Skip to main content

Structure and Function of Resistance Vessels in Hypertension

  • Conference paper
Cellular Aspects of Hypertension
  • 47 Accesses

Abstract

The resistance vessels play a major role in the pathogenesis of hypertension, for by definition it is they that are responsible for the increased peripheral resistance and thus the increased blood pressure. However, it is still much debated how much the increased resistance is due to altered function or structure of the resistance vessels, and how much to increased levels of activation. The aim of this paper is twofold: first, to review briefly some of the abnormalities of resistance vessels in hypertension, and, second, to discuss the cellular basis for these abnormalities and how this may account for the difficulties in normalising resistance vessel properties with antihypertensive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aalkjaer C, Johannsen P, Pedersen EB, Rasmussen A, Mulvany MJ (1984) Characteristics of resistance vessels in preeclampsia and normotensive pregnancy. J Hypertens 2 (S3): 183–185

    Google Scholar 

  2. Aalkjaer C, Pedersen EB, Danielsen H, Fjeldborg O, Jespersen B, Kjaer T, Srensen SS, Mulvany MJ (1986) Morphological and functional characteristics of isolated resistance vessels in advanced uraemia. Clin Sci 71: 657–663

    PubMed  CAS  Google Scholar 

  3. Aalkjaer C, Heagerty AM, Petersen KK, Swales JD, Mulvany MJ (1987) Evidence for increased media thickness, increased neuronal amine uptake, and depressed excitation-contraction coupling in isolated resistance vessels from essential hypertensives. Circ Res 61: 181–186

    Article  PubMed  CAS  Google Scholar 

  4. Baumbach GL, Heistad DD (1988) Cerebral circulation in chronic arterial hypertension. Hypertension 12: 89–95

    Article  PubMed  CAS  Google Scholar 

  5. Bohlen HG (1986) Localization of vascular resistance changes during hypertension. Hypertension 8: 181–183

    Article  PubMed  CAS  Google Scholar 

  6. Davis MJ, Ferrer PN, Gore RW (1986) Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch. Am J Physiol 250: H291–H303

    PubMed  CAS  Google Scholar 

  7. Doyle AE, Fraser JRE (1961) Vascular reactivity in hypertension. Circ Res IX: 755–761

    Article  Google Scholar 

  8. Duff RS (1956) Adrenaline sensitivity of peripheral blood vessels in human hypertension. Br Heart J 19: 45–52

    Article  Google Scholar 

  9. Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, Anderson W, Lambert G (1988) Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 11: 3–20

    Article  PubMed  CAS  Google Scholar 

  10. Folkow B (1956) Structural myogenic, humoral and nervous factors controlling peripheral resistance. In: Harington M (ed) Hypotensive drugs. Pergamon, London, pp 163–174

    Google Scholar 

  11. Folkow B (1982) Physiological aspects of primary hypertension. Physiol Rev 62: 347–504

    PubMed  CAS  Google Scholar 

  12. Hutchins PM, Darnell AE (1974) Observation of a decreased number of small arterioles in spontaneously hypertensive rats. Circ Res 34 /35: I161–1165

    Google Scholar 

  13. Korsgaard N, Mulvany MJ (1988) Cellular hypertrophy in mesenteric resistance vessels from renal hypertensive rats. Hypertension 12: 162–167

    Article  PubMed  CAS  Google Scholar 

  14. Korsgaard N, Christensen J, Mulvany J (1991) Basic Res Cardiol

    Google Scholar 

  15. Lund-Johansen P (1983) Haemodynamics in early essential hypertension — still an area of controversy. J Hypertens 1: 209–213

    Article  PubMed  CAS  Google Scholar 

  16. Mulvany MJ (1987a) Vascular structure and smooth muscle contractility in experimental hypertension. J Cardiovasc Pharmacol 10 [Suppl 6]: s79–s85

    PubMed  Google Scholar 

  17. Mulvany MJ (1987b) The Fourth Sir George Pickering Memorial Lecture. The structure of the resistance vasculature in essential hypertension. J Hypertens 5: 129–136

    Article  PubMed  CAS  Google Scholar 

  18. Mulvany MJ (1988) Résistance vessel structure and function in the etiology of hypertension studied in F2-generation hypertensive-normotensive rats. J Hypertens 6: 655–663

    Article  PubMed  CAS  Google Scholar 

  19. Mulvany MJ, Aalkjaer C (1990) Structure and function of small arteries. Physiol Rev 70: 921–961

    PubMed  CAS  Google Scholar 

  20. Mulvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41: 19–26

    Article  PubMed  CAS  Google Scholar 

  21. Mulvany MJ, Nyborg NCB (1980) An increased calcium sensitivity of mesenteric resistance vessels in young and adult spontaneously hypertensive rats. Br J

    Google Scholar 

  22. Mulvany MJ, Hansen PK, Aalkjaer C (1978) Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circ Res 43: 854–864

    Article  PubMed  CAS  Google Scholar 

  23. Mulvany MJ, Aalkjaer C, Christensen J (1980) Changes in noradrenaline sensitivity and morphology of arterial resistance vessels during development of high blood pressure in spontaneously hypertensive rats. Hypertension 2: 664–671

    Article  PubMed  CAS  Google Scholar 

  24. Mulvany MJ, Nilsson H, Nyborg N, Mikkelsen E (1982) Are isolated femoral resistance vessels or tail arteries good models for the hindquarter vasculature of spontaneously hypertensive rats. Acta Physiol Scand 116: 275–283

    Article  PubMed  CAS  Google Scholar 

  25. Mulvany MJ, Baandrup U, Gundersen HJG (1985) Evidence for hyperplasia in mesenteric resistance vessels of spontaneously hypertensive rats using a 3-dimensional disector. Circ Res 57: 794–800

    Article  PubMed  CAS  Google Scholar 

  26. Owens GK, Schwartz SM, McCanna M (1988) Evaluation of medial hypertrophy in resistance vessels of spontaneously hypertensive rats. Hypertension 11:198–207 Pharmacol 71: 585–596

    Google Scholar 

  27. Schmid-Schonbein GW, Firestone G, Zweifach BW (1986) Network anatomy of arteries feeding the spinotrapezius muscle in normotensive and hypertensive rats. Blood Vessels 23: 34–49

    PubMed  CAS  Google Scholar 

  28. Schulte KL, Braun J, Meyer-Sabellek W, Wegscheider K, Gotzen R, Distler A (1988) Functional versus structural changes of forearm vascular resistance in hypertension. Hypertension 11: 320–325

    Article  PubMed  CAS  Google Scholar 

  29. Short D (1966) Morphology of the intestinal arterioles in chronic human hypertension. Br Heart J 28: 184

    Article  PubMed  CAS  Google Scholar 

  30. Whall CW, Myers MM, Halpern W (1980) Norepinephrine sensitivity, tension development and neuronal uptake in resistance arteries from spontaneously hypertensive and normotensive rats. Blood Vessels 17: 1–15

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin • Heidelberg

About this paper

Cite this paper

Mulvany, M.J. (1991). Structure and Function of Resistance Vessels in Hypertension. In: Bruschi, G., Borghetti, A. (eds) Cellular Aspects of Hypertension. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00983-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00983-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00985-7

  • Online ISBN: 978-3-662-00983-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics