Skip to main content

MCMC Specifics for Latent Variable Models

  • Conference paper
Book cover COMPSTAT

Abstract

We derive from previous analyses of specific latent variable models an overall review, under the theme of their strong connections with simulationbased statistical methods. These connections go both ways: latent variable models were instrumental in designing these new methods, whose convergence properties and convergence diagnostic tools are specific to these models, and hybrid methods like simulated maximum likelihood primarily apply in such settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnett, G., Kohn, R. & Sheather, S. (1996). Bayesian estimation of an autoregressive model using Markov chain Monte Carlo. J. Econometrics, 74, 237–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Baum, L.E., Petrie, T., Soules, G. & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist., 41, 164–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Billio, M., Monfort, A., & Robert, C.P. (1998a). Bayesian estimation of switching ARMA models. J. Econometrics, in press.

    Google Scholar 

  • Billio, M., Monfort, A., & Robert, C.P. (1998b). The Simulated Likelihood Ratio method. Doc. travail CREST, Insee, Paris.

    Google Scholar 

  • Broniatowski, M., Celeux, G. & Diebolt, J. (1983). Reconnaissance de mélan ges de densités par un algorithme d’apprentissage probabiliste. In: Data Analysis and Informatics, 3 (ed. E. Diday). Amsterdam: North-Holland.

    Google Scholar 

  • Brooks, S. & Roberts, G. (1998). Diagnosing convergence of Markov chain Monte Carlo algorithms. Canad. J. Statist., in press.

    Google Scholar 

  • Cowles, M.K. & Carlin, B.P. (1996). Markov Chain Monte-Carlo convergence diagnostics: a comparative study. J. Amer. Statist. Assoc., 91, 883–904.

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc. (Ser. B), 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Diebolt, J. & Ip, E.H.S. (1996). Stochastic EM: method and application. In: Markov chain Monte-Carlo in Practice (ed. W.R. Gilks, S.T. Richardson & D.J. Spiegelhalter), 259–274. London: Chapman and Hall.

    Google Scholar 

  • Diebolt, J. & Robert, C.P. (1994). Estimation of finite mixture distributions by Bayesian sampling. J. Royal Statist. Soc. (Ser. B), 56, 363–375.

    MathSciNet  MATH  Google Scholar 

  • Gelfand, A.E. & Smith, A.F.M. (1990). Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc., 85, 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Geyer, C.J. (1996). Estimation and optimization of functions. In: Markov chain Monte-Carlo in Practice (ed. W.R. Gilks, S.T. Richardson & D.J. Spiegelhalter), 241–258. London: Chapman and Hall.

    Google Scholar 

  • Gruet, M.A., Philippe, A., & Robert, C.P. (1998). MCMC control spreadsheets for exponential mixture estimation. Doc. Travail CREST, INSEE.

    Google Scholar 

  • Hamilton, J.D (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaquier, E., Polson, N.G. & Rossi, P.E. (1994). Bayesian analysis of stochastic volatility models. J. Business Economic Stat., 12, 371–417.

    Google Scholar 

  • Lavielle, M. & Moulines, E. (1997). On a stochastic approximation version of the EM algorithm. Statist. Comput., 7(4),229–236.

    Article  Google Scholar 

  • Liu, J.S., Wong, W.H. & Kong, A. (1994).Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and sampling schemes. Biometrika, 81, 27–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Mengersen, K.L. & Robert, C.P. (1996). Testing for mixtures: a Bayesian entropic approach. In: Bayesian Statistics5 (ed. J.O. Berger, J.M. Bernardo, A.P. Dawid, D.V. Lindley & A.F.M. Smith), 255–276. Oxford: Oxford University Press.

    Google Scholar 

  • Mengersen, K.L., Robert, C.P., & Guihenneuc-Jouyaux, C. (1998). MCMC Convergence Diagnostics: a Review. In: Bayesian Statistics 6 (ed. J.O. Berger, J.M. Bernardo, A.P. Dawid, D.V. Lindley & A.F.M. Smith), in press. Oxford: Oxford University Press.

    Google Scholar 

  • Philippe, A. (1997). Processing simulation output by Riemann sums. J. Statist. Comput. Simul., 59(4), 295–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Robert, C.P. (1993). Prior Feedback: A Bayesian approach to maximum likelihood estimation. Comput. Statist., 8, 279–294.

    MathSciNet  MATH  Google Scholar 

  • Robert, C.P. (1996). Inference in mixture models. In: Markov Chain Monte Carlo in Practice (ed. W.R. Gilks, S. Richardson & D.J. Spiegelhalter), 441–464. London: Chapman and Hall.

    Google Scholar 

  • Robert, C.P. & Casella, G. (1998). Monte Carlo Statistical Methods. New York: Springer Verlag.

    Google Scholar 

  • Robert, C.P. &Mengersen, K.L. (1998). Reparametrization issues in mixture estimation and their bearings on the Gibbs sampler. Comput. Statist. & Data Anal., in press.

    Google Scholar 

  • Robert, C.P., Rydén, T. & Titterington, D.M. (1998). Convergence controls for MCMC algorithms, with applications to hidden Markov chains. Tech. Report 98–2, Uni. of Glasgow.

    Google Scholar 

  • Robert, C.P. & Titterington, M. (1998). Resampling schemes for hidden Markov models and their application for maximum likelihood estimation. Statist. Comput., in press.

    Google Scholar 

  • Roberts, G.O. & Rosenthal, J.S. (1997). Markov chain Monte Carlo: some practical implications of theoretical results. Tech. Report, Stats. Lab., U. of Cambridge.

    Google Scholar 

  • Rubinstein, R.Y. (1981). Simulation and the Monte Carlo Method. New York: J. Wiley.

    Book  MATH  Google Scholar 

  • Tanner, M. & Wong, W. (1987). The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc., 82, 528–550.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney, L. (1994). Markov chains for exploring posterior distributions. Ann. Statist., 22, 1701–1786.

    Article  MathSciNet  MATH  Google Scholar 

  • Titterington, D.M., Smith, A.F.M. & Makov, U.E. (1985). Statistical Analysis of Finite Mixture Distributions. New York: J. Wiley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robert, C.P. (1998). MCMC Specifics for Latent Variable Models. In: Payne, R., Green, P. (eds) COMPSTAT. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-01131-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01131-7_9

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1131-5

  • Online ISBN: 978-3-662-01131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics