Advertisement

Non Linear Deformation Behaviour of High Polymers

  • A. J. Staverman
  • F. Schwarzl
Part of the Die Physik der Hochpolymeren book series (HP, volume 4)

Abstract

In this section we deal with deformation behaviour of polymers at higher forces and deformations, with non-linear deformation behaviour, in contradistinction to what we called linear deformation behaviour. In the first part we called the (time dependent) deformation behaviour linear, if it satisfied the superposition principle of Boltzmann. We have pointed out that polymers behave linearly up to certain critical stresses and strains, the limits of linearity. These limits may be very different in different cases ranging from less than one percent deformation for brittle plastics up to more than ten percent for rubbers. In the present part we are therefore concerned with force-deformation laws in the region of stresses and strains higher than the linearity limits, where the superposition principle is no longer obeyed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weissenberg, K.: British Rheologist’s Club Conference, London 1946.Google Scholar
  2. 1a.
    Compare further: M. Reiner: Amer. J. Mathem. 70, 433 (1943).MathSciNetCrossRefGoogle Scholar
  3. 2.
    Note that in the unstrained state the strain definitions ε, εE, εl and εH take the value zero, whilst the stretch λ takes the value unity. Therefore a Cauchy strain of 100% corresponds to a stretch λ = 2.Google Scholar
  4. 3.
    There may exist appropriate measures of strain, in which rheological laws become as simple as possible, but generally we do not know them. Two articles must be mentioned here: J. G. Oldroyd [Proc. Roy. Soc. (London) A 200, 523 (1950)]MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 3a.
    A. S. Lodge [Proc. Camb. Phil. Soc. 47, 575 (1951)], which advise the use of convected coordinate systems as advantagous in formulating rheological laws with correct invariance properties.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 1.
    For further information compare chapter V.Google Scholar
  7. 2.
    The mechanical behaviour of rubberlike polymers at small deformations has already been treated in the first chapter of this volume.Google Scholar
  8. 3.
    Mooney, M.: J. appl. Physics 11, 582 (1940).ADSzbMATHCrossRefGoogle Scholar
  9. 4.
    In many cases disturbing hysteresis effects or relaxation can be eliminated by appropriate preliminary treatment and conditioning (relaxation at higher temperatures before the beginning of the measurement). In this way reversible stress strain relations can be obtained. Of course also the time effects play a certain role in high elastic deformation and we shall deal with these problems shortly in the last section.Google Scholar
  10. 1.
    The term Neo-Hookean has been proposed by Rivlin loe. cit., page 13]. It should be indicate that the Neo-Hookean theory is the simplest one which can be used to treat rubberlike elasticity, just as the Hookean theory is the simplest for treating the elasticity of hard solids at small deformations.Google Scholar
  11. 2.
    The term Superelastic has been proposed by Mooney, log. cit., page 135.Google Scholar
  12. 1.
    For a more thorough treatment we refer to the book of L. R. G. Treloar The physics of rubber elasticity, Oxford, Clarendon Press 1949, where an excellent survey is given of the different phenomenological and molecular theories and where also the experimental contributions are treated much more extensively.Google Scholar
  13. 2.
    Mooney, M.: J. appl. Physics 11, 582 (1940).ADSzbMATHCrossRefGoogle Scholar
  14. 2a.
    R. S. Rivlin: J. appl. Physics 18, 444 (1947);ADSCrossRefGoogle Scholar
  15. 2b.
    R. S. Rivlin: Philos. Trans. Roy. Soc. London, A 240, 459, 491, 509 (1948);MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 2c.
    R. S. Rivlin: Philos. Trans. Roy. Soc. London, A 241, 379 (1948);MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 2d.
    R. S. Rivlin: Proc. Roy. Soc. [London] A 195, 463 (1949).MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 1.
    An invariant is a function of the extension ratios, which does not change if the coordinate system is rotated. Compare § 2d.Google Scholar
  19. 2.
    Mooncy, M., loc. cit., page 131.Google Scholar
  20. 2.
    Treloar, L. R. G.: Trans. Faraday Soc. 39, 241 (1943).CrossRefGoogle Scholar
  21. 1.
    Boonstra, B. B. S. T.: J. appl. Physics 21, 1098 (1950).ADSCrossRefGoogle Scholar
  22. 3.
    Rivlin, R. S.: Philos. Trans. Roy. Soc. London A 240, 459 (1948).MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 1.
    For a detailed discussion of the molecular theory of rubberlike elasticity see this volume, chapter V, § 27.Google Scholar
  24. 2.
    For further information see chapter V, § 33.Google Scholar
  25. 3.
    Mooney, M.: J. appl. Physics 11, 582 (1940);ADSzbMATHCrossRefGoogle Scholar
  26. 3a.
    Mooney, M.: J. Colloid. Sci. 6, 96 (1951); further references 2) on page 131.CrossRefGoogle Scholar
  27. 1.
    Treloar, L. R. G.: Trans. Faraday Soc. 40, 49 (1944).Google Scholar
  28. 2.
    Treloar, L. R. G.: Proc. physic. Soc. 60, 135 (1948).ADSCrossRefGoogle Scholar
  29. 3.
    Mooney, M.: J. appl. Physics 11, 582 (1940).ADSzbMATHCrossRefGoogle Scholar
  30. 3a.
    L. E. Copeland u. M. Mooney: J. appl. Physics 9, 450 (1948).ADSCrossRefGoogle Scholar
  31. 4.
    Rrvlin, R. S.: J. appl. Physics 18, 444 (1947).ADSCrossRefGoogle Scholar
  32. 1.
    Rivlin, R. S. u. D. W. Saunders: Philos. Trans. Roy. Soc. London A 243, 251 (1951).ADSzbMATHCrossRefGoogle Scholar
  33. 2.
    Mooney, M.: J. appl. Physics 19, 434 (1948).ADSCrossRefGoogle Scholar
  34. 3.
    Rivlin, R. S.: Philos. Trans. Roy. Soc. London A 241, 379 (1948).MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 3a.
    See further M. Reiner: Amer. J. Mathem. 70, 433 (1948).MathSciNetzbMATHCrossRefGoogle Scholar
  36. 1.
    Rivlin, R. S.: Philos. Trans. Roy. Soc. London A 241, 379 (1948) .MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 2.
    Rivlin, R. S.: Philos. Trans. Roy. Soc. London A 242, 173 (1949).MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 3.
    Rivlin, R. S.: Proc. Roy. Soc. [London] A 195, 463 (1949).MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 1.
    Guth, E., P. E. Wack u. R. L. Anthony: J. appl. Physics 17, 347 (1946).ADSCrossRefGoogle Scholar
  40. 2.
    Stern, M. D. u. A. V. Tobolsky: J. chem. Physics 14, 93 (1946).ADSCrossRefGoogle Scholar
  41. 3.
    Green, M. S. u. A. V. Tobolsky: J. chem. Physics 14, 80 (1946).ADSCrossRefGoogle Scholar
  42. 1.
    The components of the flow tensor may be related to the components of the deformation velocity tensor as introduced in § 2, c by means of the equationsGoogle Scholar
  43. 2.
    Here and throughout this section (§ 12) we denote the shear stress shortly as σ.Google Scholar
  44. 1.
    A survey on Newtonian flow behaviour of polymer solutions and melts is given in volume Ii, chapter V.Google Scholar
  45. 2.
    Weissenberg, K.: loc. cit., page 147.Google Scholar
  46. 3.
    Buch Dahl, R.: J. Colloid Sci. 3, 87 (1948).CrossRefGoogle Scholar
  47. 4.
    Ferry, J. D.: J. Amer. chem. Soc. 64, 1330 (1942).CrossRefGoogle Scholar
  48. 1.
    Ferry, J. D.: Physics 6, 356 (1935).ADSCrossRefGoogle Scholar
  49. 1a.
    T. G. Fox u. P. J. Flory: J. Amer. chem. Soc. 70, 2384 (1948).CrossRefGoogle Scholar
  50. 1b.
    H. Leaderman: Physics of high polymers, Utrecht, Univ. Press 1951, page 26.Google Scholar
  51. 2.
    Spencer, R. S. u. R. E. Dillon: J. Colloid Sci. 4, 241 (1949);CrossRefGoogle Scholar
  52. 2a.
    Spencer, R. S. u. R. E. Dillon: J. Colloid Sci. 3, 163 (1948).CrossRefGoogle Scholar
  53. 2b.
    R. S. Spencer: J. Polymer Sci. 5, 591 (1950).ADSCrossRefGoogle Scholar
  54. 3.
    Spencer, R. S.: Proc. Sec. Int. Congr. Rheology, Oxford 1953, page 20.Google Scholar
  55. 3a.
    Spencer, R. S.:J. Colloid Sci. 7, 236 (1952).CrossRefGoogle Scholar
  56. 4.
    Treloar, L. R. G. u. D. W. Saunders: Trans. Instn. Rubber Ind. 24, 92 (1948).Google Scholar
  57. 5.
    Scheele, W., M. Alfeis u. L. Lahaye: Kolloid-Z. 103, 1 (1943).CrossRefGoogle Scholar
  58. 5a.
    W. Scheele: Kolloid-Z. 105, 209 (1943).CrossRefGoogle Scholar
  59. 5b.
    W. Scheele, M. Alfeis u. I. Friedrich: Kolloid-Z. 108, 44 (1944).CrossRefGoogle Scholar
  60. 5c.
    W. Scheele: Z. Naturforsch. 4a, 433 (1949);ADSGoogle Scholar
  61. 5d.
    W. Scheele: Kolloid-Z. 115, 113 (1949).CrossRefGoogle Scholar
  62. 5e.
    W. Scheele u. Th. Timm.: Kolloid-Z. 116, 131 (1950);Google Scholar
  63. 5f.
    W. Scheele u. Th. Timm.: Kolloid-Z.120, 103 (1951);CrossRefGoogle Scholar
  64. 5g.
    W. Scheele u. Th. Timm.: Kolloid-Z.122, 129 (1951).CrossRefGoogle Scholar
  65. 5h.
    Compare further L. R. G. Treloar: Trans. Instn. Rubber Ind. 25, 167 (1949).Google Scholar
  66. 6.
    Waele, A. De: J. Oil Col. Chem. Assoc. 4, 33 (1923).Google Scholar
  67. 6a.
    Wo. Ostwald: Kolloid-Z. 36, 99 (1925).CrossRefGoogle Scholar
  68. 6b.
    S Compare J. M. Burgers: Proc. Roy. Soc. Amsterdam 51, No. 7 (1948).Google Scholar
  69. 1.
    A critism of the Ostwald-De Waele law based on other physical grounds has been given by A. Nadai u. P. G. Mcetty: Proc. Astm 43, 735 (1943).Google Scholar
  70. 2.
    Staudinger, H.: Die hochmolekularen organischen Verbindungen, Springer Berlin 1932, page 189.CrossRefGoogle Scholar
  71. 3.
    Ferry, J. D.: J. Amer. chem. Soc. 64, 1330 (1942).CrossRefGoogle Scholar
  72. 4.
    Bestul, A. B. u. H. V. Belcher: J. Colloid Sci. 5, 303 (1950).CrossRefGoogle Scholar
  73. 5.
    Maron, S. H., B. P. Madow u. I. M. Krieger: J. Colloid Sci. 6, 584 (1951).CrossRefGoogle Scholar
  74. 5a.
    S. H. Maron u. B. P. Madow: J. Colloid Sci. 8, 130 (1953).CrossRefGoogle Scholar
  75. 1.
    Ostwald, Wo.: Z. physik. Chem. 111, 62 (1924).Google Scholar
  76. 2.
    Simha, R.: J. physic. Chem. 44, 25 (1940).CrossRefGoogle Scholar
  77. 2a.
    J. J. Hermans: Physica 10, 777 (1943);ADSCrossRefGoogle Scholar
  78. 2a.
    J. J. Hermans: Kolloid-Z. 106, 28 (1944).Google Scholar
  79. 2b.
    W. Kühn u . H. Kuhn: Hely. chim. Acta 28 1572 (1945).Google Scholar
  80. 3.
    Reiner, M. u. R. Schoenfeld-Reiner: Kolloid-Z. 65, 44 (1953).Google Scholar
  81. 3a.
    M. Reiner: Physics 5, 343 (1934).ADSGoogle Scholar
  82. 4.
    Philippoff, W.: Kolloid-Z. 71, 1 (1935);CrossRefGoogle Scholar
  83. 4.
    Philippoff, W.: Angew. Chem. 49, 855 (1936).CrossRefGoogle Scholar
  84. 4a.
    W. Philippoff u. K. Hess: Z. physik. Chem. B 31, 237 (1936);Google Scholar
  85. 4a.
    W. Philippoff u. K. Hess: Ber. 70, 639 (1937).Google Scholar
  86. 1.
    Umstätter, H.: Kolloid-Z. 116, 18 (1950).CrossRefGoogle Scholar
  87. 2.
    Edelmann, K.: Proc. Sec. Int. Congr. Rheology, Oxford 1953, page 107.Google Scholar
  88. 3.
    Lyons, W. J.: J. chem. Physics 13, 43 (1945).ADSCrossRefGoogle Scholar
  89. 3a.
    Fox, T. G. Jr., J. C. Fox u. P. J. Flory: J. Amer. chem. Soc. 73, 1901 (1951).CrossRefGoogle Scholar
  90. 3b.
    C. M. Conrad, V. W. Tripp u. T. Mares: J. physic. Colloid Chem. 55, 14–4 (1951).Google Scholar
  91. 3c.
    R. M. Fuoss u. W. N. Maclay: J. Polymer Sci. 6, 305 (1951).ADSCrossRefGoogle Scholar
  92. 3d.
    F. Akkermans, D. T. F. Pals u. J. J. Hermans: Recueil Tray. chim. Pays-Bas 71, 56 (1952).CrossRefGoogle Scholar
  93. 3e.
    G. De Wind u. J. J. Hermans: Recueil Tray. chim. Pays-Bas 70, 521 (1951).CrossRefGoogle Scholar
  94. 3f.
    V. W. Tripp, C. M. Conrad u. T. Mares: J. physic. Chem. 56, 693 (1953).CrossRefGoogle Scholar
  95. 4.
    Sharman, L. J., R. H. Sones u. L. H. Cragg: J. appl. Physics 24, 703 (1953).ADSCrossRefGoogle Scholar
  96. 1.
    For further information over the dependence of intrinsic viscosity on velocity gradient and concentration we refer to volume II, chapters V and XI.Google Scholar
  97. 2.
    Weissenberg, K.: Nature 159, 310 (1947);ADSCrossRefGoogle Scholar
  98. 2a.
    Weissenberg, K.: Proc. Int. Congr. Rheology, Holland 1948;Google Scholar
  99. 2b.
    Weissenberg, K.: Conf. British Rheologist’s Club, London 1948;Google Scholar
  100. 2b.
    Weissenberg, K.: Proc. Roy. Soc. [London] A 200, 183 (1950).ADSCrossRefGoogle Scholar
  101. 3.
    Garner, F. H. u. A. H. Nissan: Nature 158, 634 (1946).ADSCrossRefGoogle Scholar
  102. 3a.
    G. F. Wood, A. H. Nissan u. F. H. Garner: J. Inst. Petrol 33, 71 (1947).Google Scholar
  103. 3b.
    F. H. Garner, A. H. Nissan u. G. F. Woon: Philos Trans. Roy. Soc. London A 234, 37 (1950).ADSGoogle Scholar
  104. 1.
    Greensmith, H. W. u. R. S. Rivlin: Nature 168, 664 (1951);ADSCrossRefGoogle Scholar
  105. 1a.
    Greensmith, H. W. u. R. S. Rivlin: Trans. Roy. Soc. [London] A 245, 399 (1953).ADSCrossRefGoogle Scholar
  106. 2.
    Ward, A. F. H. u. P. Lord: Proc. 2nd Int. Congr. Rheology, Oxford 1953, page 214.Google Scholar
  107. 1.
    Reiner, M.: Amer. J. Mathem. 67, 350 (1945).MathSciNetzbMATHCrossRefGoogle Scholar
  108. 2.
    Rivlin, R. S.: Proc. Roy. Soc. [London] A 193, 260 (1948);MathSciNetADSzbMATHCrossRefGoogle Scholar
  109. 2.
    Rivlin, R. S.: Nature 160, 611 (1947).MathSciNetADSCrossRefGoogle Scholar
  110. 3.
    For the definition of the invariants K 1 , K 2 , K 3 see § 2d, formulae (I,13).Google Scholar
  111. 1.
    Rivlin, R. S.: Proc. Cambridge philos. Soc. 45, 88 (1949).MathSciNetADSzbMATHCrossRefGoogle Scholar
  112. 2.
    Braun, I. u. M. Reiner: Quart. J. Mech. and appl. Mathem. 5, 42 (1952).MathSciNetzbMATHCrossRefGoogle Scholar
  113. 3.
    Mooney, M.: J. Colloid Sci. 6, 96 (1951);CrossRefGoogle Scholar
  114. 3a.
    Mooney, M.: J. appl. Physics 24, 675 (1953).ADSCrossRefGoogle Scholar
  115. 1.
    Hsiao, C. C. u. J. A. Sauer: Astm-Bulletin No. 127 (Febr. 1951).Google Scholar
  116. 1.
    Marin, J., Y. Pao u. G. Cuff: Trans. A. S. M. E. 73, 705 (1951).Google Scholar
  117. 2.
    Marin, J. u. G. Cuff: Proc. A. S. T. M. 49, 1158 (1949).Google Scholar
  118. 2a.
    J. A. Sauer, J. Marin u. C. C. Hsiao: J. appl. Physics 20, 507 (1949).ADSCrossRefGoogle Scholar
  119. 2b.
    J. Marin u. Y. Pao: Proc. A. S. T. M. 51, 1277 (1951).Google Scholar
  120. 3.
    Marin, J., Y. Pao u. G. Cuff: Trans. A. S. M. E. 73, 705 (1951).Google Scholar
  121. 3a.
    J. Marin u. Y. Pao: Trans. A. S. M. E. 74, 1231 (1952).Google Scholar
  122. 4.
    Marin, J. u. D. E. Hardenberg: Mod. Plastics 26, 101 (Febr. 1949).Google Scholar
  123. 1.
    Marin u. Cuff: see page 154, note 2.Google Scholar
  124. 2.
    This decomposition of creep is similar to that used in the case of linear creep. In the case of linear creep the instantaneous strain corresponds to Hookean deformation, the transient creep strain corresponds to retarded elastic deformation and the steady state creep corresponds to Newtonian flow.Google Scholar
  125. 1.
    Nutting, P. G.: Proc. A. S. T. M. 21, 1112 (1921).Google Scholar
  126. 1.
    Scott Blair, G. W. u. B. C. Veinoglou: J. sci. Instr. 21, 149 (1944).ADSCrossRefGoogle Scholar
  127. 1a.
    G. W. Scott Blair, B. C. Veinoglou u. J. E. Caffyn: Proc. Roy. Soc. [London] A 189, 69 (1947).ADSCrossRefGoogle Scholar
  128. 1b.
    G. W. Scott Blair, u. J. E. Caffyn: Philos. Mag. J. Sci. 40, 80 (1949).zbMATHGoogle Scholar
  129. 1c.
    G.W. Scott Blair u. M. Reiner: Appl. Sci. Research A 2, 225 (1951).zbMATHCrossRefGoogle Scholar
  130. 2.
    Bucidahl, R. u. L. E. Nielsen: J. appl. Physics 22, 1344 (1951).ADSCrossRefGoogle Scholar
  131. 3.
    Findley, W. N.: “Creep properties of plastics” in: Symposium on Plastics A. S. T. M. Philadelphia (Febr. 1944).Google Scholar
  132. 4.
    More examples of this phenomenon can be found in chapter Vii dealing with the mechanical behaviour of fibers.Google Scholar
  133. 1.
    Halsey, G.: J. appl. Physics 18, 1072 (1947).ADSCrossRefGoogle Scholar
  134. 2.
    Hogan, M. B.: The engineering application of the absolute rate theory to plastics. Report No. 39 (May 1953), Univ. of Utah, Inst. for the study of rate processes.Google Scholar
  135. 3.
    Eyring, H.: J. chem. Physics 4 263 (1936).ADSGoogle Scholar
  136. 4.
    Compare the extensive treatment given by Van Der Vegt in chapter VII, B.Google Scholar
  137. 5.
    For the molecular interpretation compare also the third volume, § 32. — An excellent survey has been published recently K. Jäckel: Kolloid-Z. 137, 130 (1954).CrossRefGoogle Scholar
  138. 6.
    Miklowitz, J.: J. Colloid Sci. 2, 193, 217 (1947).CrossRefGoogle Scholar
  139. 1.
    The transmissibility measurements have been performed by D. T. F. Pals, Centraal Laboratorium T. N. O., Delft.Google Scholar
  140. 1.
    Hoff, E. A. W.: J. appl. Chem. 2, 441 (1952).CrossRefGoogle Scholar
  141. 2.
    Miklowitz, J.: loc. cit. page 158.Google Scholar
  142. 3.
    Hopkins, I. L., W. O. Baker u. J. B. Howard: J. appl. Physics 21, 206 (1950).ADSCrossRefGoogle Scholar
  143. 4.
    Müller, F. H.: Kolloid-Z. 114, 59 (1949);CrossRefGoogle Scholar
  144. 2a.
    Müller, F. H.: Kolloid-Z. 18, 118 (1949);Google Scholar
  145. 2e.
    Müller, F. H.: Kolloid-Z. 126, 65 (1952).CrossRefGoogle Scholar
  146. 4a.
    F. H. Müller u. K. Jäckel: Kolloid-Z. 129, 145 (1952);CrossRefGoogle Scholar
  147. 4a.
    F. H. Müller u. K. Jäckel: Makromol. Chem. 9, 97 (1953).CrossRefGoogle Scholar
  148. 4b.
    F. H. Müller: Kolloid-Z. 135, 65, 188 (1954).CrossRefGoogle Scholar
  149. 1.
    Very recently Müller gave a theory in which the formation of the neck is explained by general thermodynamic considerations very simular to these of Marshall and Thompson. [F. H. Müller private comunication.]Google Scholar
  150. 2.
    Marshall, I. u. A. B. Thompson: Nature 171, 38 (1953);ADSCrossRefGoogle Scholar
  151. 2a.
    Marshall, I. u. A. B. Thompson: Proc. Roy. Soc. [London] A 221, 541 (1954).ADSCrossRefGoogle Scholar
  152. 1.
    Marshall, I. u. A. B. Thompson: Proc. Roy. Soc. [London] A 221, 541 (1954).ADSCrossRefGoogle Scholar
  153. 2.
    Kratky, O.: Kolloid-Z. 64, 213 (1933);CrossRefGoogle Scholar
  154. 2a.
    Kratky, O.: Kolloid-Z. 84, 149 (1938);CrossRefGoogle Scholar
  155. 2b.
    Kratky, O.: Kolloid-Z. 120, 24 (1951).CrossRefGoogle Scholar
  156. 2.
    O. Kratky, G. Porod u. E. Treiber: Kolloid-Z. 121, 1 (1951).CrossRefGoogle Scholar
  157. 2a.
    J. J. Hermans: J. Colloid Sci. 1, 235 (1946);CrossRefGoogle Scholar
  158. 2b.
    J. J. Hermans: Trans. Faraday Soc. B 42, 160 (1946).CrossRefGoogle Scholar
  159. 2c.
    P. H. Hermans, J. J. Hermans, D. Vermaas u. A. Weidinger: J. Polymer Sei. 1, 389, 393 (1946);ADSCrossRefGoogle Scholar
  160. 2c.
    P. H. Hermans, J. J. Hermans, D. Vermaas u. A. Weidinger: J. Polymer Sei. 2, 632 (1947);ADSCrossRefGoogle Scholar
  161. 2d.
    P. H. Hermans, J. J. Hermans, D. Vermaas u. A. Weidinger: J. Polymer Sei. 1, 21 (1948).Google Scholar
  162. 2e.
    P. H. Hermans u. W. Kast: Kolloid-Z. 121, 21 (1951).CrossRefGoogle Scholar
  163. 2f.
    W. Kast u. A. Prietzschk: Kolloid-Z. 114, 23 (1949).CrossRefGoogle Scholar
  164. 2e.
    W. Kast: Kolloid-Z. 120, 40 (1951);CrossRefGoogle Scholar
  165. 2f.
    W. Kast: Kolloid-Z. 125, 45 (1952).CrossRefGoogle Scholar
  166. 1.
    For a detailed investigation of crystallinity and structure of high polymers we refer the reader to the third volume of this series.Google Scholar
  167. 2.
    Kratky: loc. cit. page 163.Google Scholar
  168. 3.
    Fankuchen, I. u. H. Mark: J. appl. Physics 15, 364 (1944).ADSCrossRefGoogle Scholar
  169. 4.
    Bryant, W. M. D.: J. Polymer Sci. 2, 547 (1947).ADSCrossRefGoogle Scholar
  170. 5.
    Brown, A.: J. appl. Physics 20, 552 (1949); compare alsoADSCrossRefGoogle Scholar
  171. 5a.
    C. W. Bunn: J. appl. Chem. 1, 266 (1951).CrossRefGoogle Scholar
  172. 6.
    Hopkins, I. L., W. O. Baker u. J. B. Howard: J. appl. Physics 21, 206 (1950).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1956

Authors and Affiliations

  • A. J. Staverman
  • F. Schwarzl

There are no affiliations available

Personalised recommendations