Skip to main content

Acid-base disequilibrium in the venous blood of rainbow trout (Oncorhynchus mykiss)

  • Chapter
EBO — Experimental Biology Online Annual 1996/97

Part of the book series: EBO — Experimental Biology Online Annual ((EBOEXP,volume 1996/1997))

  • 91 Accesses

Abstract

Acid-base equilibria/disequilibria were evaluated in vivo in post-branchial arterial blood and pre-branchial venous blood of freshwater rainbow trout (Oncorhynchus mykiss). This was accomplished using arterial and venous extracorporeal circuits in conjunction with a stopped-flow apparatus. After the abrupt stoppage of circulating post-branchial blood within the stopped-flow apparatus, pH increased slowly ([Delta]pH = +0.032 ± 0.004 pH units; n = 15), thus confirming the existence of an acid-base disequilibrium state in the arterial blood of rainbow trout. The slow downstream pH changes were unaffected by prior treatment of fish with the carbonic anhydrase inhibitor benzolamide (1.2 mg kg−1; [Delta]pH = +0.032 ± 0.01 pH units; n = 5) but were eliminated after intra-vascular injection of to mg kg−1 bovine carbonic anhydrase ([Delta]pH = −0.011 ± 0.003 pH units; n = 8). These results demonstrate that the acid-base disequilibrium in the arterial blood reflects a total absence of extracellular carbonic anhydrase activity. Similar stopped-flow experiments revealed the existence of a reduced, yet significant, acid-base disequilibrium in the venous blood circulating within the caudal vein ([Delta]pH = +0.004 ± 0.003 pH units; n = 15). Selective inhibition of extracellular carbonic anhydrase using benzolamide did not significantly influence the magnitude of the venous pH disequilibrium ([Delta]pH = +0.007 ± 0.007 pH units; n = 8) whereas intra-vascular injection of carbonic anhydrase eliminated the pH disequilibrium. These results demonstrate that extracellular carbonic anhydrase, although reported to be present within the skeletal muscle of rainbow trout, does not accelerate post-capillary pH changes in the venous circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelsson, M., Fritsche, R. (1994) Cannulation techniques. In: Hochachka, P.W., Mommsen, T.P. (eds.) Biochemistry and molecular biology of fishes, vol. 3. Analytical techniques. Elsevier, Amsterdam, pp. 17–36

    Google Scholar 

  • Bidani, A., Crandall, E.D. (1988) Velocity of CO2 exchanges in the lungs. Annu. Rev. Physiol. 50: 639–652

    Article  PubMed  CAS  Google Scholar 

  • Eddy, F.B. (1974) In vitro blood carbon dioxide of the rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. A, 47: 129–140

    Article  PubMed  CAS  Google Scholar 

  • Effros, R.M., Weissman, M.L. (1979) Carbonic anhydrase activity of the cat hind leg. J. Appl. Physiol. 47: 1090–1098

    PubMed  CAS  Google Scholar 

  • Effros, R.M., Chang, R.S.Y., Silverman, P. (1978) Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. 162 Science 199: 427–429

    Article  PubMed  CAS  Google Scholar 

  • Geers, C., Gros, G., Gartner, A. (1985) Extracellular carbonic anhydrase of skeletal muscle associated with the sarcolemma. J. Appl. Physiol. 59: 548-558.

    Google Scholar 

  • Gilmour, K.G., Perry, S.F. (1994) The effects of hypoxia, hyperoxia or hypercapnia on the acid-base disequilibrium in the arterial blood of rainbow trout, Oncorhynchus mykiss. J. Exp. Biol. 192: 269–284

    Google Scholar 

  • Gilmour, K.M., Perry, S.F. (1996) The effects of metabolic acid-base disturbances and elevated catecholamines on the acid-base disequilibrium in the arterial blood of rainbow trout. J. Exp. Zool. 274: 281–290

    Article  CAS  Google Scholar 

  • Gilmour, K.M., Randall, D.J., Perry, S.F. (1994). Acid-base disequilibrium in the arterial blood of rainbow trout, Oncorhynchus mykiss.Respir. Physiol. 96: 259–272

    Google Scholar 

  • Gilmour, K.M., Henry, R.P., Wood, C.M., Perry, S.F. (1996) Extracellular carbonic anhydrase and an acid-base disequilibrium in the blood of the dogfish, Squalus acanthias. J. Exp. Biol. (In press)

    Google Scholar 

  • Henry, R.P. (1991) Techniques for measuring carbonic anhydrase activities in vitro: the electrometric delta pH and pH stat assays. In: Dodgson, S.J., Tashian, R.E., Gros, G., Carter, N.D. (eds) The carbonic anhydrases: cellular physiology and molecular genetics. Plenum, New York, pp. 119–126

    Chapter  Google Scholar 

  • Henry, R.P., Smatresk, N.J., Cameron, J.N. (1988) The distribution of branchial carbonic anhydrase and the effects of gill and erythrocyte carbonic anhydrase inhibition in the channel catfish Ictalurus punctatus. J. Exp. Biol. 134: 201–218

    CAS  Google Scholar 

  • Henry, R.P., Tufts, B.L., Boutilier, R.G. (1993) The distribution of carbonic anhydrase type-i and type-II isozymes in lamprey and trout–possible co-evolution with erythrocyte chloride bicarbonate exchange.J. Comp. Physiol. B 163: 380–388

    Google Scholar 

  • Henry, R.P., Wang, Y., Wood, C.M. (1996) Carbonic anhydrase facilitates CO2 and NH3 transport across the sarcolemma of trout white muscle. Am. J. Physiol. (In press)

    Google Scholar 

  • Klocke, R.A. (1988) Velocity of CO2 exchange in blood.Annu. Rev. Physiol. 50: 625–637

    Article  CAS  Google Scholar 

  • Nikinmaa, M. (1990) Vertebrate red blood cells: adaptations of function to respiratory requirements. In: S.D. Bradshaw, W. Burggren, H.C. Heller, S. Ishii, H. Langer, G. Neuweiler, D.J. Randall (eds) Zoophysiology, vol 28. Springer Verlag, Berlin Heidelberg New York, pp 1, 262–163

    Google Scholar 

  • O’Brasky, J.E., Crandall, E.D. (1980) Organ and species differences in tissue vascular carbonic anhydrase activity. Am. J. Physiol. 49: 211–217

    Google Scholar 

  • O’Brasky, J.E., Mauro, T., Crandall, E.D. (1979) Postcapillary pH disequilibrium after gas exchange in isolated perfused liver. Am. J. Physiol. 47: 1079–1083

    Article  Google Scholar 

  • Perry, S.F., Laurent, P. (1990) The role of carbonic anhydrase in carbon dioxide excretion, acid-base balance and ionic regulation in aquatic gill breathers. In: Truchot, J.P., Lahlou, B. (eds) Transport, respiration and excretion: comparative and environmental aspects. Karger, Basel, pp. 39–57

    Google Scholar 

  • Rahim, S.M., Delaunoy, J.P., Laurent, P. (1988) Identification and immunocytochemical localization of two different carbonic anhydrase isozymes in teleostean fish erythrocytes and gill epithelia.Histochemistry 89: 451-459

    Google Scholar 

  • Sender, S., Gros, G., Waheed, A., Hageman, G.S., Sly, W.S. (1994) Immunohistochemical localization of carbonic anhydrase IV in capillaries of rat and human skeletal muscle. J. Histochem. Cytochem. 42: 1229–1236

    Google Scholar 

  • Smith, L.S., Bell, G.R. (1967). A practical guide to the anatomy and physiology of Pacific salmon. Environment Canada Fisheries and Marine Service Miscellaneous Special Publication Number 27

    Google Scholar 

  • Stabenau, E.K., Bidani, A., Heming, T.A. (1996) Physiological characterization of pulmonary carbonic anhydrase in the turtle.Respir. Physiol. 104: 187–196

    CAS  Google Scholar 

  • Swenson, E.R., Maren, T.H. (1987) Roles of gill and red cell carbonic anhydrase in elasmobranch HCO3- and CO2 excretion. Am. J. Physiol. 253: R45o - R458

    Google Scholar 

  • Swenson, E.R., Lippincott, L., Maren, T.H. (1995) Effect of gill membrane-bound carbonic anhydrase inhibition on branchial bicarbonate excretion in the dogfish shark, Squalus acanthias.Bull MDI Biol Lab 34: 94–95

    Google Scholar 

  • Thomas, S. (1994) Extracorporeal circulation. In: Hochachka, P.W., Mommsen, T.P. (eds) Biochemistry and molecular biology of fishes, vol 3. Analytical techniques. Elsevier, Amsterdam, pp. 161–167

    Google Scholar 

  • Wood, C.M., McDonald, D.G., McMahon, B.R. (1982) The influence of experimental anaemia on blood acid-base regulation in vivo and in vitro in the starry flounder (Platichthys stellatus) and the rainbow trout (Salmo gairdneri). J. Exp. Biol. 96:: 221–237

    Google Scholar 

  • Wood, C.M., Perry, S.F., Walsh, P.J., Thomas, S. (1994) HCO3- dehydration by the blood of an elasmobranch in the absence of a Haldane effect.Respir. Physiol. 98: 319–337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perry, S.F., Brauner, C.J., Tufts, B., Gilmour, K.M. (1998). Acid-base disequilibrium in the venous blood of rainbow trout (Oncorhynchus mykiss). In: EBO — Experimental Biology Online Annual 1996/97. EBO — Experimental Biology Online Annual, vol 1996/1997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00932-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00932-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00934-5

  • Online ISBN: 978-3-662-00932-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics