on spore germination and mycelial growth of Dothistroma pini in vitro in relation to mature tree resistance. Physiol Plant Pathol 21: 55 - 63

    Article  CAS  Google Scholar 

  • Franich RA, Wells LG, Barnett JR 1977 Variation with tree age of needle cuticle topography and stomatal structure in Pinus radiata D. Don. Ann Bot 41: 621-626

    Google Scholar 

  • Franich RA, Wells LG, Holland PT 1978 Epicuticular wax of Pinus radiata needles. Phytochemistry 17: 1617 - 1623

    Article  CAS  Google Scholar 

  • Frossard R 1981 Affect of guttation fluids on growth of micro-organisms on leaves. In: Blakeman JP (ed) Microbial ecology of the phylloplane. Academic Press, New York London, 213 - 226

    Google Scholar 

  • Fry WE, Evans PH 1977 Association of formamide hydro-lyase with fungal pathogenicity to cyanogenic plants. Phytopathology 67: 1001 - 1006

    Article  CAS  Google Scholar 

  • Garbaye J, Pinon J 1973 Mineral nutrition and susceptibility to Marssonina brunnea of Populus J-214: preliminary study of young cuttings under controlled conditions. Ann Sci For 30: 423 - 431

    Article  CAS  Google Scholar 

  • Gäumann E 1950 Principles of plant infection, English edn. Hafner, New York, 543 pp

    Google Scholar 

  • Gay J, Pearce R 1984 The structure of plant surfaces. In: Roberts DW, Aist JR (eds) Infection processes of fungi. Rockefeller Found, New York, 16 - 30

    Google Scholar 

  • Gibson IAS 1972 Dothistroma blight of Pinus radiata. Annu Rev Phytopathol 10:51-72 Giesemann A, Biehl B, Lieberei R 1986 Identification of scopoletin as a phytoalexin of the rubber tree Hevea brasiliensis. J Phytopathol 117: 373 - 376

    Google Scholar 

  • Gilliver K 1947 The effect of plant extracts on the germination of conidia of Venturia inaequalis. Ann Appl Biol 34: 136 - 143

    Article  PubMed  CAS  Google Scholar 

  • Glazener JA 1982 Accumulation of phenolic compounds in cells and formation of lignin-like polymers in cell walls of young tomato fruits after inoculation with Botrytis cinerea. Physiol Plant Pathol 20: 11 - 25

    Article  CAS  Google Scholar 

  • Godfrey BES, Clements DM 1978 Effect of a lilac leaf leachate on germination of Alternaria alternata and Botrytis cinerea. Trans Brit Mycol Soc 70: 163 - 165

    Article  Google Scholar 

  • Goodman RN Kiraly Z, Zaitlin M 1967 The biochemistry and physiology of infectious plant disease. Van Nostrand, Princeton NJ, 354 pp

    Google Scholar 

  • Gottwald TR 1985 Influence of temperature, leaf wetness period, leaf age, and spore concentration on infection of pecan leaves by conidia of Cladosporium caryigenum. Phytopathology 75: 190 - 194

    Article  Google Scholar 

  • Günthardt-Goerg MS 1986 Epicuticular wax of needles of Pinus cembra, Pinus sylvestris and Picea abies. Eur J For Pathol 16: 400 - 418

    Article  Google Scholar 

  • Hafiz A 1952 Basis of resistance in gram to Mycosphaerella blight. Phytopathology 42:422-424 Hall R 1971 Pathogenicity of Monilinia fructicola, pt 2. Penetration of peach leaf and fruit. Phytopathol Z 72: 281-290

    Google Scholar 

  • Hammerschmidt R, Kué J 1982 Lignification as a mechanism for induced systemic resistance in cucumber. Physiol Plant Pathol 20: 61 - 71

    Article  CAS  Google Scholar 

  • Hancock JG, Miller RL 1965 Relative importance of polygalacturonate transeliminase and other pectolytic enzymes in southern anthracnose, spring black stem, and Stemphylium leaf spot of alfalfa. Phytopathology 55: 346 - 355

    Google Scholar 

  • Harborne JB 1964 Biochemistry of phenolic compounds. Academic Press, New York London, 618 pp

    Google Scholar 

  • Hare RC 1971 Physiology and biochemistry of resistance to pine rusts. In: Biology of rust resistance in forest trees. In: Proc NATO-IUFRO Adv Stud Inst, August 17-24, 1969. US For Sery Misc Publ 1221: 465 - 478

    Google Scholar 

  • Heath MC 1976 Hypersensitivity, the cause or the consequence of rust resistance. Phytopathology 66: 935 - 936

    Article  Google Scholar 

  • Heath MC 1980 Reactions of nonsuscepts to fungal pathogens. Annu Rev Phytopathol 18: 211236

    Google Scholar 

  • Heath MC 1981 Resistance of plants to rust infection. Phytopathology 71: 971 - 974

    Article  Google Scholar 

  • Heath MC 1987 Evolution of plant resistance and susceptibility to fungal invaders. Can J Plant Pathol 9: 389 - 397

    Article  Google Scholar 

  • Heather WA 1967a Susceptibility of juvenile leaves of Eucalyptus bicostata Maiden et al. to infection by Phaeoseptoria eucalypti (Hanf.) Walker. Aust J Biol Sci 20: 769 - 775

    Google Scholar 

  • Heather WA 1967b Leaf characteristics of Eucalyptus bicostata Maiden et al. seedlings affecting the deposition and germination of spores of Phaeoseptoria eucalypti (Hanf.) Walker. Aust J Biol Sci 20: 1155 - 1160

    Google Scholar 

  • Hedin PA, Langhans VE, Graves Jr CH 1979 Identification of juglone in pecan as a possible factor of resistance to Fusicladium effusum. J Agr Food Chem 27: 92 - 94

    Article  CAS  Google Scholar 

  • Heintz C, Blaich R 1990 Ultrastructural and histochemical studies on interactions between Vitis vinifera L. and Uncinula necator ( Schw.) Burr. New Phytol 115: 107-117

    Google Scholar 

  • Hester LR 1916 Black rot, leaf spots, and canker of Pomaceous fruits. Cornell Agr Exp Stn Bull 379: 53 - 148

    Google Scholar 

  • Higgins BB 1914 Contribution to the life history and physiology of Cylindrosporium on stone fruits. Am J Bot 1: 145 - 173

    Article  Google Scholar 

  • Hill G 1977 Frühphase der Pathogenese von Botrytis cinerea auf unterschiedlichen Entwicklungsstadien vegetativer and generativer Organe von Vitis vinifera L. Diss, Univ Giessen, FRG

    Google Scholar 

  • Hill G, Stellwag-Kittler F, Huth G, Schlösser EW 1981 Resistance of grapes in different developmental stages to Botrytis cinerea. Phytopathol Z 102: 328 - 338

    Article  CAS  Google Scholar 

  • Hoch HC, Staples RC, Whitehead B, Comeau J, Wolf Ed 1987 Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235: 1659 - 1662

    Article  PubMed  CAS  Google Scholar 

  • Hoff RJ, McDonald GI 1971 Resistance to Cronartium ribicola in Pinus monticola: short shoot fungicidal reaction. Can J Bot 49: 1235 - 1239

    Article  Google Scholar 

  • Hoff RJ, McDonald GI 1975 Hypersensitive reaction in Pinus armandii caused by Cronartium ribicola. Can J For Res 5: 146 - 148

    Article  Google Scholar 

  • Hoff RJ, McDonald GI 1980 Resistance to Cronartium ribicola in Pinus monticola: reduced needle-spot frequency. Can J Bot 58: 574 - 577

    Article  Google Scholar 

  • Hulme AC, Edney KL 1960 Phenolic substances in the peel of Coxs Orange Pippin apples with reference to infection by G. perennans. In: Prideham JB (ed) Phenolics in plants in health and disease. Pergamon, New York, 87 - 94

    Google Scholar 

  • Ingham JL 1973 Disease resistance in higher plants. Phytopathol Z 78: 314 - 335

    Article  CAS  Google Scholar 

  • Ingham JL 1978 Cell death and resistance to biotrophs. Ann Appl Biol 89: 291 - 295

    Google Scholar 

  • Ingham JL, Harborne JB 1976 Phytoalexin induction as a new dynamic approach to the study of systematic relationships among higher plants. Nature (London) 260: 241 - 243

    Article  CAS  Google Scholar 

  • Irvine JA, Dix NJ, Warren RC 1978 Inhibitory substances in Acer platanoides leaves: seasonal activity and effects on growth of phylloplane fungi. Trans Brit Mycol Soc 70: 363 - 371

    Article  CAS  Google Scholar 

  • Jewell FF, Sr 1990 Histopathology of longleaf pine needles infected by Ploioderma hedgcockii ( Dearn.) Darker. Eur J For Pathol 20: 24-31

    Google Scholar 

  • Johansson M, Popoff T, Theander 0 1976 Effect of spruce root constituents on extracellular enzymes of Fomes annosus. Physiol Plant 37: 275 - 282

    CAS  Google Scholar 

  • Johnston HW, Sproston Jr T 1965 The inhibition of fungus infection pegs in Ginkgo biloba. Phytopathology 55: 225 - 227

    Google Scholar 

  • Johnstone KH 1931 Observations on the varietal resistance of the apple to scab (Venturia inaequalis, Aderh.) with special reference to its physiological aspects. J Porn Hortic Sci 9:30-52, 195 - 227

    Google Scholar 

  • Jones TM, Albersheim P 1972 A gas chromatographic method for determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol 49: 926 - 936

    Article  PubMed  CAS  Google Scholar 

  • Kinloch BB 1982 Mechanisms and inheritance of rust resistance in conifers. In: Heybroek HM, Stephan BR, von Weissenberg K (eds) Resistance to diseases and pests in forest trees. Proc Cent Agr Publ Doc ( Pudoc ), Wageningen, 119 - 129

    Google Scholar 

  • Kinloch BB, Littlefield JL 1977 White pine blister rust: hypersensitive resistance in sugar pine. Can J Bot 55: 1148 - 1155

    Article  Google Scholar 

  • Kiraly Z 1980 Defenses triggered by the invader: hypersensitivity. In: Horsfall JG, Cowling EB (eds) Plant disease: an advanced treatise, vol 5. Academic Press, New York London, 201 - 224

    Google Scholar 

  • Kiraly Z, Barna B, Ersek T 1972 Hypersensitivity as a consequence, not the cause, of plant resistance to infection. Nature (London) 239: 456 - 458

    Article  Google Scholar 

  • Knee M 1978 Properties of polygalacturonate and cell cohesion in apple fruit cortical tissue. Phytochemistry 17: 1257 - 1260

    Article  CAS  Google Scholar 

  • Knee M, Fielding AH, Archer SA, Laborda F 1975 Enzymic analysis of cell wall structure in apple fruit cortical tissue. Phytochemistry 14: 2213 - 2222

    Article  CAS  Google Scholar 

  • Kolattukudy PE 1980 Biopolyester membranes of plants: cutin and suberin. Science 208: 9901000

    Google Scholar 

  • Kolattukudy PE 1981 Structure, biosynthesis, and biodegradation of cutin and suberin. Annu Rev Plant Physiol 32: 539 - 567

    Article  CAS  Google Scholar 

  • Kolattukudy PE, Köller W 1983 Fungal penetration of the first line defensive barriers of plants. In: Callow JA (ed) Biochemical plant pathology, Wiley & Sons, New York, 79 - 100

    Google Scholar 

  • Köller W, Allan CR, Kolattukudy PE 1982a Inhibition of cutinase and prevention of fungal penetration into plants by benomyl — a possible protective mode of action. Pest Biochem Physiol 18: 15 - 25

    Article  Google Scholar 

  • Köller W, Allan CR, Kolattukudy PE 1982b Role of cutinase and cell wall degrading enzymes in infection of Pisum sativum by Fusarium solani f. sp. pisi. Physiol Plant Pathol 20: 47 - 60

    Article  Google Scholar 

  • Köller W, Allan CR, Kolattukudy PE 1982e Protection of Pisum sativum from Fusarium solani f. sp. pisi by inhibition of cutinase with organophosphorus pesticides. Phytopathology 72:1425 —1430

    Google Scholar 

  • Kosuge T 1969 The role of phenolics in host response to infection. Annu Rev Phytopathol 7: 195 - 222

    Article  CAS  Google Scholar 

  • Kovacs A 1955 Ãœber die Ursachen der unterschiedlichen Resistenz der Zuckerrübensorten gegen Cercospora beticola Sacc. Phytopathol Z 24: 283 - 298

    Google Scholar 

  • Kovacs A, Szeöke É 1956 Die phytopathologische Bedeutung der kutikulären Exkretion. Phytopathol Z 27: 335 - 349

    Google Scholar 

  • Kué J 1966 Resistance of plants to infectious agents. Annu Rev Microbiol 20: 337 - 370

    Article  Google Scholar 

  • Kué J 1978 Changes in intermediary metabolism caused by disease. In: Horsfall JG, Cowling EB (eds) Plant disease: an advanced treatise, vol 3. Academic Press, New York London, 349 - 374

    Google Scholar 

  • Kué J 1990 A case for self defense in plants against disease. Phytoparasitica 18: 3 - 8

    Article  Google Scholar 

  • Kué J, Currier WW, Shih MJ 1976 Terpenoid phytoalexins. In: Friend J, Threlfall DR (eds) Biochemical aspects of plant-parasite relationships. Academic Press, New York London, 225 - 237

    Google Scholar 

  • Lamport DTA 1970 Cell wall metabolism. Annu Rev Plant Physiol 21: 235 - 269

    Article  CAS  Google Scholar 

  • Langcake P 1981 Disease resistance of Vitis spp. and the production of stress metabolites resveratrol, e-viniferin, a-viniferin and pterostilbene. Physiol Plant Pathol 18: 213 - 226

    CAS  Google Scholar 

  • Langcake P, Cornford CA, Pryce RJ 1979 Identification of pterostilbene as a phytoalexin from Vitis vinifera leaves. Phytochemistry 18: 1025 - 1027

    Article  CAS  Google Scholar 

  • Langcake P, Pryce RJ 1976 The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9: 77 - 86

    Article  CAS  Google Scholar 

  • Langcake P, Pryce RJ 1977 The production of resveratrol and viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16: 1193 - 1196

    Article  CAS  Google Scholar 

  • Langhans VE, Hedin PA, Graves Jr CH 1978 Fungitoxic chemicals in pecan tissue. Plant Dis Rep 62: 894 - 898

    CAS  Google Scholar 

  • Latham AJ, Rushing AE 1988 Development of Cladosporium caryigenum in pecan leaves. Phytopathology 78: 1104 - 1108

    Article  Google Scholar 

  • Lee B, Priestly JH 1924 The plant cuticle. I. Its structure, distribution, and function. Ann Bot 38: 525-545

    Google Scholar 

  • Lieberei R 1988 Relationship of cyanogenic capacity (HCN-c) of the rubber tree Hevea brasiliensis to susceptibility to Microcyclus ulei, the agent causing South American leaf blight. J Phytopathol 122: 54 - 67

    Article  CAS  Google Scholar 

  • Lieberei R, Biehl B, Giesemann A, Junqueira NTV 1989 Cyanogenesis inhibits active defense reaction in plants. Plant Physiol 90: 33 - 36

    Article  PubMed  CAS  Google Scholar 

  • Littlefield Li, Heath MC 1979 Ultrastructure of rust fungi. Academic Press, New York London, 277 pp

    Google Scholar 

  • Lupton FGH 1956 Resistance mechanisms of Triticum and Aegilops and of amphidiploids between them to Erysiphe graminis DC. Trans Brit Mycol Soc 39: 51 - 59

    Article  Google Scholar 

  • Maiti IB, Kolattukudy PE 1979 Prevention of fungal infection of plants by specific inhibition of cutinase. Science 205: 507 - 508

    Article  PubMed  CAS  Google Scholar 

  • Mansfield JW 1982 The role of phytoalexins in disease resistance. In: Bailey JA, Mansfield JW (eds) Phytoalexins. Wiley & Sons, New York, 253 - 288

    Google Scholar 

  • Mansfield JW 1983 Antimicrobial compounds. In: Callow JA (ed) Biochemical plant pathology. Wiley & Sons, New York, 237 - 265

    Google Scholar 

  • Marks GC, Berbee JG, Riker AJ 1965 Direct penetration of leaves of Populus tremuloides by Colletotrichum gloeosporioides. Phytopathology 55: 408 - 412

    Google Scholar 

  • Martin JT 1964 Role of cuticle in the defense against plant disease. Annu Rev Phytopathol 2: 81 - 100

    Article  Google Scholar 

  • Martin JT, Baker EA, Byrde RJW 1966 The fungitoxicities of cuticular and cellular components of citrus lime leaves. Ann Appl Biol 57: 491 - 500

    Article  CAS  Google Scholar 

  • Martin JT, Batt RF, Burchill RT 1957 Fungistatic properties of apple leaf wax. Nature (London) 180: 796 - 797

    Article  CAS  Google Scholar 

  • Martin JT, Juniper BE 1970 The cuticles of plants. St. Martins, New York, 339 pp

    Google Scholar 

  • McBride RP 1971 Micro-Organism interactions in the phyllosphere of larch. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic Press, New York London, 545 - 555

    Google Scholar 

  • McDonald GI, Hoff RI 1975 Resistance to Cronartium ribicola in Pinus monticola: an analysis of needle spot types and frequencies. Can J Bot 53: 2497 - 2505

    Article  Google Scholar 

  • McWhorter FA 1927 The diseases of Carica papaya. Thesis, Cornell Univ, 67 pp

    Google Scholar 

  • Mence MJ, Hildebrandt AC 1966 Resistance to powdery mildew in rose. Ann Appl Biol 58:309— 320

    Google Scholar 

  • Millar CS 1981 Infection processes on conifer needles. In: Blakeman JP (ed) Microbial ecology of the phylloplane. Academic Press, New York London, 185 - 209

    Google Scholar 

  • Millar RL, Hemphill R 1978 ß-Glucosidases associated with cyanogenesis in Stemphylium leafspot of birdsfoot trefoil. Physiol Plant Pathol 13: 259 - 270

    Article  CAS  Google Scholar 

  • Mims CW, Glidewell DC 1978 Some ultrastructural observations on the host-pathogen relationship within the telial gall of the rust fungus Gymnosporangium juniperi-virginianae. Bot Gaz 139: 11 - 17

    Article  Google Scholar 

  • Misaghi IJ 1982 Physiology and biochemistry of plant-pathogen interactions. Plenum, New York, 287 pp

    Book  Google Scholar 

  • Mlodzianowski F, Werner A, Siwecki R 1978 Germination of Melampsora larici-populina uredospores on poplar leaves. Eur J For Pathol 8: 119 - 125

    Article  Google Scholar 

  • Mueller WC, Beckman CH 1976 Ultrastructure and development of phenolic-storing cells in cotton roots. Can J Bot 54: 2074 - 2082

    Article  Google Scholar 

  • Mullick DB 1977 The non-specific nature of defense in bark and wood during wounding, insect and pathogen attack. In: Loewus FA, Runeckles VC (eds) The structure, biosynthesis and degradation of wood, vol 11. Plenum, New York, 395 - 436

    Chapter  Google Scholar 

  • Ndubizu TOC 1976 Relations of phenolic inhibitors to resistance of immature apple fruits to rot. J Hortic Sci 51: 311 - 319

    CAS  Google Scholar 

  • Noble JP, Drysdale R 1983 The role of benzoic acid and phenolic compounds in latency in fruits of two apple cultivars infected with Pezicula malicorticis or Nectria galligena. Physiol Plant Pathol 23: 207 - 216

    Article  CAS  Google Scholar 

  • Noveroske RL, Kué J, Williams EB 1964a Oxidation of phloridzin and phloretin related to resistance of Malus to Venturia inaequalis. Phytopathology 54: 92 - 97

    CAS  Google Scholar 

  • Noveroske RL, Williams EB, Kuc J 1964b ß-Glucosidase and phenol oxidase in apple leaves and their possible relation to resistance to Venturia inaequalis. Phytopathology 72: 98 - 103

    Google Scholar 

  • Nusbaum CJ 1935 A cytological study of the resistance of apple varieties to Gymnosporangium juniperi-virginianae. J Agr Res 51: 573 - 596

    Google Scholar 

  • Nusbaum CJ 1938 A cytological study of host-parasite relations of Venturia inaequalis on apple leaves. J Agr Res 56: 595 - 618

    Google Scholar 

  • Nusbaum CJ, Keitt GW 1938 A cytological study of host-parasite relations of Venturia inaequalis on apple leaves. J Agr Res 56: 595 - 617

    Google Scholar 

  • Onoe T, Tani T, Minagawa S, Sagawa H 1987 Ultrastructural changes of stomata in relation to specificity of rust fungi. In: Nishimura S, Vance CP, Doke N (eds) Molecular determinants of plant diseases. Jpn Sci Soc Press, Tokyo; and Springer, Berlin Heidelberg New York, 29 - 45

    Google Scholar 

  • Overeem JC 1976 Pre-existing antimicrobial substances in plants and their role in disease resistance. In: Friend J, Threlfall DR (eds) Biochemical aspects of plant-parasite relationships. Academic Press, New York London, 195 - 206

    Google Scholar 

  • Patil SS 1980 Defenses triggered by the invader: detoxifying the toxins. In: Horsfall JG, Cowling EB (eds) Plant disease: an advanced treatise, vol 5. Academic Press, New York London, 269 - 277

    Google Scholar 

  • Patton RF, Johnson DW 1970 Mode of penetration of needles of eastern white pine by Cronartium ribicola. Phytopathology 60: 977 - 982

    Article  Google Scholar 

  • Patton RF, Spear RN 1980 Stomatal influences on white pine blister rust infection. Phytopathol Medit 19: 1 - 7

    Google Scholar 

  • Paxton JD 1981 Phytoalexins — a working redefinition. Phytopathol Z 101: 106 - 109

    Article  Google Scholar 

  • Pearce RB, Rutherford J 1981 A wound-associated suberized barrier to the spread of decay in the sapwood of oak ( Quercus robor L. ). Physiol Plant Pathol 19: 359-369

    Google Scholar 

  • Pero RW, Howard FL 1970 Activity of juniper diffusates on spores of Phomopsis juniperovora. Phytopathology 60: 491 - 495

    Article  CAS  Google Scholar 

  • Peterson FW, Walla JA 1978 Development of Dothistroma pini upon and within needles of Austrian and ponderosa pines in eastern Nebraska. Phytopathology 68: 1422 - 1430

    Article  Google Scholar 

  • Piattelli M, Impellizzeri G 1971 Fungistatic flavones in the leaves of Citrus species resistant and susceptible to Dueterophoma tracheiphila. Phytochemistry 10: 2657 - 2659

    Article  CAS  Google Scholar 

  • Popoff T, Theander O, Johansson M 1975 Changes in sapwood of roots of Norway spruce, attacked by Fomes annosus, pt II. Organic chemical constituents and their biological effects. Physiol Plant 34: 347-356

    Google Scholar 

  • Postek MT 1981 The occurrence of silica in the leaves of Magnolia grandifolia L. Bot Gaz 142: 124 - 134

    Article  CAS  Google Scholar 

  • Preece TF, Dickinson CH 1971 Ecology of leaf surface micro-organisms. Academic Press, New York London, 640 pp

    Google Scholar 

  • Pridham JR 1960 The formation and possible function of phenolic glycosides. In: Pridham JR (ed) Phenolics in plants in health and disease. Pergamon, New York, 9 - 15

    Google Scholar 

  • Raa J 1968 Polyphenols and natural resistance of apple leaves against Venturia inaequalis. Neth J Plant Pathol 74 (Suppl): 37 - 45

    Article  CAS  Google Scholar 

  • Ragazzi A, Raddi P, Dellavelle Fedi 11985 Pre-infection behavior of Cronartium flaccidum basidiospores on the needle surface of three pine species. In: Barrows-Broaddus J, Powers HR (eds) Proc Rusts of hard pines working party Conf, 1984, Athens, Ga. Ga Center Cont Educ, Univ Ga, 201 - 206

    Google Scholar 

  • Ride JP 1978 The role of cell wall alterations in resistance to fungi. Ann Appl Biol 89:302-306 Ride JP 1983 Cell walls and other structural barriers in defence. In: Callow JA (ed) Biochemical plant pathology. Wiley & Sons, New York, 215 - 236

    Google Scholar 

  • Ride JP, Pearce RB 1979 Lignification and papilla formation at sites of attempted penetration of wheat leaves by non-pathogenic fungi. Physiol Plant Pathol 15: 79 - 92

    Article  CAS  Google Scholar 

  • Roberts MF, Martin JT 1963 Withertip disease of limes (Citrus aurantifolia) in Zanzibar. III. The leaf cuticle in relation to infection by Gloeosporium limetticola Clausen. Ann Appl Biol 51: 411-413

    Google Scholar 

  • Royle DJ 1976 Structural features of resistance to plant diseases. In: Friend J, Threlfall DR (eds) Biochemical aspects of plant-parasite relationships. Academic Press, New York London, 161 - 193

    Google Scholar 

  • Ryan CA, An G 1988 Molecular biology of wound-inducible proteinase inhibitors in plants. Plant Cell Environ 11: 345 - 349

    Article  CAS  Google Scholar 

  • Samuel G 1927 On the shot-hole disease caused by Clasterosporium carpophilum and on the shot-hole effect. Ann Bot 41: 375 - 404

    Google Scholar 

  • Schlösser EW 1980 Preformed internal chemical defenses. In: Horsfall JG, Cowling EB (eds) Plant disease: an advanced treatise, vol 5. Academic Press, New York London, 161 - 177

    Google Scholar 

  • Schutt P 1971 Untersuchungen über den Einfluß von Cuticularwachsen auf die Infektionsfähigkeit pathogener Pilze. Eur J For Pathol 1: 32 - 50

    Article  Google Scholar 

  • Shain L 1967 Resistance of sapwood in stems of loblolly pine to infection by Fomes annosus. Phytopathology 57: 1034 - 1045

    Google Scholar 

  • Shain L, Miller JB 1982 Pinocembrin: an antifungal compound secreted by leaf glands of eastern cottonwood. Phytopathology 72: 877 - 880

    Article  CAS  Google Scholar 

  • Sharma JK, Heather WA, Winer P 1980 Effect of leaf maturity and shoot age of clones of Populus species on susceptibility to Melampsora larici-populina. Phytopathology 70: 548554

    Google Scholar 

  • Sherwood RT, Vance CP 1976 Histochemistry of papillae formed in reed canarygrass leaves in response to noninfecting pathogenic fungi. Phytopathology 66: 503 - 510

    Article  Google Scholar 

  • Sherwood RT, Vance CP 1980 Resistance to fungal penetration in Gramineae. Phytopathology 70: 273 - 279

    Article  Google Scholar 

  • Sherwood RT, Vance CP 1982 Initial events in the epidermal layer during penetration. In: Asada Y, Bushnell WR, Ouchi S, Vance CP (eds) Plant infection: the physiological and biochemical basis. Jpn Sci Soc Press, Tokyo; and Springer, Berlin Heidelberg New York, 27 - 44

    Google Scholar 

  • Siwecki R, Przybyl K 1981 Water relations in the leaves of poplar clones resistant and susceptible to Melampsora larici-populina. Eur J For Pathol 11: 348 - 357

    Article  Google Scholar 

  • Siwecki R, Werner A 1980 Resistance mechanism involved in the penetration and colonization of poplar leaf tissues by Melampsora rust. Phytopathol Medit 19: 27 - 29

    Google Scholar 

  • Siwecki R, Werner A, Krzan Z, Mlodzianowski F 1982 Resistance mechanisms in interactions between poplars and rust. In: Heybroek HM, Sephan BR, von Weissenberg K (eds) Resistance to diseases and pests in forest trees. Proc Cent Agr Publ Doc ( Pudoc ), Wageningen, 130 - 142

    Google Scholar 

  • Smith DA 1982 Toxicity of phytoalexins In: Bailey JA, Mansfield JW (eds) Phytoalexins. Wiley & Sons, New York, 106 - 132

    Google Scholar 

  • Smith MA 1936 Infection studies with Sclerotinia fructicola on brushed and nonbrushed peaches. Phytopathology 26:1056-1(160

    Google Scholar 

  • Saulding P 1925 A partial explanation of the relative susceptibility of the white pines to the

    Google Scholar 

  • white pine blister rust (Cronartium ribicola, Fischer). Phytopathology 15: 591 - 597

    Google Scholar 

  • Spiers AG, Hoperoft DH 1983 Ultrastructural study of the pathogenesis of Marssonina species to poplars. Eur J For Pathol 13: 414 - 427

    Article  Google Scholar 

  • Spiers AG, Hoperoft DH 1984 Influence of leaf age, leaf surface and frequency of stomata on the susceptibility of poplar cultivars to Marssonina brunnea. Eur J For Pathol 14: 270 - 282

    Article  Google Scholar 

  • Stanghellini ME, Aragaki M 1966 Relation of periderm formation and callose deposition to anthracnose resistance in papaya fruit. Phytopathology 56: 444 - 450

    Google Scholar 

  • Stein U, Hoos G 1984 Induktions-and nachweismethoden far stilbene bei vitaceen. Vitis 23: 179 - 194

    CAS  Google Scholar 

  • Stoessl A 1982 Biosynthesis of phytoalexins In: Bailey JA, Mansfield JW (eds) Phytoalexins. Wiley & Sons, New York, 133 - 180

    Google Scholar 

  • Stoessl A 1983 Secondary plant metabolites in preinfectional and postinfectional resistance. In: Bailey JA, Deverall BJ (eds) The dynamics of host defence. Academic Press, New York London, 71 - 122

    Google Scholar 

  • Stolzenburg MC, Aist JR, Israel HW 1984 The role of papillae in resistance to powdery mildew conditioned by the ml-o gene in barley. II. Experimental evidence. Physiol Plant Pathol 25: 347-361

    Google Scholar 

  • Tainter FH 1985 The ultrastructure of germinating aeciospores, and intercellular and intracellular structures of Cronartium comandrae. In: Barrows-Broaddus J, Powers HR (eds) Proc Rusts of hard pines working party Conf, 1984, Athens, Ga. Ga Cent Cont Educ, Univ Ga, 155 - 178

    Google Scholar 

  • Takasugi M, Anetai M, Masamune T, Shirata A, Takahashi K 1980a Broussonins A and B, new phytoalexins from diseased paper mulberry. Chem Lett 339 - 340

    Google Scholar 

  • Takasugi M, Nagao S, Masamune T, Shirata A, Takahashi K 19806 Chalcomoracin, a natural diels-alder odduct from diseased mulberry. Chem Lett 1573-1576

    Google Scholar 

  • Takasugi M, Niino N, Anetai M, Masamune T, Shirata A, Takahashi K 1984a Structure of two stress metabolites, spirobroussonin A and B, from diseased paper mulberry. Chem Lett 693 - 694

    Google Scholar 

  • Takasugi M, Niino N, Nagao S, Anetai M, Masamune T, Shirata A, Takahashi K 1984b Eight minor phytoalexins from diseased paper mulberry. Chem Lett 689 - 692

    Google Scholar 

  • Tan AM, Low FC 1975 Phytoalexin production by Hevea brasiliensis in response to infection by Colletotrichum gloeosporioides and its effect on other fungi. In: Int Rubb Conf, Kuala Lumpur, 217 - 227

    Google Scholar 

  • Tomiyama K, Doke N, Nozue M, Ishiguri Y 1979 The hypersensitive response of resistant plants. In: Daly JM, Uritani I (eds) Recognition and specificity in plant host-parasite interactions. Jpn Sci Soc Press, Tokyo; and Univ Park Press, Baltimore, 69 - 84

    Google Scholar 

  • Topps JH, Wain RL 1957 Fungistatic properties of leaf exudates. Nature (London) 179: 652 - 653

    Article  CAS  Google Scholar 

  • Trione EJ 1960 The HCN content of flax in relation to flax wilt resistance. Phytopathology 50: 482 - 486

    CAS  Google Scholar 

  • Valleau WD 1915 Varietal resistance of plums to brown-rot. J Agr Res 5: 365 - 395

    Google Scholar 

  • Valsangiacomo C, Gressler C 1988 Role of the cuticular membrane in ontogenic and vfresistance of apple leaves against Venturia inaequalis. Phytopathology 78: 1066 - 1069

    Article  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT 1980 Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18: 259 - 288

    Article  CAS  Google Scholar 

  • Verhoeff K 1974 Latent infections by fungi. Annu Rev Phytopathol 12: 99 - 110

    Article  CAS  Google Scholar 

  • Verrall AF 1934 The resistance of saplings and certain seedlings of Pinus palustris to Septoria acicola. Phytopathology 24: 1262 - 1264

    Google Scholar 

  • Vidhyasekaran P 1973 Possible role of orthodihydroxy phenolics in grapevine anthracnose disease resistance. Indian J Exp Biol 11: 473 - 475

    CAS  Google Scholar 

  • Vidhyasekaran P 1988a Physiology of disease resistance in plants, vol 1. CRC, Boca Raton, 128 pp

    Google Scholar 

  • Vidhyasekaran P 1988h Physiology of disease resistance in plants, vol 2. CRC, Boca Raton, 149 pp

    Google Scholar 

  • Vidhyasekaran P, Cheeran A 1972 Osmotic pressure of grapevine leaves in relation to anthracnose disease incidence. Indian J Exp Biol 10: 398 - 399

    Google Scholar 

  • Volk RJ, Kahn RP, Weintraub RL 1958 Silicon content of the rice plant as a factor influencing its resistance to infection by the blast fungus, Piricularia oryzae. Phytopathology 48: 179-186

    Google Scholar 

  • Walker JC, Stahman MA 1955 Chemical nature of disease resistance in plants. Annu Rev Plant Physiol 6: 351 - 366

    Article  CAS  Google Scholar 

  • Warren RC 1976 Buds and leaf microbes. In: Dickinson CH, Preece TF (eds) Microbiology of aerial plant surfaces. Academic Press, New York London, 361 - 374

    Google Scholar 

  • Wattenbarger DW, Gray E, Rice JS, Reynolds JH 1968 Effects of frost and freezing on hydrocyanic acid potential of sorghum plants. Crop Sci 8: 536 - 538

    Article  Google Scholar 

  • Wetzstein HY, Sparks D 1983 Anatomical indices of cultivar and age-related scab resistance and susceptibility in pecan leaves. J Am Soc Hortic Sci 108: 210 - 218

    Google Scholar 

  • Weinhold AR, English H 1964 Significance of morphological barriers and osmotic pressure in resistance of mature peach leaves to powdery mildew. Phytopathology 54: 1409 - 1414

    Google Scholar 

  • Williams AH 1960 The distribution of phenolic compounds in apple and pear leaves. In: Pridham JB (ed) Phenolics in plants in health and disease. Pergamon, New York, 3-7 Williamson B, Mitchell CP, Millar CS 1976 Histochemistry of Corsican pine needles infected by Lophodermella sulcigena (Rostr.) v. Höhn. Ann Bot 40: 281 - 288

    Google Scholar 

  • Wiltshire SP 1915 Infection and immunity studies on the apple and pear scab fungi (Venturia inaequalis and V. pirina). Ann Appl Biol 1: 335 - 350

    Article  Google Scholar 

  • Wood R 1967 Physiological Plant Pathology. Blackwell, Oxford, 570 pp

    Google Scholar 

  • Wynn WK 1967 Appressorium formation over stomates by the bean rust fungus: response to a surface contact stimulus. Phytopathology 66: 136 - 146

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adaskaveg, J.E. (1992). Defense Mechanisms in Leaves and Fruit of Trees to Fungal Infection. In: Blanchette, R.A., Biggs, A.R. (eds) Defense Mechanisms of Woody Plants Against Fungi. Springer Series in Wood Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01642-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01642-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01644-2

  • Online ISBN: 978-3-662-01642-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics