Skip to main content

Abstract

Two types of dermal glands originate in the body and base of the limbs in Xenopus laevis, from NF stage 57. The granular glands are more numerous and better developed on the back; only mucous glands occur on the upper jaw (Nieuwkoop and Faber 1956). Mature granular glands are formed after the fore-limbs have emerged (Vanable 1964).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham A (1952) Studies on the location and structure of the receptors of Goltz’s clasping reflex. Acta Biol Acad Sci Hung 3: 365–376

    Google Scholar 

  • Alvarado RH, Moody A (1970) Sodium and chloride transport in tadpole of the bullfrog Rana catesbeiana. Am J Physiol 218: 1510–1516

    PubMed  CAS  Google Scholar 

  • Anderson E, Kollros JJ (1962) The ultrastructure and development of balancers in Ambystoma embryos with special reference to the basement membrane. J Ultrastruct Res 6: 35–56

    Article  Google Scholar 

  • Bagnara JT (1976) Color change. In: Lofts B (ed) Physiology of the Amphibia, vol III. Academic Press, London New York, pp 1–52

    Chapter  Google Scholar 

  • Bagnara JT, Ferris W, Turner WA, Taylor JD (1978) Melanophore differentiation in leaf frogs. Dev Biol 674: 149–169

    Article  Google Scholar 

  • Bani G (1969) L’ultrastruttura delle cellule mioepitcliali delle ghiande cutanee di Triturus cristatus carnifex (Laur.). Sperimentale 119: 229–253

    PubMed  CAS  Google Scholar 

  • Bani G (1970a) Cellule atipiche nell’epidermide di alcune specie di Anfibi. Arch Ital Anat Embriol 75: 221–230

    PubMed  CAS  Google Scholar 

  • Bani G (1970b) Cellule mioepiteliali in Ghiandole cutanee di Rana esculenta (L.). Atti Accad Fis Siena Ser XIV 2: 1–6

    Google Scholar 

  • Bennett GW, Balls M, Clothier RH, Marsden CA, Robinson G, Wemyss-Holden GD (1981) Location and release of TRH and 5-HT from amphibian skin. Cell Biol Int Rep 5: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Benson BJ, Hadley ME (1969) In vitro characterization of adrenergic receptors controlling skin secretion in two anurans, Rana pipiens and Xenopus laevis. Comp Biochem Physiol 30: 857–864

    Article  PubMed  CAS  Google Scholar 

  • Bentley PJ, Baldwin GF (1980) Comparison of transcutaneous permeability in skin of larval and adult salamanders (Ambystoma tigrinum). Am J Physiol 239: R505 — R508

    PubMed  CAS  Google Scholar 

  • Billet FS, Courtney TH (1973) A stereoscan study of the origin of ciliated cells in the embryonic epidermis of Ambystoma mexicanum. J Embryol Exp Morphol 29: 549–558

    Google Scholar 

  • Billet FS, Gould RP (1971) Fine structural changes in the differentiating epidermis of Xenopus laevis embryos. J Anat 108: 465–480

    Google Scholar 

  • Böck P, Lertprapai N (1972) Ein sarkoplastisches Retikulum in den myoepithelialen Zellen der Giftdriisen in der Haut der Gelbbauchunke (Bambino variegata variegata L.) Cytobiologie 6: 476–480

    Google Scholar 

  • Boell EJ, Greenfield P, Hille B (1963) The respiratory function of gills in the larva of Ambystoma punctatum. Dev Biol 7: 420–431

    Article  CAS  Google Scholar 

  • Bovbjerg AM (1963) Development of the glands of the dermal plicae in Rana pipiens. J Morphol 113: 231–243

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge WR, Murugapillai R (1974) Mucous glands in the skin of Ichthyophis glutinosus ( Amphibia: Gymnophiona). Ceylon J Sci Biol Sci 11: 43–52

    Google Scholar 

  • Brown D, Ilie V (1979) Freeze-fracture differences in plasma membranes of the stratum corneum and replacement layer cells of amphibian epidermis. J Ultrastruct Res 67: 55–64

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Grosso A, de Sousa RC (1981) The amphibian epidermis: Distribution of mitochondria-rich cells and the effect of oxytocins. J Cell Sci 52: 197–213

    Google Scholar 

  • Brown SW (1964) The metabolism of Amphibia. In: Moore JA (ed) Physiology of the Amphibia. Academic Press, London New York, pp 1–98

    Google Scholar 

  • Budtz PE (1977) Aspects of moulting in amphibians and its control. In: Spearman RIC (ed) Comparative biology of skin. Symp Zool Soc Lond, vol 39. Academic Press, London New York, pp 317–334

    Google Scholar 

  • Budtz PE (1979) Epidermal structure and dynamics of the toad Bufo bufo, deprived of the pars distalis of the pituitary gland. J Zool (London) 189: 57–92

    Article  Google Scholar 

  • Budtz PE, Larsen LO (1973) Structure of the toad epidermis during the moulting cycle I. Light microscopic observations in Bufo bufo ( L. ). Z Zellforsch 144: 353–368

    Google Scholar 

  • Budtz PE, Larsen LO (1975) Structure of the toad epidermis during the moulting cycle II.

    Google Scholar 

  • Electron microscopic observations on Bufo buio (L.). Cell Tissue Res 159:459–483

    Google Scholar 

  • Bueno C, Navas P, Aguirre JA, Aijon J, Lopez-Campos JL (1981) Skin mucous glands of Pleurodeles waltlii: Histochemical and ultrastructural study. Arch Biol 92: 67–72

    Google Scholar 

  • Cambar R, Gipouloux JD (1956) Table chronologique du développement embryonnaire et larvaire du crapaud commun (Bufo bufo L.). Bull Biol 90: 198–217

    Google Scholar 

  • Cambar R, Marrot B (1954) Table chronologique du développement de la grenouille agile (Rana dalmatina Bon.). Bull Biol 88: 168–177

    Google Scholar 

  • Campantico E, Guardabassi A, Torchio R (1978) Histological observations on the skin of incompletely hypophysectomized adult specimens of Xenopus laevis ( Daudin) with or without prolactin treatment. Monit Zool Ital 12: 1–15

    Google Scholar 

  • Cannon MS, Hostetler JR (1976) The anatomy of the parotid gland in Bufonidae with some histochemical findings II. Bufo alvarius. J. Morphol 148: 137–160

    Article  PubMed  CAS  Google Scholar 

  • Cannon MS, Brinfley DC, McGill M (1978) The paracnemid gland of Bufo alvarius. Tex J Sci 30: 133–148

    Google Scholar 

  • Cannone AJ, Kelly PJ (1977) The tentacles of Xenopus laevis tadpoles — evidence for a mechanoreceptive role. S Afr Med J 52: 407

    Google Scholar 

  • Castellani LC (1969) Osservazioni ultrastrutturali e istochimiche sulla pelle del Triturus cristatus Laur. Nota preliminare. Atti Accad Naz Lincei Rend 46: 279–285

    Google Scholar 

  • Chadwick CJ, Jackson HR (1948) Acceleration of skin growth and molting in the red eft, Triturus viridescens. Anat Rec 101: 718

    Google Scholar 

  • Chapman GB, Dawson AB (1961) Fine structure of the larval anuran epidermis with special reference to the figures of Eberth. J Biophys Biochem Cytol 10: 425–435

    Article  PubMed  CAS  Google Scholar 

  • Claas B, Fritzsch B, Munz H (1981) Common efferents to lateral line and labyrinthine hair cells in aquatic vertebrates. Neurosci Lett 27: 231–235

    Article  PubMed  CAS  Google Scholar 

  • Clothier RH, Balls M, Water AD, Marsden CA, Bennett GW (1983) Location and synthesis of thyrotropin-releasing hormone and 5-Hydroxytryptamine in the skin and thymus of Xenopus laevis. In: Griffiths EC, Bennett GW (eds) Thyrotropin-releasing hormone. Raven Press, New York, pp 203–216

    Google Scholar 

  • Crowe R, Whitear M (1978) Quinacrine fluorescence of Merkel cells in Xenopus laevis. Cell Tissue Res 190: 273–283

    Article  PubMed  CAS  Google Scholar 

  • Czopek J (1959) Skin and lung capillaries in European common newts. Copeia 2:91–96 Czopek J (1961) Vascularization of respiratory surfaces in some Plethodontidae. Zool Pol 11: 131–148

    Google Scholar 

  • Czopek J, Rys T, Szemro B (1968) The distribution of capillaries in the respiratory surfaces of Scaphiophus holbrooki Harlan and Scaphiophus couchi Baird. Zool Pol 18: 117–124

    Google Scholar 

  • Dapson RW (1970) Histochemistry of mucus in the skin of the frog, Rana pipiens. Anat Rec 166: 615–625

    Article  PubMed  CAS  Google Scholar 

  • Dapson RW, Feldman AT, Wright OL (1973) Histochemistry of granular (poison) secretion in the skin of the frog, Rana pipiens. Anat Rec 177: 549–559

    Article  PubMed  Google Scholar 

  • Delfino G (1977) Development of serous gland anlagen in the skin of Bombina variegata pachypus (Bonaparte) larvae. Preliminary findings by light and electron microscopy. Boll Zool 44: 145–147

    Article  Google Scholar 

  • Delfino G, Brizzi R, Calloni C (1982) Development of cutaneous glands in Salamandra terdigitata (Lacépede, 1788 ) (Amphibia: Urodela ): Findings by light and electron microscopy. Z Mikrosk Anat Forsch 96: 948–971

    Google Scholar 

  • Delrio G, d’Istria M (1974) Androgen receptor in the thumb pads of Rana esculenta. Gen Comp Endocrinol 22: 349–350

    Google Scholar 

  • Denèfle JP, Goudeau H, Lechaire JP (1983) Influence of a transepithelial NaCI gradient on the moulting cycle, keratinization and active sodium transport of isolated frog skin cultured with or without aldosterone. Wilhelm Roux ’ Arch Dev Biol 192: 234–247

    Google Scholar 

  • Dent JN (1968) Survey of amphibian metamorphosis. In: Etkin W, Gilbert LI (eds) Metamorphosis: A problem in developmental biology. Appleton-Century-Crofts, New York, pp 271311

    Google Scholar 

  • Dent JN (1975) Integumentary effects of prolactin in the lower vertebrates. Am Zool 15: 923–935

    CAS  Google Scholar 

  • Dent JN, Eng LA, Forbes MS (1973) Relations of prolactin and thyroid hormone to molting, skin texture, and cutaneous secretion in the red-spotted newt. J Exp Zool 184: 369–382

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38: 51–105

    Article  PubMed  CAS  Google Scholar 

  • Dockray GT, Hopkins CR (1975) Caerulein secretion by dermal glands in Xenopus laevis. J Cell Biol 64: 724–733

    Article  PubMed  CAS  Google Scholar 

  • Dodd MHI, Dodd JM (1976) The biology of metamorphosis. In: Lofts B (ed) Physiology of the Amphibia. Academic Press, London New York, pp 467–599

    Chapter  Google Scholar 

  • Dolder H (1976) Ultrastructure et formation des crochets sexuels chez Xenopus. Rev Suisse Zool 82: 716–718

    Google Scholar 

  • Dowling JT, Razevska D (1976) Thyroxine metabolism by amphibian skin during metamorphosis and molting. Gen Comp Endocrinol 6: 162–169

    Google Scholar 

  • Eakin RM (1963) Ultrastructural differentiation of the oral sucker in the Pacific tree frog Hyla regilla. Dev Biol 7: 169–179

    Article  Google Scholar 

  • Eddy LJ, Allen RF (1979) Prolactin action on the short circuit current in the developing tadpole skin: a comparison with ADH. Gen Comp Endocrinol 38: 360–364

    Article  PubMed  CAS  Google Scholar 

  • Ehrenfeldt J, Masoni A, Garcia-Romeu F (1976) Mitochondria-rich cells of frog skin in transport mechanisms:morphological and kinetic studies on transepithelial excretion of methylene blue. Am J Physiol 231: 120–126

    Google Scholar 

  • Eisen AZ, Gross J (1965) The role of epithelium and mesenchyme in the production of a collagenolytic enzyme and a hyaluronudase in the anuran tadpole. Dev Biol 12: 408–418

    Article  PubMed  CAS  Google Scholar 

  • Elkan E (1976) Ground substance: An anuran defence agent against desiccation. In: Lofts B (ed) Physiology of the Amphibia, vol III. Academic Press, London New York, pp 101–110

    Chapter  Google Scholar 

  • Ernst V (1973a) The digital pads of the tree frog, Hyla cinerea. 1. The epidermis. Tissue Cell 5: 83–96

    Article  PubMed  CAS  Google Scholar 

  • Ernst V (1973 b) The digital pads of the tree frog, Hyla cinerea I1. The mucous glands. Tissue Cell 5:97–104

    Google Scholar 

  • Etkin WB (1968) Hormonal control of amphibian metamorphosis. In: Etkin WB, Gilbert LI (eds) Metamorphosis: A problem in developmental biology. Appleton-Century-Crofts, New York, pp 313–348

    Google Scholar 

  • Fährman W (1971) Die Morphodynamik der Epidermis des Axolotls (Siredon mexicanum Shaw) unter dem Einfluß von exogen Thyroxin. Z Mikrosk Anat Forsch 83: 472–506

    Google Scholar 

  • Farquhar MG, Palade GE (1965) Cell junctions in amphibian skin. J Cell Biol 26: 263–291

    Article  PubMed  CAS  Google Scholar 

  • Farquhar MG, Palade GE (1966) Adenosine triphosphate localization in amphibian epidermis. J Cell Biol 30: 359–379

    Article  PubMed  CAS  Google Scholar 

  • Flaxman BA (1972) Cell differentiation and its control in the vertebrate epidermis. Am Zool 12: 13–25

    Google Scholar 

  • Flock A, Jorgensen M (1974) The ultrastructure of lateral line organs in the juvenile salamander Ambystoma mexicanum. Cell Tissue Res 152: 283–292

    Article  PubMed  CAS  Google Scholar 

  • Forbes MS, Zaccaria A, Dent JN (1973) Developmental cytology of chromatophores in the red-spotted newt. Am J Anat 138: 37–72

    Article  PubMed  CAS  Google Scholar 

  • Forbes MS, Dent JN, Singhas CA (1975) The developmental cytology of the nuptial pad in the red-spotted newt. Dev Biol 46: 56–78

    Article  PubMed  CAS  Google Scholar 

  • Fox H (1972) Tissue degeneration: an electron microscopic study of the tail skin of Rana temporaria during metamorphosis. Arch Biol 83: 373–394

    Google Scholar 

  • Fox H (1974) The epidermis and its degeneration in the larval tail and adult body of Rana temporaria and Xenopus laevis (Amphibia:Anura). J Zool (London) 174: 217–235

    Article  Google Scholar 

  • Fox H (1976) Anchoring fibrils of the basal lamina and basement lamella in the skin of aquatic chordates. J Microsc 26: 43–46

    Google Scholar 

  • Fox H (1977a) The anuran tadpole skin: changes occurring in it during metamorphosis and some comparisons with that of the adult. In: Spearman RIC (ed) Comparative biology of skin. Symp Zool Soc Lond, vol 39. Academic Press, London New York, pp 269–289

    Google Scholar 

  • Fox H (1977b) A consideration of tail constituents in larvae of Rana temporaria: skin and muscle, an ultrastructural study. In Raynaud AA (ed) Mécanismes de la rudimentation des organes chez les embryons de vertébrés. CNRS 266: 93–112

    Google Scholar 

  • Fox H (1981) Cytological and morphological changes during amphibian metamorphosis. In: Gilbert L, Frieden E (eds) Metamorphosis: A problem in developmental biology, 2nd edn. Plenum, New York London, pp 327–362

    Chapter  Google Scholar 

  • Fox H (1983) The skin of Ichthyophis (Amphibia:Caecilia): an ultrastructural study. J Zool (London) 199: 223–248

    Article  Google Scholar 

  • Fox H (1984) Amphibian morphogenesis. Humana Press, New Jersey

    Book  Google Scholar 

  • Fox H (1985) Changes in amphibian skin during larval development and metamorphosis. In: Balls M, Bownes M (eds) Symp, Metamorphosis. Oxford Univ Press, Oxford, pp. 5981

    Google Scholar 

  • Fox H, Hamilton L (1971) Ultrastructure of diploid and haploid cells of Xenopus lacets larvae. J Embryol Exp Morphol 26: 81–98

    PubMed  CAS  Google Scholar 

  • Fox H, Whitear M (1978) Observations on Merkel cells in amphibians. Biol Cell 32: 223–232

    Google Scholar 

  • Fox H, Lane EM, Whitear M (1980) Sensory nerve endings and receptors in fish and amphibians. In: Spearman RIC, Riley PA (eds) The skin of vertebrates. Symp Linn Soc, vol IX. Academic Press, London New York, pp 271–281

    Google Scholar 

  • Fritzsch B, Wahnschaffe U (1983) The electroreceptive ampullary organs of urodeles. Cell Tissue Res 229: 483–503

    Article  PubMed  CAS  Google Scholar 

  • Gabe M (1971) Données histologique sur le tégument d’Ichthyophis glutinosus L. (Batracien, Gymnophione). Ann Sci Nat 12th Ser 13: 573–607

    Google Scholar 

  • Gallien L, Durocher M (1957) Table chronologique du développement chez Pleurodeles waltlii Michah. Bull Biol 91: 97–114

    Google Scholar 

  • Görner P (1963) Untersuchungen zur Morphologie and Elektrophysiologie des Seitenlineorgans vom Krallenfrosch (Xenopus laevis Daudin). Z Vergl Physiol 47: 316–338

    Article  Google Scholar 

  • Gona AG (1969) Light and electron microscopic study on thyroxine-induced in vitro resorption of the tadpole tail fin. Z Zellforsch 95: 483–494

    Article  PubMed  CAS  Google Scholar 

  • Gottschaldt KM, Vahle-Hinz C (1981) Merkel cell receptors: structure and transducer function. Science 214: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Green DM (1981) Adhesion and the toe pads of tree frogs. Copeia 4: 790–796

    Article  Google Scholar 

  • Greven H (1980) Ultrastructural investigations of the epidermis and the gill epithelium in the intrauterine larvae of Salamandra salamandra (L.) (Amphibia, Urodela). Z Mikrosk Anat Forsch 94: 196–208

    PubMed  CAS  Google Scholar 

  • Guardabassi A, Campantico E, Olivero M (1972) Effect of environmental changes on the skin and pituitary of Xenopus laevis Daudin specimens treated and untreated with prolactin. Monit Zool Ital 6: 129–146

    Google Scholar 

  • Guardabassi A, Campantico E, Grillo A (1975) Histological observations on the integument of normal and prolactin-treated Rana esculenta L. adult males kept at different temperatures. Monit Zool Ital 9: 163–173

    Google Scholar 

  • Guimond RW, Hutchison VH (1976) Gas exchange of the giant salamanders of North America. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London New York, pp 313–338

    Google Scholar 

  • Hay ED (1961) Fine structure of an unusual intracellular supporting network in the Leydig cell of Ambystoma epidermis. J Biophys Biochem Cytol 10: 457–463

    Article  PubMed  CAS  Google Scholar 

  • Heady JE, Kollros JJ (1964) Hormonal modifications of the development of the plical skin glands. Gen Comp Endocrinol 4: 124–131

    Article  Google Scholar 

  • Hetherington JE, Wake MH (1979) The lateral line system in larval Ichthyophis ( Amphibia: Gymnophiona). Zoomorphologie 93: 209–225

    Google Scholar 

  • Hoffman CW, Dent JN (1977a) Hormonal effects on mitotic rhythm in the epidermis of the red-spotted newt. Gen Comp Endocrinol 32: 512–521

    Article  PubMed  CAS  Google Scholar 

  • Hoffman CW, Dent JN (1977 b) Effects of neurotransmitters upon the discharge of secretory product from the cutaneous glands of the red-spotted newt. J Exp Zool 202: 155–162

    Google Scholar 

  • Holmes CH, Balls M (1978) In vitro studies on the control of myoepithelial cell contraction in the granular glands of Xenopus laevis. Gen Comp Endocrinol 36: 255–263

    Article  PubMed  CAS  Google Scholar 

  • Holmes CH, Moondi PS, Rao RR, Balls M (1977) In vitro studies on the effects of granular gland secretion in Xenopus laevis skin of stimulation and blockage of a and ß adrenoreceptors of myoepithelial cells. Cell Biol Int Rep 1: 263–270

    Article  PubMed  CAS  Google Scholar 

  • Hostetler JR, Cannon MS (1974) The anatomy of the parotid gland in Bufonidae with some histochemical findings. J Morphol 142: 225–239

    Article  PubMed  CAS  Google Scholar 

  • Hourdry J (1974) Étude des branchies -internes puis de leur regression au moment de la métamorphose, chez la larve de Discoglossus pictus (Otth), Amphibien Anoure. J Microsc 20: 165–182

    Google Scholar 

  • Hsu TW, Lyerla T (1977) The activities of some lysosomal hydrolases in the development of the cement gland of Xenopus laevis. J Exp Zool 199: 25–31

    Article  CAS  Google Scholar 

  • Hutchison VH, Haines HB, Engbretson G (1976) Aquatic life at high altitudes: respiratory adaptations in the Lake Titicaca frog, Telmatobius culeus. Respir Physiol 27: 115–129

    Article  PubMed  CAS  Google Scholar 

  • Ide H (1974) Proliferation of amphibian melanophores in vitro. Dev Biol 41: 380–384

    Article  PubMed  CAS  Google Scholar 

  • Ilic V Brown D (1980) Modifications of mitochondria-rich cells in different ionic conditions: changes in cell morphology and cell number in the skin of Xenopus laevis. Anat Rec 196: 153–161

    Article  PubMed  Google Scholar 

  • Iwasawa H, Maruyama T, Takata S (1978) Integumentary effects of prolactin in terrestrial young of the Japanese red-bellied newt, Cynops pyrrhogaster. Sci Rep Niigata Univ Biol 15: 1–8

    Google Scholar 

  • Izzo I, di Matteo L, Minucci S, Lela L, di Meglio M, Rastogi RK (1982) Control of the frog (Rana esculenta) thumb pad. Experientia 38: 134–135

    Article  CAS  Google Scholar 

  • Jackson IMD, Reichlin S (1979) Thyrotropin-releasing hormone in the blood of the frog, Rana pipiens: Its nature and possible derivation from regional locations in the skin. Endocrinology 104: 1814–1821

    Google Scholar 

  • Jorgensen CB, Larsen LO (1964) Further observations on moulting and its hormonal control in Bufo bufo. Gen Comp Endocrinol 4: 389–400

    Article  Google Scholar 

  • Jorgensen CB, Levi H (1975) Incorporation of 3H-thymidine in stratum germinativum of epidermis in the toad Bufo bufo (L.): an autoradiographic study of moulting cycle and diurnal variations. Comp Biochem Physiol [A] 52: 55–58

    Article  CAS  Google Scholar 

  • Jorgensen JM (1981) On a possible hair cell turnover in the inner ear of the caecilian Ichthyophis glutinosus (Amphibia: Gymnophiona). Acta Zool 62: 171–186

    Article  Google Scholar 

  • Jorgensen JM, Flock A (1973). The ultrastructure of lateral line sense organs in the adult Ambystoma mexicanum. J Neurocytol 2: 133–142

    Article  PubMed  CAS  Google Scholar 

  • Kaltenbach JC (1953) Local action of thyroxin on amphibian metamorphosis. III Formation and perforation of the skin window in Rana pipions larvae effected by throxin-cholesterol implants. J Exp Zool 122: 449–467

    Article  Google Scholar 

  • Kaltenbach JC (1968) Nature of hormone action in amphibian metamorphosis. In: Etkin W, Gilbert LI (eds) Metamorphosis: A problem in developmental biology. Appleton-Century-Crofts, New York, pp 399–441

    Google Scholar 

  • Kaung HLC (1975) Development of beaks of Rana pipiens larvae. Anat Rec 182:401–414 Kaung HLC, Kollros JJ (1977) Cell turnover in the beak of Rana pipiens. Anat Rec 188: 361–370

    Article  Google Scholar 

  • Kawada J, Taylor RE, Barker SB (1969) Measurement of Na-K-ATPase in the separated epidermis of Rana catesbeiana frogs and tadpoles. Comp Biochem Physiol 30: 965–975

    Article  PubMed  CAS  Google Scholar 

  • Kawada J, Taylor RE, Barker SB (1972) Changes in Na, K-ATPase activity of Rana catesbeiana tadpole epidermal tissue during thyroxine-induced metamorphosis. Endocrinol Jpn 19: 53–57

    Article  PubMed  CAS  Google Scholar 

  • Kelly DE (1966a) Fine structure of desmosomes, hemidesmosomes and an adepidermal globular layer in developing newt epidermis. J Cell Biol 28: 51–72

    Article  PubMed  CAS  Google Scholar 

  • Kelly DE (1966b) The Leydig cell in larval amphibian epidermis. Fine structure and function. Anat Rec 154: 685–700

    Article  PubMed  CAS  Google Scholar 

  • Kemp NE (1963) Metamorphic changes of dermis in skin of frog larvae exposed to thyroxine. Dev Biol 7: 244–254

    Article  CAS  Google Scholar 

  • Kessel RG, Beams HW, Shih CH (1974) The origin distribution and disappearance of surface cilia during embryonic development of Rana pipiens as revealed by scanning electron microscopy. Am J Anat 141: 341–359

    Article  PubMed  CAS  Google Scholar 

  • Kim HH, Noh YT, Chung YW, Chi YD (1978) The ultrastructure of the mucus-secreting cells in the amphibian skin. Korean J Zool 21: 29–39

    Google Scholar 

  • Kim HH, Noh YT, Chung YW, Chi YD (1979) Ultrastructure of granular glands in the amphibian skin. Korean J Zool 22: 103–114

    Google Scholar 

  • Kollros JJ (1972) Thyroid, growth, and amphibian metamorphosis. In: 7th Mid-West Conference on Endocrinology and Metabolism, pp 83–96

    Google Scholar 

  • Kollros JJ, Kaltenbach JC (1952) Local metamorphosis of larval skin of Rana pipiens. Physiol Zool 25: 163–170

    Google Scholar 

  • Kunzenbacher I, Bereiter-Hahn J, Osborn M, Weber K (1982) Dynamics of the cytoskeleton of epidermal cells in situ and in culture. Cell Tissue Res 222: 445–457

    Article  PubMed  CAS  Google Scholar 

  • Kurabuchi S, Inoue S (1981) Small spiny projections in the epidermis of the mature Xenopus laevis. Annot Zool Jpn 54: 182–190

    Google Scholar 

  • Landstrom U (1977) On the differentiation of prospective ectoderm to a ciliated cell pattern in embryos of Ambystoma mexicanum. J Embryol Exp Morphol 41: 23–32

    PubMed  CAS  Google Scholar 

  • Lane EB, Whitear M (1980) Skein cells in lamprey epidermis. Can J Zool 58: 450–455

    Article  Google Scholar 

  • Larsen EH (1971) The effect of aldosterone and oxytocin on the active sodium transport across isolated toad skin in relation to loosening of the stratum corneum. Gen Comp Endocrinol 17: 543–553

    Article  PubMed  CAS  Google Scholar 

  • Larsen EH (1972) Characteristics of aldosterone-stimulated transport in isolated skin of the toad Bufo bufo L. J Steroid Chem 3: 111–120

    Article  CAS  Google Scholar 

  • Larsen LO (1976) Physiology of molting. In: Lofts B (ed) Physiology of the Amphibia, vol III. Academic Press, London New York, pp 53–100

    Chapter  Google Scholar 

  • Lavker RM (1971) Fine structure of clear cells in frog epidermis. Tissue Cell 3:567–578 Lavker RM (1972) Fine structure of newt epidermis. Tissue Cell 4: 663–675

    Article  Google Scholar 

  • Lavker RM (1973) A highly ordered structure in the frog epidermis. J Ultrastruct Res 45: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Lavker RM (1974) Horny cell formation in epidermis of Rana pipiens. J Morphol 142: 365–377

    Article  PubMed  CAS  Google Scholar 

  • Lavker RM, Matoltsy G (1970) Formation of horny cells. The fate of cell organelles and differentiation products in ruminal epithelium. J Cell Biol 44: 501–512

    Google Scholar 

  • Lee AK, Mercer EH (1967) Cocoon surrounding desert-adapted frogs. Science 159:87–88 Leeson CR, Threadgold LT (1961) The differentiation of the epidermis in Rana pipiens. Acta Anat 44: 159–173

    Google Scholar 

  • Levi H, Nielsen A (1982) An autoradiographic study of cell kinetics in epidermis of the toad Bufo bufo bufo. J Invest Dermatol 79: 292–296

    Article  PubMed  CAS  Google Scholar 

  • Levi H, Nielsen A, Ursin C (1983) Cell kinetics in the epidermis of the toad Bufo bufo ( L.) after partial hypophysectomy followed by corticotrophin treatment (an autoradiographic study ). Comp Biochem Physiol [A] 75: 51–55

    Google Scholar 

  • Lewinson D, Rosenberg M, Warburg MR (1982) Mitochondria-rich cells in Salamandra larva epidermis: ultrastructural description and carbonic anhydrase activity. Biol Cell 46: 75–84

    CAS  Google Scholar 

  • Lillywhite HB, Licht P (1975) A comparative study of integumentary mucous secretions in amphibians. Comp Biochem Physiol [A] 51: 937–941

    Article  CAS  Google Scholar 

  • Lindemann B, Voûte C (1976) Structure and function of the epidermis. In: Llanâs R, Precht W (eds) Frog neurobiology, Springer, Berlin Heidelberg New York, pp 169–210

    Chapter  Google Scholar 

  • Ling BYF, Lyerla TA (1976) Acid phosphatase activity in the development of the cement gland in Xenopus laevis. J Exp Zool 195: 191–197

    Article  CAS  Google Scholar 

  • Ling JK (1972) Adaptive functions of vertebrate molting cycles. Am Zool 12: 77–93

    Google Scholar 

  • Lipson MJ, Cerskus RA, Silbert JE (1971) Glycosaminoglycans and glycosaminogtycans-de-grading enzyme of Rana catesbeiana back skin during late stages of metamorphosis. Dev Biol 25: 198–208

    Article  PubMed  CAS  Google Scholar 

  • Lodi G (1971) Histoenzymologic characterization of the flask cells in the skin of the crested newt under normal and experimental conditions. Atti Accad Sci Torino Univ 105: 561–570

    Google Scholar 

  • Lodi G, Bani G (1971) Microscopic, submicroscopic and histoenzymologic features of the epidermis of the normal and hypophysectomized crested newt. Boll Zool 38: 111–125

    Article  Google Scholar 

  • Lodi G, Biciotti M, Sacerdote M (1978) Osmoregulatory activity of prolactin in the skin of the crested newt. Gen Comp Endocrinol 36: 7–15

    Article  PubMed  CAS  Google Scholar 

  • Lodi G, Biciotti M, Viotto B (1982) Cutaneous osmoregulation in Triturus cristatus carnifex ( Urodela ). Gen Comp Endocrinol 46: 452–457

    Google Scholar 

  • Loveridge JP, Crayé G (1979) Cocoon formation in two species of southern African frogs. S Afr J Sci 75: 18–20

    Google Scholar 

  • Luckenbill L (1965) Morphogenesis of the horny jaws of Rana pipiens larva. Dev Biol 11:25–49 Masoni A, Garcia-Romeu F (1979) Moulting in Rana esculenta: Development of mitochondria-rich cells, morphological changes of the epithelium and sodium transport. Cell Tissue Res 197: 23–38

    Google Scholar 

  • Matoltsy AG (1980) Structure and function of the mammalian epidermal horny layer. In: Spearman RIC, Riley PA (eds) The skin of vertebrates. Symp Linn Soc, vol IX. Academic Press, London New York, pp 57–65

    Google Scholar 

  • Mayhew WW (1965) Adaptation of the amphibian, Scaphiophus couchi, to desert conditions. Am Midl Nat 74: 95–109

    Article  Google Scholar 

  • McAllister W, Channing A (1983) Comparisons of toe pads of some southern African climbing frogs. S Afr J Zool 18: 110–114

    Google Scholar 

  • McClanahan LL, Shoemaker VH, Ruibal R (1976) Structure and function of the cocoon of a ceratophryd frog. Copeia 1: 179–185

    Article  Google Scholar 

  • McClanahan LL, Ruibal R, Shoemaker VH (1983) Rate of cocoon formation and its physiological correlates in a ceratophryd frog. Physiol Zool 56: 430–435

    Google Scholar 

  • McGarry MP, Vanable JW (1969) The role of thyroxine in the formation of gland rudiments in the skin of Xenopus laevis. Dev Biol 20: 426–434

    Article  PubMed  CAS  Google Scholar 

  • Meisenheimer M (1936) Die jahreszyklische Veränderung der Schilddrüse von Rana temporaria L. and ihre Beziehungen zur Häutung. Z Wiss Zool 148: 261–297

    CAS  Google Scholar 

  • Michaels JE, Albright JT, Patt DI (1971) Fine structural observations on cell death in the epidermis of the external gills of the larval frog Rana pipiens. Am J Anat 132: 301–318

    Article  PubMed  CAS  Google Scholar 

  • Miscalencu D, Ionescu MD, Mailat F (1973) The fine structure of tegumentary glands in Bombina bambina ( L. ). Anat Anz 134: 253–258

    Google Scholar 

  • Mola L, Bertolani R (1981) Osservazioni istologiche e istochimiche sul differenziamento della cute in essemplari metamorfosati e non di Triturus alpestris apuanus (Bonap) ( Amphibia: Urodela). Arch Ital Anat Embriol 86: 195–207

    Google Scholar 

  • Myers CW Daley JW (1983) Dart-poison frogs. Sci Am Feb Edn: 97–105

    Google Scholar 

  • Nafstadt PHJ, Baker RE (1973) Comparative ultrastructural study of normal and grafted skin in the frog, Rana pipiens, with special reference to neuroepithelial connections. Z Zellforsch 139: 451–462

    Article  Google Scholar 

  • Nakao T (1974) Some observations on the fine structure of the epidermal—dermal junction in the skin of the frog tadpole, Rana rugosa. Am J Anat 140: 533–549

    Article  PubMed  CAS  Google Scholar 

  • Neuwirth M, Daly JW, Myers CW, Tice LW (1979) Morphology of the granular secreting glands in skin of poison-dart frogs ( Dendrobatidae ). Tissue Cell 11: 755–772

    Google Scholar 

  • Nielsen R (1969) The effect of aldosterone in vitro on the active sodium transport and moulting of the frog skin. Acta Physiol Scand 77: 85–94

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis (Daudin) Elsevier/North Holland, Amsterdam New York

    Google Scholar 

  • Obert HJ, Schneider H (1978) Die Drüsen in der Haut der Rotbauchunke (Bombina bambina (L.); Discoglossidae, Anura): Art, Anzahl, Grölle and Verteilung unter natürlichen and experimentellen Bedingungen. Z Mikrosk Anat Forsch 92: 241–272

    Google Scholar 

  • Ochoterena I (1932) Nota acerca de la histologia de la piel de Dermophis mexicanus Dum y Bibr. Ann Inst Biol Mex 3: 363–370

    Google Scholar 

  • Okada YK, Ichikawa M (1947) Revised normal table of the development of Triturus pyrrhogaster. Jpn J Exp Morphol 3: 1–6

    Google Scholar 

  • Oliphant LW (1973) Epidermal xanthophores in salamander. Can J Zool 51: 1007–1009

    Article  PubMed  CAS  Google Scholar 

  • Ovalle WK (1979) Neurite complexes with Merkel cells in larval tentacles of Xenopus laevis. Cell Tissue Res 204: 233–241

    Article  PubMed  Google Scholar 

  • Parakkal PF, Matoltsy G (1964) A study of the fine structure of the epidermis of Rana pipiens. J Cell Biol 20: 85–94

    Article  PubMed  CAS  Google Scholar 

  • Parducz A, Leslie RA, Cooper E, Turner CJ, Diamond J (1977) The Merkel cells and the rapidly adapting mechanoreceptors of the salamander skin. Neuroscience 2: 511–521

    Article  PubMed  CAS  Google Scholar 

  • Park JS (1974) Histochemical study of the mucous gland of the frog (Rana nigromaculata) skin under dry conditions. Korean J Zoo] 17: 43–50

    Google Scholar 

  • Parry CR, Cavill R (1978) A note on cocoon formation and structure in Pyxicephalus adspersus Tschudi ( Anura: Ranidae). Trans Rhod Sci Assoc 58: 55–58

    Google Scholar 

  • Perry M, Waddington CH (1966) The ultrastructure of the cement gland in Xenopus laevis. J Cell Sci 1: 193–200

    Google Scholar 

  • Pfeiffer W (1974) Pheronomes in fish and amphibians. In: Birch ME (ed) Pheronomes. Elsevier/ North Holland, Amsterdam, pp 269–296

    Google Scholar 

  • Picard JJ (1975) Xenopus laevis cement glands as an experimental model for embryonic differentiation. I. In vitro stimulation of differentiation by ammonium chloride. J Embryol Exp Morphol 33:957–967

    Google Scholar 

  • Picard JJ (1976) Ultrastructure of the cement gland of Xenopus laevis. J Morphol 148: 193–208

    Article  PubMed  CAS  Google Scholar 

  • Püper J, Garz R, Crawford EC (1976) Gas transport characteristics in an exclusively skinbreathing salamander, Desmognathusfuscus (Plethodontidae). In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London New York, pp 339–356

    Google Scholar 

  • Pillai PA (1962) Electronmicroscopic studies on the epidermis of newt with an enquiry into the problem of induced neoplasia. Protoplasma 55: 10–62

    Article  Google Scholar 

  • Platt JE, Christopher MA (1977) Effects of prolactin on the water and sodium content of larval tissues from neotenic and metamorphosing Ambystoma tigrinum. Gen Comp Endocrinol 31: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Platt JE, Christopher MA, Sullivan C (1978) The role of prolactin in blocking thyroxine-induced differentiation of tail tissue in larval and neotenic Ambystoma tigrinum. Gen Comp Endocrinol 35: 402–408

    Article  PubMed  CAS  Google Scholar 

  • Polansky JR, Toole BP (1976) Hyaluronidase activity during thyroxine-induced tadpole metamorphosis. Dev Biol 53: 30–35

    Article  PubMed  CAS  Google Scholar 

  • Pool TB, Dent JN (1977) The ultrastructure of the hormonal control of product synthesis in the hedonic glands of the red-spotted newt Notophthalmus viridescens. J Exp Zool 201: 177–202

    Article  CAS  Google Scholar 

  • Pool TB, Dent JN, Kemphues K (1977) Neural regulation of product discharge from the hedonic glands of the red-spotted newt, Notophthalmus viridescens. J Exp Zool 201: 203–220

    Article  CAS  Google Scholar 

  • Ravazzola M, Brown D, Leppäluoto J, Orei L (1980) Localisation by immunofluorescence of thryrotropin-releasing hormone in the cutaneous glands of the frog, Rana ridibunda. Life Sci 25: 1331–1334

    Google Scholar 

  • Reeves R (1977) Hormonal regulation of epidermis-specific protein and messenger RNA synthesis in amphibian metamorphosis. Dev Biol 60: 163–179

    Article  PubMed  CAS  Google Scholar 

  • Reno HW, Gehlbach FR, Turner RA (1972) Skin and aestivational cocoon of the aquatic amphibian Siren intermedia Le Conte. Copeia 4: 625–631

    Article  Google Scholar 

  • Richards CM, Carlson BM, Connelly TG, Rogers SL, Ashcraft E (1977) A scanning electron microscopic study of differentiation of the digital pad in regenerating digits of the Kenyan reed frog, Hyperolius viridiflavus ferniquei. J Morphol 153: 387–396

    Article  Google Scholar 

  • Roberts A, Blight A (1975) Anatomy, physiology and behavioural role of sensory nerve endings in the cement gland of embryonic Xenopus. Proc R Soc Lond [Biol] 192: 111–127

    Article  CAS  Google Scholar 

  • Roberts A, Hayes BP (1977) The anatomy and function of “fine” nerve endings in an amphibian skin sensory system. Proc R Soc Lond [Biol] 196: 415–429

    Article  CAS  Google Scholar 

  • Roberts A, Taylor JSH (1982) A scanning electron microscopic study of the development of a peripheral sensory neurite network. J Embryol Exp Morphol 69: 237–250

    PubMed  CAS  Google Scholar 

  • Rosen S, Friedley NJ (1973) Carbonic anhydrase activity in Rana pipiens skin: biochemical and histochemical analysis. Histochemie 36: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M, Lewinson D, Warburg MR (1982) Ultrastructural studies of the epidermal Leydig cell in larvae of Salamandra salamandra ( Caudata, Salamandrida). J Morphol 174: 275–281

    Google Scholar 

  • Ruibal R, Hillman H (1981) Cocoon structure and function in the burrowing hylid frog, Pternohyla fodiens. J Herpetol 15: 403–408

    Google Scholar 

  • Russel IJ (1976) Amphibian lateral line receptors. In: Llianâs R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 513–550

    Chapter  Google Scholar 

  • Ryuzaki M, Kojima H, Tamai Y (1975) Study on amphibian lipids II. Characteristic constituents of monoglycosylceramides from the skin of three frog species. Comp Biochem Physiol [C] 52: 81–84

    Google Scholar 

  • Saint-Aubain ML (1982) The morphology of amphibian skin vascularization before and after metamorphosis. Zoomorphologie 100: 55–63

    Article  Google Scholar 

  • Salpeter MM, Singer M (1959) The fine structure of the adepidermal reticulum in the basal

    Google Scholar 

  • membrane of the skin of the newt Triturus. J Biophys Biochem Cytol 6:35–40

    Google Scholar 

  • Sato A (1976) Electron microscopic study of the developing lateral-line organ in the embryo of the newt, Triturus pyrrhogaster. Anat Rec 186: 565–583

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Kawakami I (1976) The fine structure of the lateral-line organ of larvae of the newt, Triturus pyrrhogaster. Annot Zool Jpn 49: 131–141

    Google Scholar 

  • Scott SA, Cooper E, Diamond J (1981) Merkel cells as targets of the mechano-sensory nerves in salamander ( Ambystoma tigrinum) skin. Proc R Soc Lond [Biol] 211: 455–470

    Google Scholar 

  • Shelton PMJ (1970) The lateral line system at metamorphosis in Xenopus laevis (Daudin). J Embryol Exp Morphol 24: 511–524

    PubMed  CAS  Google Scholar 

  • Shi RJ, Vanable JW (1975) The development of skin mucous glands of Xenopus laevis during metamorphosis. Wilhelm Roux ’ Arch Dev Biol 177: 183–191

    Google Scholar 

  • Shumway W (1940) Stages in the normal development of Rana pipiens. Anat Rec 78: 139–147

    Article  Google Scholar 

  • Singer M, Salpeter MM (1961) The bodies of Eberth and associated structures in the skin of the frog tadpole. J Exp Zool 147: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Singhas CA, Dent JN (1975) Hormonal control of the tail fin and of the nuptial pads in the male red-spotted newt. Gen Comp Endocrinol 26: 382–393

    Article  Google Scholar 

  • Singh-Jande S (1966) Fine structure of lateral-line organs of frog tadpole. J Ultrastruct Res 15: 496–500

    Article  Google Scholar 

  • Sjoberg E (1977) Monoaminergic fluorescence in frog skin. Acta Physiol Scand 100: 452–456

    Article  PubMed  CAS  Google Scholar 

  • Sjoberg E, Flock A (1976) Innervation of skin glands in the frog. Cell Tissue Res 172: 81–91

    Article  PubMed  CAS  Google Scholar 

  • Smith RG (1975) Aldosterone-induced moulting in amphibian skin and its effect on electrical capacitance. J Membr Biol 22: 165–181

    Article  PubMed  CAS  Google Scholar 

  • Smith-Gill S, Carver V (1981) Biochemical characterization of organ differentiation and maturation. In: Gilbert LI, Frieden E (eds) Metamorphosis: A problem in developmental biology, 2nd edn. Plenum, New York London, pp 491–544

    Chapter  Google Scholar 

  • Spanhof L (1960) Histologische Untersuchungen am Krallenfrosche Xenopus laevis Daud. nach Hypophysektomie and anschließender Implantation von Hypophysengewebe. II.

    Google Scholar 

  • Untersuchungen an der Epidermis and den Hautdrüsen. Wiss Z Humboldt-Univ 9:173–188

    Google Scholar 

  • Spearman RIC (1968) Epidermal keratinization in the salamander and a comparison with other amphibia. J Morphol 125: 129–144

    Article  PubMed  CAS  Google Scholar 

  • Stefano FJE, Donoso AO (1964) Hypophyso-adrenal regulation of moulting in the toad. Gen Comp Endocrinol 4: 473–480

    Article  CAS  Google Scholar 

  • Tachibana T (1978) The Merkel cell in the labial ridge epidermis of anuran tadpole. Anat Rec 191: 487–502

    Article  PubMed  CAS  Google Scholar 

  • Tachibana T (1979) The Merkel cell in the labial ridge epidermis of an anuran tadpole. II. Electron microscope observations on the appearance and differentiation of the Merkel cell. Arch Histol Jpn 42: 129–140

    Article  PubMed  CAS  Google Scholar 

  • Tachibana T, Sakakura Y, Nawa T (1980) Merkel cell differentiation in the developing tentacles of Xenopus laevis. Acta Anat Nippon 55: 588–599

    PubMed  CAS  Google Scholar 

  • Tahara Y (1959) Table of the normal developmental stages of the frog, Rana japonica. I. Early development (stages 1–25). Jpn J Exp Morphol 13: 49–60

    Google Scholar 

  • Tamai Y, Ryuzaki M, Kojima H (1975) Study on amphibian lipids. I. Characterization of monoglycosylceramides from the skin of Rana nigromaculata ( Japanese pond frog ). Biochim Biophys Acta 398: 294–302

    Google Scholar 

  • Taylor SC, Kollros JJ (1946) Stages in the normal development of Rana pipiens larvae. Anat Rec 94: 7–24

    Article  PubMed  CAS  Google Scholar 

  • Theis A (1932) Histologische Untersuchungen über die Epidermis im Individualzyklus von Salamandra maculosa Laur. Z Wiss Zool 140: 356–420

    Google Scholar 

  • Toyoshima K, Shimamura A (1982) Comparative study of ultrastructure of the lateral-line organs and the palatal taste organs in the African clawed toad, Xenopus laevis. Anat Rec 204: 371–381

    Article  PubMed  CAS  Google Scholar 

  • Tweedle CD (1977) Ultrastructure of lateral line organs in aneurogenic amphibian larvae (Ambystoma). Cell Tissue Res 185: 191–197

    Article  PubMed  CAS  Google Scholar 

  • Tweedle CD (1978) Ultrastructure of Merkel cell development in aneurogenic and control amphibian larvae (Ambystoma).Neuroscience 3: 481–486

    PubMed  CAS  Google Scholar 

  • Urch UA, Hedrick JL (1981) The hatching enzyme from Xenopus laevis. Limited proteolysis of the fertilization envelope. J Supramol Struct Cell Biochem 15: 111–117

    Google Scholar 

  • Vanable JW (1964) Granular gland development during Xenopus laevis metamorphosis. Dev Biol 10: 331–357

    Article  PubMed  CAS  Google Scholar 

  • Vanable JW, Mortensen RD (1966) Development of Xenopus laevis skin glands in organ culture. Exp Cell Res 44: 436–442

    Article  PubMed  Google Scholar 

  • Vanatta JC, Frazier LW (1981) The epithelium of Rana pipiens excretes H+ and NH4 in acidosis and HCO3 in alkalosis. Comp Biochem Physiol [A] 68: 511–513

    Article  Google Scholar 

  • Vanatta JC, Frazier LW (1982) The uptake of glucose by the skin of Rana pipiens. Comp Biochem Physiol [A] 72: 603–606

    Article  Google Scholar 

  • Vellano C, Peyro A, Mazzi V (1967) Effects of prolactin on the pituitothyroid axis, integument and behaviour of the adult male crested newt. Monit Zool Ital 1: 202–227

    Google Scholar 

  • Vellano C, Lodi G, Bani G, Sacerdote M, Mazzi V (1970) Analysis of the integumentary effect of prolactin the hypophysectomized crested newt. Monit Zool Ital 4: 115–146

    Google Scholar 

  • Voûte L (1963) An electron microscopic study of the skin of the frog (Rana pipiens). J Ultrastruct Res 9: 497–510

    Article  Google Scholar 

  • Voûte L, Thummel J, Brenner M (1975) Aldosterone effect in the epidermis of the frog skin: a new story about an old enzyme. J Steroid Biochem 6: 1175–1179

    Article  PubMed  Google Scholar 

  • Warburg MR, Lewinson D (1977) Ultrastructure of epidermis of Salamandra salamandra followed throughout ontogenesis. Cell Tissue Res 181: 369–393

    Article  PubMed  CAS  Google Scholar 

  • Weets J, Picard JJ (1979) Influence of 3,3’,5’-triiodothyronine on the involution of the cement gland of Xenopus laevis ( Daudin) in vivo and in vitro. J Exp Zool 207: 305–314

    Google Scholar 

  • Weiss P, Ferris W (1954) Electronmicrograms of larval epidermis. Exp Cell Res 6:546–549 Welsch U, Storch V (1973) Die Feinstruktur verhornter and nichtverhornter ektodermaler

    Google Scholar 

  • Epithelium and der Hautdrüsen embryonaler and adulter Gymnophionen. Zool Jahrb Anat 90:323–342

    Google Scholar 

  • Welsch U, Storch V, Fuchs W (1974) The fine structure of the digital pads of rhacophorid tree frogs. Cell Tissue Res 148: 407–416

    Article  PubMed  CAS  Google Scholar 

  • White BA, Nicoll CS (1981) Hormonal control of amphibian metamorphosis. In: Gilbert LI, Frieden E (eds) Metamorphosis: A problem in developmental biology, 2nd edn. Plenum, New York, London, pp 363–396

    Chapter  Google Scholar 

  • Whitear M (1955) Dermal nerve endings in Rana and Bufo. Q J Microsc Sci 96: 343–349

    Google Scholar 

  • Whitear M (1972) The location of silver in frog epidermis after treatment by Ranvier’s method and possible implication of the flask cells in transport. Z Zellforsch 133: 455–461

    Article  PubMed  CAS  Google Scholar 

  • Whitear M (1974) The nerves in frog skin. J Zool (London) 172: 503–529

    Article  Google Scholar 

  • Whitear M (1975) Flask cells and epidermal dynamics in frog skin. J Zool (London) 175: 107–149

    Article  Google Scholar 

  • Whitear M (1976) Identification of the epidermal “Stiftchenzellen” of frog tadpoles by electron microscopy. Cell Tissue Res 175: 391–402

    Article  PubMed  CAS  Google Scholar 

  • Whitear M (1977) A functional comparison between the epidermis of fish and of amphibians. In: Spearman RIC (ed) Comparative biology of skin. Symp Zool Soc Lond, vol 39. Academic Press, London New York, pp 291–313

    Google Scholar 

  • Whitear M (1983) The question of free nerve endings in the epidermis of lower vertebrates. Acta Biol Hung 34: 303–319

    Google Scholar 

  • Wright ML (1977) Regulation of cell proliferation in tadpole limb epidermis by thyroxine. J Exp Zool 202: 223–234

    Article  CAS  Google Scholar 

  • Wright ML, Majerowski MA, Lukas SM, Pike PA (1979) Effect of prolactin on growth development and epidermal cell proliferation in the hind-limb of the Rana pipiens tadpole. Gen Comp Endocriol 39: 53–62

    Article  CAS  Google Scholar 

  • Wright ML, Sicbaldi EM, Loveridge KM, Pike PA, Majerowski MA (1981) Cell population kinetics in tadpole (Rana pipiens) limb epidermis during thyroxine-induced, spontaneously and prolactin-inhibited metamorphosis. Gen Comp Endocrinol 43: 451–461

    Article  PubMed  CAS  Google Scholar 

  • Yoshizaki N (1973) Ultrastructure of the hatching gland cells in the South African clawed toad Xenopus laevis. J Fac Sci Hokkaido Univ 18: 469–490

    CAS  Google Scholar 

  • Yoshizaki N (1974) Ultrastructural cytochemistry of hatching gland cells in Xenopus embryos in relation to the hatching process. J Fac Sci Hokkaido Univ 19: 309–314

    CAS  Google Scholar 

  • Yoshizaki N (1976) Effect of actinomycin D on the differentiation of hatching gland cell and cilia cell in the frog embryo. Dev Growth Differ 18: 133–144

    Article  Google Scholar 

  • Yoshizaki N (1979) Induction of the frog hatching gland cell from explanted presumptive ectodermal tissue by LiCI. Dev Growth Differ 21: 11–18

    Article  Google Scholar 

  • Yoshizaki N (1981) Ionic induction of the frog cement gland cell from presumptive ectodermal tissue. J Embryo! Exp Morphol 61: 249–258

    CAS  Google Scholar 

  • Yoshizaki N, Katagiri C (1975) Cellular basis for the production and secretion of the hatching enzyme by frog embryos. J Exp Zool 192: 203–212

    Article  Google Scholar 

  • Zimmer JA, Dent JN (1981) Hormonal regulation of nuptial pads and tail fins in the female red-spotted newt. Gen Comp Endocrinol 44: 436–443

    Article  PubMed  CAS  Google Scholar 

  • Zylberberg L, Castanet J, de Ricqles A (1980) Structure of the dermal scales in Gymnophona ( Amphibia ). J Morphol 165: 41–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fox, H. (1986). Dermal Glands. In: Bereiter-Hahn, J., Matoltsy, A.G., Richards, K.S. (eds) Biology of the Integument. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00989-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00989-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00991-8

  • Online ISBN: 978-3-662-00989-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics