Skip to main content

Chloride Cells and Salt Glands

  • Chapter

Abstract

Chloride cells (ionocytes) and salt glands are auxiliary organs of osmoregulation. By the absorption and excretion of ions, they support the limited potency of excretory organs to achieve homeostasis under extreme conditions of hydration and dehydration. They are not unique to vertebrates, but analogous organs have in many cases evolved, for example in aquatic insects (Komnick 1977), crustaceans of limnic and saline habitats (Copeland 1967, Kikuchi 1983), and higher plants (Thomson 1975). The justification for attributing the organ status to both chloride cells and salt glands arises from the histological practice of discriminating between diffuse and compact organs. Chloride cells fall into the first, salt glands into the second category.

Keywords

  • Tubular Epithelium
  • Salt Gland
  • Chloride Cell
  • Basolateral Plasma Membrane
  • Rectal Gland

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

“Facing the problem” Portrait of the desert lizard Uromastyx acanthinurus with mineral crusts around the nostrils deposited during nasal salt excretion (Komnick 1970)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-00989-5_25
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-00989-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel JH, Ellis RA (1966) Histochemical and electron micoscopic observation on the salt secreting lachrymal glands of marine turtles. Am J Anat 118: 337–358

    PubMed  CrossRef  Google Scholar 

  • Barrnett RJ, Mazurkiewicz JE, Addis JS (1983) Avian salt gland: a model for the study of membrane biogenesis. Methods Enzymol 96: 627–659

    PubMed  CrossRef  CAS  Google Scholar 

  • Bulger RE (1963) Fine structure of the rectal (salt-secreting) gland of the spiny dogfish, Squalus acanthias. Anat Rec 147: 95–127

    PubMed  CrossRef  CAS  Google Scholar 

  • Bulger RE (1965) Electron microscopy of the stratified epithelium lining the excretory canal of the dogfish rectal gland. Anat Rec 151: 589–608

    PubMed  CrossRef  CAS  Google Scholar 

  • Burger JW, Hess W (1960) Function of the rectal gland in the spiny dogfish. Science 131: 670–671

    PubMed  CrossRef  CAS  Google Scholar 

  • Copeland DE (1948) The cytological basis of chloride transfer in the gills of Fundulus heteroclitus. J Morphol 82: 201–227

    PubMed  CrossRef  CAS  Google Scholar 

  • Copeland DE (1967) A study of salt secreting cells in the brine shrimp (Artemia saliva). Protoplasma 63: 363–384

    PubMed  CrossRef  CAS  Google Scholar 

  • Cowan FBM (1971) The ultrastructure of the lachrymal “salt” gland and the Harderian gland in euryhaline Malaclemys and some closely related stenohaline emydines. Can J Zool 49: 691–697

    PubMed  CrossRef  CAS  Google Scholar 

  • Doyle WL (1960) The principal cells of the salt-gland of marine birds. Exp Cell Res 21: 386–393

    PubMed  CrossRef  CAS  Google Scholar 

  • Doyle WL (1962) Tubule cells of the rectal salt-gland of Urolophus. Am J Anat 111: 223–238

    PubMed  CrossRef  CAS  Google Scholar 

  • Doyle WL, Gorecki D (1961) The so-called chloride cell of the fish gill. Physiol Zool 34: 81–88

    Google Scholar 

  • Dunson WA (1976) Salt glands in reptiles. In: Gans AC, Dawson WR (eds) Biology of the reptilia. Academic Press, London New York, pp 413–445

    Google Scholar 

  • Dunson WA, Dunson MK (1974) Sea snake salt glands: relation between gland weight, fluid concentration, flow rate, cell structure and Na +-K ATPase activity. Am J Physiol 227: 430–438

    PubMed  CAS  Google Scholar 

  • Dunson WA, Packer RK, Dunson MK (1971) Sea snakes: An unusual salt gland under the tongue. Science 173: 437–441

    Google Scholar 

  • Ellis R, Goertemiller CC (1974) Cytological effects of salt-stress and localization of transport adenosine triphosphatase in lateral nasal glands of the desert iguana, Dipsosaurus dorsalis. Anat Rec 180: 285–297

    PubMed  CrossRef  CAS  Google Scholar 

  • Ellis RA, Goertemiller CC (1976) Scanning electron microscopy of intercellular channels and the localization of ouabain sensitive p-nitrophenyl phosphatase activity in the salt-secreting lacrymal glands of the marine turtle Chelonia mydas. Cytobiologie 13: 1–12

    CAS  Google Scholar 

  • Ellis RA, Goertemiller CC, Stetson DL (1977) Significance of extensive “leaky” cell junctions in the avian salt gland. Nature 268: 555–556

    PubMed  CrossRef  CAS  Google Scholar 

  • Ellis RA, Goertemiller CC, DeLellis RA, Kablotsky YH (1963) The effect of a salt water regimen on the development of the salt glands of domestic ducklings. Dev Biol 8: 286–308

    PubMed  CrossRef  CAS  Google Scholar 

  • Ernst SA, Ellis RA (1969) The development of surface specialization in the secretory epithelium of the avian salt gland in response to osmotic stress. J Cell Biol 40: 305–321

    PubMed  CrossRef  CAS  Google Scholar 

  • Ernst SA, Mills JW (1977) Basolateral plasma membrane localization of ouabain-sensitive sodium transport sites in the avian salt gland. J Cell Biol 75: 74–94

    PubMed  CrossRef  CAS  Google Scholar 

  • Ernst SA, Rossum GDV van (1982) Ions and energy metabolism in duck salt-gland: possible role of furosemide-sensitive co-transport of sodium and chloride. J Physiol 325: 333–352

    PubMed  CAS  Google Scholar 

  • Ernst SA, Dodson WC, Karnaky KJ (1980) Structural diversity of occluding junctions in the low-resistance chloride-secreting opercular epithelium of seawater-adapted killifish (Fundulus heteroclitus). J Cell Biol 87: 488–497

    PubMed  CrossRef  CAS  Google Scholar 

  • Ernst SA, Goertemiller CC, Ellis RA (1967) The effect of salt regimens on the development of (Na +)-dependent ATPase activity during the growth of salt glands of ducklings. Biochim Biophys Acta 135: 682–692

    PubMed  CrossRef  CAS  Google Scholar 

  • Ernst SA, Hootman SR, Schreiber JH, Riddle CV (1981) Freeze-fracture and morphometric analysis of occluding junctions in rectal glands of elasmobranch fish. J Membr Biol 58: 101–114

    PubMed  CrossRef  CAS  Google Scholar 

  • Eveloff J, Karnaky KJ, Silva P, Epstein FH, Kinter WB (1979) Elasmobranch rectal gland cell. Autoradiographic localization of [3H] ouabain sensitive, Na, K-ATPase in rectal gland of dogfish, Squalus acanthias. J Cell Biol 83: 16–32

    PubMed  CrossRef  CAS  Google Scholar 

  • Foskett JK, Scheffey C (1982) The chloride cell: definite identification as the salt-secretory cell in teleosts. Science 215: 164–166

    PubMed  CrossRef  CAS  Google Scholar 

  • Foskett K, Bern HA, Machen TE, Conner M (1983) Chloride cells and the hormonal control of teleost fish osmoregulation. J Exp Biol 106: 255–281

    PubMed  CAS  Google Scholar 

  • Gassner D, Komnick H (1983) Ultrastructure of the purified and reconstituted Na/K-ATPase of the avian salt gland. Eur J Cell Biol 29: 226–235

    PubMed  CAS  Google Scholar 

  • Gilmore JP, Dietz J, Gilmore C, Zucker JH (1977) Evidence for a chloride pump in the salt gland of the goose. Comp Biochem Physiol [A] 56: 121–126

    CrossRef  CAS  Google Scholar 

  • Goertemiller CC, Ellis RA (1976) Localization of ouabain-sensitive, potassium-dependent nitrophenyl phosphatase in the rectal gland of the spiny dogfish, Squalus acanthias. Cell Tissue Res 175: 101–112

    CrossRef  CAS  Google Scholar 

  • Greger R, Schlatter E, Wang F, Forrest JN (1984) Cellular mechanism of NaC1 secretion by the rectal gland of Squalus acanthias. Studies on in vitro perfused glandular tubules. Bull Mt Desert Isl Biol Lab 23: 8–9

    Google Scholar 

  • Harvey S, Phillips JG (1982) Endocrinology of salt gland function. Comp Biochem Physiol 71: 537–546

    CrossRef  CAS  Google Scholar 

  • Hentschel H, Elger M (1983) Das Nephron eines marinen Welses, Plotosus spec. Verh Dtsch Zool Ges: 231

    Google Scholar 

  • Hilden S, Hokin LE (1975) Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthias. J Biol Chem 250: 6296–6303

    PubMed  CAS  Google Scholar 

  • Hootman SR, Philpott CW (1979) Ultracytochemical localization of Na+, K+-activated ATPase in chloride cells from the gills of a euryhaline teleost. Anat Rec 193: 99–130

    PubMed  CrossRef  CAS  Google Scholar 

  • Hootman SR, Philpott CW (1980) Accessory cells in teleost branchial epithelium. Am J Physiol 238:RI99–R206

    Google Scholar 

  • Hossler FE (1982) On the mechanism of plasma membrane turnover in the salt gland of ducklings. Implications from DNA content, rates of DNA synthesis, and sites of DNA synthesis during the osmotic stressing and destressing cycle. Cell Tissue Res 226: 531–540

    PubMed  CrossRef  CAS  Google Scholar 

  • Hossler FE, Sarras MP, Allen ER (1978 a) Ultrastructural, cyto-and biochemical observations during turnover of plasma membrane in duck salt gland. Cell Tissue Res 188: 299–315

    Google Scholar 

  • Hossler FE, Sarras MP, Barrnett RJ (1978b) Ouabain binding during plasma membrane biogenesis in the duck salt gland. J Cell Sci 31: 179–197

    PubMed  CAS  Google Scholar 

  • Karnaky KJ, Kinter WB (1977) Killifish opercular skin: A flat epithelium with a high density of chloride cells. J Exp Zool 199: 355–364

    Google Scholar 

  • Karnaky KJ, Ernst SA, Philpott CW (1976a) Teleost chloride cell. I. Response of pupfish Cyprinodon variegatus gill Na, K-ATPase and chloride cell fine structure to various high salinity environments. J Cell Biol 70: 144–156

    Google Scholar 

  • Karnaky KJ, Kinter LB, Kinter WB, Stirling CE (1976b) Teleost chloride cell. II. Autoradio-graphic localization of gill Na, K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J Cell Biol 70: 157–177

    PubMed  CrossRef  CAS  Google Scholar 

  • Keys A, Willmer EN (1932) Chloride secreting cells in the gills of fishes, with special reference to the common eel. J Physiol 76: 368–378

    PubMed  CAS  Google Scholar 

  • Kikuchi S (1977) Mitochondria-rich (chloride) cells in the gill epithelia from four species of stenohaline fresh water teleosts. Cell Tissue Res 180: 87–98

    PubMed  CrossRef  CAS  Google Scholar 

  • Kikuchi S (1983) The fine structure of the gill epithelium of a fresh-water flea, Daphnia magna (Crustacea: Phyllopoda) and changes associated with acclimation to various salinities. Cell Tissue Res 229: 253–268

    PubMed  CrossRef  CAS  Google Scholar 

  • Knight CH, Peaker M (1979) Adaptive hyperplasia and compensatory growth in the salt glands of ducks and geese. J Physiol 294: 145–151

    PubMed  CAS  Google Scholar 

  • Komnick H (1963) Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des Ionentransportes in der Salzdrüse von Larus argentatus. III. Teil. Protoplasma 56: 605–636

    CrossRef  CAS  Google Scholar 

  • Komnick H (1964) Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des Ionentransportes in der Salzdrüse von Larus argentatus. IV. Teil. Protoplasma 58: 96–127

    CrossRef  CAS  Google Scholar 

  • Komnick H (1965) Funktionelle Morphologie von Salzdrüsenzellen. In: Wohlfarth-Bottermann KE (ed) Sekretion and Exkretion. Springer, Berlin Heidelberg New York, pp 289–309

    CrossRef  Google Scholar 

  • Komnick H (1970) Feinstruktur des Salzdrüsenepithels von Uromastyx acanthinurus. Verh Dtsch Zool Ges 64: 118–122

    Google Scholar 

  • Komnick H (1977) Chloride cells and chloride epithelia of aquatic insects. Int Rev Cytol 49: 285–329

    CrossRef  CAS  Google Scholar 

  • Komnick H, Bierther M (1969) Zur histochemischen Ionenlokalisation mit Hilfe der Elektronenmikroskopie unter besonderer Berücksichtigung der Chloridreaktion. Histochemie 18: 337–362

    PubMed  CAS  Google Scholar 

  • Komnick H, Kniprath E (1970) Morphometrische Untersuchungen an der Salzdrüse von Silbermöven. Cytobiologie 1: 228–247

    Google Scholar 

  • Komnick H, Wohlfarth-Bottermann KE (1966) Zur Cytologie der Rectaldrüsen von Knorpelfischen. I. Teil. Z Zellforsch 74: 123–144

    Google Scholar 

  • Kowarsky J (1973) Extra-branchial pathways of salt exchange in a teleost fish. Comp Biochem Physiol [A] 46: 477–486

    CrossRef  CAS  Google Scholar 

  • Lagios MD, Stasko-Concannon S (1979) Ultrastructure and ATPase activity of the rectal gland of the chondrichthyean fish Hydrolagus colliei (Holocephali). Cell Tissue Res 198: 287–294

    PubMed  CrossRef  CAS  Google Scholar 

  • Laurent P, Dunel S (1980) Morphology of gill epithelia in fish. Am J Physiol 238: 147–159

    Google Scholar 

  • Lennep EW van (1968) Electron microscopic histochemical studies on salt-secreting glands in elasmobranchs and marine catfish. J Ultrastruct Res 25: 94–108

    PubMed  CrossRef  Google Scholar 

  • Lennep EW van, Komnick H (1970) Fine structure of the nasal salt gland in the desert lizard Uromastyx acanthinurus. Cytobiologie 2: 47–67

    Google Scholar 

  • Lennep EW van, Lanzing WJR (1967) The ultrastructure of glandular cells in the external dendritic organ of some marine catfish. J Ultrastruct Res 18: 333–344

    PubMed  CrossRef  Google Scholar 

  • Levine AM, Higgins JA, Barrnett RJ (1972) Biogenesis of plasma membranes in the salt glands of salt-stressed domestic ducklings: Localization of acyltransferase activity. J Cell Sci 11: 855–873

    Google Scholar 

  • Lingham RB, Stewart DJ, Sen AK (1980) The induction of (Na ++K+)-ATPase in the salt gland of the duck. Biochim Biophys Acta 601: 229–234

    PubMed  CrossRef  CAS  Google Scholar 

  • Maetz J (1971) Fish gills: mechanisms of salt transfer in fresh water and sea water. Philos Trans R Soc Lond [Biol] 262: 209–249

    CrossRef  CAS  Google Scholar 

  • Maloiy GMO (1979) Comparative physiology of osmoregulation in animals. Academic P:ess, London New York

    Google Scholar 

  • Martin BJ, Philpott CW (1973) The adaptive response of the salt glands of adult mallard ducks to a salt water regime: an ultrastructural and tracer study. J Exp Zool 186: 111–122

    PubMed  CrossRef  CAS  Google Scholar 

  • Masoni A, Gracia-Romeu F (1973) Localization autoradiographique des ions Cl–et Na dans les cellules à chlorure de la branchie d’anguille (Anguilla anguilla L.) adaptée à l’eau de mer. Z Zellforsch 141: 575–578

    PubMed  CrossRef  CAS  Google Scholar 

  • Mazurkiewicz JE, Barrnett RJ (1981) Organotypic cultures of the avian salt gland: biosynthesis of membrane proteins. J Cell Sci 48: 75–88

    PubMed  CAS  Google Scholar 

  • Nonnotte G, Nonnotte L, Kirsch R (1979) Chloride cells and chloride exchange in the skin of a sea-water teleost, the shanny (Blennius pholis L.). Cell Tissue Res 199: 387–396

    PubMed  CrossRef  CAS  Google Scholar 

  • Norris KS, Dawson WR (1964) Observations on the water economy and electrolyte excretion of chuckwallas (Lacertilia, Sauromalus). Copeia 4: 638–646

    CrossRef  Google Scholar 

  • Peaker M, Linzell JL (1975) Salt glands in birds and reptiles. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Peek WD, Youson JH (1979) Ultrastructure of chloride cells in young adults of the anadrornous sea lamprey, Petromyzon marinus L., in fresh water and during adaptation in sea water. J Morphol 160: 143–164

    PubMed  CrossRef  CAS  Google Scholar 

  • Philpott CW (1965) Halide localization in the teleost chloride cell and its identification by selected area electron diffraction. Protoplasma 60: 7–23

    CrossRef  CAS  Google Scholar 

  • Pisam M (1981) Membranous system in the “chloride cell” of teleostean fish gill; their modifications in response to the salinity of the environment. Anat Rec 200: 401–414

    PubMed  CrossRef  CAS  Google Scholar 

  • Riddle CV, Ernst SA (1979) Structural simplicity of the zonula occludens in the electrolyte secreting epithelium of the avian salt gland. Membr Biol 45: 21–35

    CrossRef  CAS  Google Scholar 

  • Sardet C, Pisam M, Maetz J (1979) The surface epithelium of teleostean fish gills. Cellular and junctional adaptations of the chloride cell in relation to salt adaptation. J Cell Biol 80: 96–117

    Google Scholar 

  • Schmidt-Nielsen K (1959) Salt glands. Sci Am 200: 109–116

    CrossRef  CAS  Google Scholar 

  • Schmidt-Nielsen K, Fänge R (1958) Salt glands in marine reptiles. Nature 182: 783–785

    CrossRef  Google Scholar 

  • Schmidt-Nielsen K, Jörgensen CB, Osaki H (1958) Extrarenal salt excretion in birds. Am J Physiol 193: 101–107

    PubMed  CAS  Google Scholar 

  • Shirai N, Utida S (1970) Development and degeneration of the chloride cell during seawater and freshwater adaptation of the Japanese eel, Anguilla japonica. Z Zellforsch 103: 247–264

    PubMed  CrossRef  CAS  Google Scholar 

  • Shoemaker VH (1972) Osmoregulation and excretion in birds. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol II. Academic Press, London New York, pp 527–574

    Google Scholar 

  • Silva P, Stoff J, Field M, Fine L, Forrest JN, Epstein FH (1977) Mechanism of active chloride secretion by shark rectal gland: role of Na-K-ATPase in chloride transport. Am J Physiol 233: F298 - F306

    PubMed  CAS  Google Scholar 

  • Skobe Z, Garant PR, Albricht JT (1970) Ultrastructure of a new cell in the gills of the air-breathing fish Helostoma temmincki. J Ultrastruct Res 31: 312–322

    PubMed  CrossRef  CAS  Google Scholar 

  • Stockem W, Komnick H, Wohlfarth-Bottermann KE (1968) Zur Cytologie der Rectaldrüsen von Knorpelfischen. II. Teil. Helgol Wiss Meeresunters 18: 424–452

    Google Scholar 

  • Taplin LE, Grigg GC (1981) Salt glands in the tongue of the estuarine crocodile Crocodylus porosus. Science 212: 1045–1047

    PubMed  CrossRef  CAS  Google Scholar 

  • Tempelton J (1964) Nasal salt excretion in terrestrial lizards. Comp Biochem Physiol 11: 223–229

    CrossRef  Google Scholar 

  • Thompson WW (1975) The structure and function of salt glands. In: Poljakoff-Mayber A, Gale J (eds) Plants in saline environments. Springer, Berlin Heidelberg New York, pp 118–146

    CrossRef  Google Scholar 

  • Thompson IG, Cowan FBM (1976) Localization of K+-stimulated p-NPPase in the lachrymal “salt” gland of Malaclemys, using cytochemical and autoradiographic techniques. Cell Tissue Res 174: 417–426

    PubMed  CrossRef  CAS  Google Scholar 

  • Utida S, Kamiya M, Shirai N (1971) Relationship between the activity of Na --K+-activated adenosinetrophosphatase and the number of chloride cells in eel gills with special reference to sea-water adaptation. Comp Biochem Physiol 38: 443–447

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Komnick, H. (1986). Chloride Cells and Salt Glands. In: Bereiter-Hahn, J., Matoltsy, A.G., Richards, K.S. (eds) Biology of the Integument. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00989-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00989-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00991-8

  • Online ISBN: 978-3-662-00989-5

  • eBook Packages: Springer Book Archive