Skip to main content

Defense of Angiosperm Roots Against Fungal Invasion

  • Chapter
Defense Mechanisms of Woody Plants Against Fungi

Part of the book series: Springer Series in Wood Science ((SSWOO))

Abstract

The major root disorders currently described in forest pathology mainly concern root rot diseases and vascular diseases. Although different tree-fungus interaction studies have been performed in such pathosystems (Nicole et al. 1982, 1985, 1986a,b, Balanchette 1984, Rishbeth 1985, Geiger et al. 1986a,b, Nandris et al. 1987a, Blanchette and Abad 1988, Blanchette et al. 1989), precise observations regarding defense of roots in angiosperm trees triggered by fungal invasion have rarely been made. Thus, little is known about how the root system of these trees defends itself against fungal infection. However, Thomas (1934) and Sharples (1936) published information about anatomical responses of Prunus sp., Juglans regia, and Hevea brasiliensis infected with Armillaria mellea and Ganoderma sp. Ito (1949). Sakurai (1952, cited by Akai 1959) and Struckmeyer et al. (1954) also described histological reactions of apple trees, mulberry trees, and Quercus ellipsoidales to Helicobasidium sp., Roselinia sp., and Endoconidiophora sp. Rishbeth (1972), probably providing the first review of resistance to fungal pathogens of tree roots but with few references to angiosperms (Quercus robur, Fagus sylvatica, Acer pseudoplatanus, Populus sp., some genera of the Oleaceae familly, and certain tropical species). Today, research on this subject is still poorly documented in comparison with studies on gymnosperm root defense (Chap. 9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aist JR 1983 Structural responses as resistance mechanisms. In: Bailey JA, Deverall BJ (eds) The dynamics of host defence. Academic Press, New York London, 33-70

    Google Scholar 

  • Akai S 1959 Histology of defense in plants. In: Horsfall JG, Dimond AE (eds) Plant pathology. Academic Press, New York London, 391 - 434

    Google Scholar 

  • Albersheim P 1989 Oligosaccharins are biochemical messengers. NATO ASI Ser L28:1-18 Aloni R 1987 Differentiation of vascular tissues. Annu Rev Plant Physiol 38: 179 - 204

    Google Scholar 

  • Asada Y, Matsumoto I 1972 The nature of lignin obtained from downy mildew-infected Japanese radish root. Phytopathol Z 73: 208 - 214

    Article  Google Scholar 

  • Beckman CH, Talboys PW 1981 Anatomy of resistance. In: Mace ME, Bell AA, Beckman CH (eds) Fungal wilt diseases of plants. Academic Press, New York London, 487 - 521

    Google Scholar 

  • Bell AA 1980 The time sequence of defense. In: Horsfall JG, Cowling EB (eds) Plant disease, an advanced treatise, vol 5. How plants defend themselves. Academic Press, New York London, 53 - 73

    Google Scholar 

  • Bell AA 1981 Biochemical mechanisms of disease resistance. Annu Rev Plant Physiol 32:21-81 Blanchette RA 1984 Screening wood decayed by white-rot fungi for preferential lignin degradation. Appl Environ Microbiol 48: 647 - 653

    Google Scholar 

  • Blanchette RA, Abad AR 1988 Ultrastructural localization of hemicellulose in birch wood ( Betula papyrifera) decayed by brown and white-rot fungi. Holzforschung 42: 393-398

    Google Scholar 

  • Blanchette RA, Abad AR, Farrell RL, Leathers TD 1989 Detection of lignin peroxydase and xylanase by immunocytochemical labelling in wood decayed by basidiomycetes. Appl Environ Microbiol 55: 1457 - 1465

    PubMed  CAS  Google Scholar 

  • Carson SD, Carson MJ 1989 Breeding for resistance in forest trees — a quantitative genetic approach. Annu Rev Phytopathol 27: 373 - 395

    Article  Google Scholar 

  • Clarke DD 1986 Tolerance of parasites and disease. In: Ingram DS, Williams PH (eds) Advances in plant pathology, vol 5. Academic Press, New York London, 162 - 197

    Google Scholar 

  • Dallakyan GA, Markarova EN, Veselovskii VA, Tarusov BN 1978 The antioxidant content in root secretions and root tissues of cotton seedlings infected by wilt and exposed to thermal treatment. Se Iskokhoz Biol 13: 593 - 597

    Google Scholar 

  • De Wit PJGM 1986 Elicitation of active resistance mechanisms. NATO ASI Ser H1: 149 - 169

    Google Scholar 

  • Enebak SA, Blanchette RA 1989 Canker formation and decay in sugar maple and paper birch infected by Cerrana unicolor. Can J For Res 19: 225 - 231

    Article  Google Scholar 

  • Esquerré-Tugayé MT, Fournier J, Mazau D, Pouenat ML, Rickauer M, Rumeau D 1990 Cellular and molecular approaches of defense in plants. In: Ranjeva R, Boudet AM (eds) Signal, perception and transduction in higher plants. Springer, Berlin Heidelberg New York, 237 - 280

    Google Scholar 

  • Garrett SO 1970 Pathogenic root infecting fungi. Cambridge Univ Press, London, 294 pp

    Google Scholar 

  • Geiger JP, Goujon M 1977 Etude de deux peroxydases différentes extraites des tissus racinaires Hévéa sains et parasités par Leptoporus lignosus. C R Acad Sci Paris Ser D 284: 1053 - 1056

    CAS  Google Scholar 

  • Geiger JP, Huguenin B, Nicole M, Nandris D 1986a Laccases of Rigidoporus lignosus and Phellinus noxius. II Effects of R. lignosus lactase Ll on thioglycolic lignin of Hevea brasiliensis. Appl Biochem Biotech 13: 97-111

    Google Scholar 

  • Geiger JP, Nandris D, Goujon M 1976 Activité des laccases et des peroxydases au sein des racines Hévéa attaquées par le pourridié blanc ( Leptoporus lignosus ). Physiol Vég 14: 271-282

    Google Scholar 

  • Geiger JP, Nicole M, Nandris D, Rio B 1986b Root rot diseases of Hevea brasiliensis. I. Physiological and biochemical aspects of root aggression. Eur J For Pathol 16: 22-36

    Google Scholar 

  • Geiger JP, Rio B, Nicole M, Nandris D 1986e Biodegradation of Hevea brasiliensis wood by Rigidoporus lignosus and Phellinus noxius. Eur J For Pathol 16: 147 - 159

    Article  Google Scholar 

  • Geiger JP, Rio B, Nicole M, Nandris D 1989 Peroxidase production in tissues of the rubber tree following infection by root rot fungi. Physiol Mol Plant Pathol 34: 241 - 256

    Article  CAS  Google Scholar 

  • Hahn MG, Bucheli P, Cervone F, Doares SH, Neill RA, Darvill A, Albersheim P 1989 Roles of cell wall constituents in plant-pathogen interactions. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, molecular and genetic perspectives, vol 3. McGraw-Hill, New York, London, 131 - 181

    Google Scholar 

  • Hammerschmidt R, Bonnen AM, Bergstrom GC, Baker K 1985 Association of epidermal lignification with nonhost resistance of cucurbits to fungi. Can J Bot 63: 2393 - 2398

    Article  CAS  Google Scholar 

  • Harkin JH, Obst JR 1973 Lignification in trees: indication of exclusive peroxidase participation. Science 180: 296 - 297

    Article  PubMed  CAS  Google Scholar 

  • Hogue E 1982 Biochemical aspects of tree physiology of plants and some considerations of defense mechanisms in conifers. Eur J For Pathol 12: 280 - 296

    Google Scholar 

  • Ingram DS 1982 A structural view of active defence. In: Wood RKS (ed) Active defense mechanisms in plants. NATO ASI Ser A: 19 - 38

    Chapter  Google Scholar 

  • Kiraly Z 1980 Defenses triggered by the invader: hypersensitivity. In: Horsfall JG, Cowling EB (eds) Plant disease, an advanced treatise, vol 5. How plants defend themselves. Academic Press, New-York London, 201 - 224

    Google Scholar 

  • Mace ME, Howell CR 1974 Histochemistry and identification of condensed tannin precursors in roots of cotton seedlings. Can J Bot 52: 2432 - 2426

    Article  Google Scholar 

  • Mathre DE, Ravenscroft AV, Garber RH 1966 The role of Thielaviopsis basicola as a primary cause of yield reduction in cotton in California. Phytopathology 56: 1213 - 1216

    Google Scholar 

  • Mazau D, Esquerre-Tugayé MT 1986 Hydroxyproline-rich glycoprotein accumulation in the cell walls of plants infected by various pathogens. Physiol Mol Plant Pathol 29: 147 - 15724

    Article  CAS  Google Scholar 

  • Mazau D, Rumeau D, Esquerre-Tugaye MT 1987 Molecular approaches to understanding cell surface interactions between plant fungal pathogens. Plant Physiol Biochem 25: 337 - 343

    CAS  Google Scholar 

  • Mc Laughlin SB, Shriner DS 1980 Allocation of resources to defense and repair. In: Horsfall JG, Cowling EB (eds) Plant disease, an advanced treatise, vol 5. How plants defend themselves. Academic Press, New York, London, 407 - 431

    Google Scholar 

  • Miller RH, Berryman AA, Ryan CA 1986 Biotic elicitors of defense reactions in lodgepole pine. Phytochemistry 25: 3611 - 612

    Article  Google Scholar 

  • Mullick DB, Jensen GD 1973 New concepts and terminology of coniferous periderms: necrophylactic and exophylactic periderms. Can J Bot 51: 1459 - 1470

    Article  Google Scholar 

  • Mussell H 1980 Tolerance to disease. In: Horsfall JG, Cowling EB (eds) Plant disease, an advanced treatise, vol 5. How plants defend themselves. Academic Press, New York London, 39 - 52

    Google Scholar 

  • Nandris D, Nicole M, Geiger JP 1983 Infections artificielles de jeunes plants Hevea brasiliensis par Rigidoporus lignosus et Phellinus noxius. Eur J For Pathol 13: 65 - 76

    Article  Google Scholar 

  • Nandris D, Nicole M, Geiger JP 1987a Root rot diseases of rubber tree. Plant Dis 71: 298 - 306

    Article  Google Scholar 

  • Nandris D, Nicole M, Geiger JP 19876 Variations virulence among Rigidoporus lignosus and Phellinus noxius isolates from West Africa. Eur J For Pathol 17: 271 - 281

    Google Scholar 

  • Nandris D, Nicole M, Geiger JP 1988 Root rot diseases of the rubber tree in the Ivory Coast. 1. Severity, dynamics, and characterization of epidemics. Can J For Res 18: 1248-1254

    Google Scholar 

  • Nicole M, Geiger JP, Nandris D 1986a Penetration and degradation of suberized cells of Hevea brasiliensis infected with root rot fungi. Physiol Mol Plant Pathol 28: 181 - 185

    Article  Google Scholar 

  • Nicole M, Geiger JP, Nandris D 1986b Ultrastructure of laticifer modifications in Hevea brasiliensis infected with root rot fungi. J Phytopathology 116: 259 - 268

    Article  Google Scholar 

  • Nicole M, Geiger JP, Nandris D 1986e Root rot diseases of Hevea brasiliensis. II. Some host reactions. Eur J For Pathol 16: 37-55

    Google Scholar 

  • Nicole M, Geiger JP, Nandris D 1987 Ultrastructural aspects of rubber tree root rot diseases. Eur J For Pathol 17: 1 - 10

    Article  Google Scholar 

  • Nicole M, Nandris D, Geiger JP 1982 Interactions hôte-parasites entre Hevea brasiliensis et les agents de pourriture racinaire Rigidoporus lignosus et Phellinus noxius: étude physiopathologique comparée. Phytopathol Z 105: 311 - 326

    Article  Google Scholar 

  • Nicole M, Nandris D, Geiger JP 1983 Cinétique de linfection de plantes Hevea brasiliensis par Rigidoporus lignosus. Can J For Res 13: 359 - 364

    Article  Google Scholar 

  • Nicole M, Nandris D, Geiger JP, Rio B 1985 Variability among African populations of Rigidoporus lignosus and Phellinus noxius. Eur J For Pathol 15: 293 - 300

    Article  Google Scholar 

  • Nicole M, Toppan A, Geiger JP, Roby D, Nandris D, Rio B 1991 Defense responses of Hevea brasiliensis to elicitors from root rot fungi. Can J Bot 69: 1819 - 1824

    Article  Google Scholar 

  • Ouellette GB 1981 Ultrastructural cell wall modification in secondary xylem of american elm surviving the acute stage of Dutch elm disease: fibres. Can J Bot 59: 2425 - 2438

    Article  Google Scholar 

  • Pearce RB, Rutherford J 1981 A wound-associated suberized barrier to the spread of decay in the sapwood of oak ( Quercus robur ). Physiol Plant Pathol 19: 359-369

    Google Scholar 

  • Pearce RB, Woodward S 1986 Compartmentalization and reaction zone barriers at the margin of decayed sapwood in Acer saccharinum. Physiol Mol Plant Pathol 29: 197 - 216

    Article  Google Scholar 

  • Pegg GF 1976 Endogenous auxins in healthy and diseased plants. In: Heitefuss R, Williams PH (eds) Physiological plant pathology Springer, Berlin Heidelberg New York, 560 - 581

    Google Scholar 

  • Pegg GF 1988 The role of growth hormones in plants pathogenesis. In: 5th Int Congr Plant

    Google Scholar 

  • Pathol, Kyoto, Sec VI: 221

    Google Scholar 

  • Phillips D, Grant BR, Weste G 1987 Histological changes in the roots of an avocado cultivar, Duke 7, infected with Phytophthora cinnamomi. Phytopathology 77: 691 - 698

    Article  Google Scholar 

  • Prillinger H, Molitoris PH 1979 Genetic analisys in wood decaying fungi. I. Genetic variation and evidence for allopatric speciation in Pleurotus ostreatus using phenoloxydase zymograms and morphological criteria. Physiol Plant 46: 265-277

    Google Scholar 

  • Raabe RD 1967 Variation in pathogenicity and virulence in Armillaria mellea. Phytopathology 57: 73 - 75

    Google Scholar 

  • Redfern DB 1975 Influence of food base on rhizomorph growth and pathogenicity of Armillaria mellea isolates. In: Bruehel GW (ed) Biology and control of soilborne plant pathogens. Am Phytopathol Soc, St Paul, 69 - 73

    Google Scholar 

  • Ride JP 1983 Cell walls and other structural barriers in defence. In: Callow JA (ed) Biochemical plant pathology. John Wiley and Sons, New York, 215 - 236

    Google Scholar 

  • Rishbeth J 1972 Resistance to fungal pathogens of tree roots. Proc R Soc London Set B 181: 333 - 351

    Article  CAS  Google Scholar 

  • Rishbeth J 1985 Infection cycle of Armillaria and host response. Eur J For Pathol 15: 332341

    Google Scholar 

  • Roberts LW, Gahan PB, Aloni R 1988 Vascular differentiation and plant growth regulators. Springer, Berlin Heidelberg New York, 154 pp

    Google Scholar 

  • Sharples ARC 1936 Diseases and pests of the rubber tree. MacMillan, New York London, 479 pp

    Google Scholar 

  • Shigo AL 1984 Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves Annu Rev Phytopathol 22: 189 - 214

    Google Scholar 

  • Shigo AL, Marx M 1977 Compartmentalization of decay in trees (CODIT). US Dep Agr Inf Bull 405: 73 pp

    Google Scholar 

  • Shigo AL, Tippett JT 1981a Compartmentalization of American elm tissues infected by Ceratocystis ulmi. Plant Dis 65: 715 - 718

    Article  Google Scholar 

  • Shigo AL, Tippett JT 1981b Compartmentalization of decayed wood associated with Armillaria mellea in several tree species. US Dep Agr Res Pap NE-488: 20 pp

    Google Scholar 

  • Struckmeyer BE, Beckman CH, Kuntz JE, Riker AJ 1954 Plugging of vessels by tyloses and gums in wilting oaks. Phytopathology 14: 148 - 153

    Google Scholar 

  • Thomas HE 1934 Studies on Armillaria mellea, infection, parasitism, and host resistance. J Agr Res 48: 187 - 218

    Google Scholar 

  • Touzé A, Esquerré-Tugayé MT 1982 Defence mechanisms of plants against varietal nonspecific pathogens. In: Wood RKS (ed) Active defense mechanisms in plants. NATO ASI Ser A:103-117

    Google Scholar 

  • Ugalde D, Taylor P 1983 Ethylene production from roots and trunk of the peach tree in response to infection with Phytophthora cactorum. In: Proc 4th Int Congr Plant Pathol, Melbourne 781

    Google Scholar 

  • Valluri JV, Soltes EDJ 1990 Callose formation during wound inoculated reaction of Pinus elliottii to Fusarium subglutinans. Phytochemistry 29: 71 - 72

    Article  CAS  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT 1980 Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18: 259 - 288

    Article  CAS  Google Scholar 

  • VanderMolen GE, Beckman CH, Rodehorst E 1977 Vascular gelation: a general response phenomenon following infection. Physiol Plant Pathol 11: 95 - 100

    Google Scholar 

  • Walter MH 1990 Regulation of lignification in defense. In: Boller T, Meins F (eds) Advances in plant gene research, vol 8. Genes involved in plant defense. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Wargo PM 1975 Lysis of the cell wall of Armillaria mellea by enzymes from forest trees. Physiol Pla

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nicole, M.R., Geiger, J.P., Nandris, D. (1992). Defense of Angiosperm Roots Against Fungal Invasion. In: Blanchette, R.A., Biggs, A.R. (eds) Defense Mechanisms of Woody Plants Against Fungi. Springer Series in Wood Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01642-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01642-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01644-2

  • Online ISBN: 978-3-662-01642-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics