Skip to main content

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 2))

Abstract

The object of this chapter is to briefly summarize the main properties of the discrete Fourier transform (DFT) and to present various fast DFT computation techniques known collectively as the fast Fourier transform (FFT) algorithm. The DFT plays a key role in physics because it can be used as a mathematical tool to describe the relationship between the time domain and frequency domain representation of discrete signals. The use of DFT analysis methods has increased dramatically since the introduction of the FFT in 1965 because the FFT algorithm decreases by several orders of magnitude the number of arithmetic operations required for DFT computations. It has thereby provided a practical solution to many problems that otherwise would have been intractable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Gold, C. M. Rader: Digital Processing of Signals (McGraw-Hill, New York 1969)

    MATH  Google Scholar 

  2. E. O. Brigham: The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, N. J. 1974)

    MATH  Google Scholar 

  3. L. R. Rabiner, B. Gold: Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J. 1975)

    Google Scholar 

  4. A. V. Oppenheim, R. W. Schafer: Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J. 1975)

    MATH  Google Scholar 

  5. A. E. Siegman: How to compute two complex even Fourier transforms with one transform step. Proc. IEEE 63, 544 (1975)

    Article  Google Scholar 

  6. J. W. Cooley, J. W. Tukey: An algorithm for machine computation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. D. Bergland: A fast Fourier transform algorithm using base 8 iterations. Math. Comput. 22, 275–279 (1968)

    MathSciNet  MATH  Google Scholar 

  8. R. C. Singleton: An algorithm for computing the mixed radix fast Fourier transform. IEEE Trans. AU-17, 93–103 (1969)

    Google Scholar 

  9. R. P. Polivka, S. Pakin: APL: the Language and Its Usage (Prentice-Hall, Englewood Cliffs, N. J. 1975)

    MATH  Google Scholar 

  10. P. D. Welch: A fixed-point fast Fourier transform error analysis. IEEE Trans. AU-17, 151–157 (1969)

    Google Scholar 

  11. T. K. Kaneko, B. Liu: Accumulation of round-off errors in fast Fourier transforms. J. Assoc. Comput. Mach. 17, 637–654 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. J. Weinstein: Roundoff noise in floating point fast Fourier transform computation. IEEE Trans. AU-17, 209–215 (1969)

    Google Scholar 

  13. C. M. Rader, N. M. Brenner: A new principle for fast Fourier transformation. IEEE Trans. ASSP-24, 264–265 (1976)

    Google Scholar 

  14. S. Winograd: On computing the discrete Fourier transform. Math. comput. 32, 175–199 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. K. M. Cho, G. C. Ternes: “Real-factor FFT algorithms”, in IEEE 1978 Intern. Conf. Acoust., Speech. Signal Processing. pp. 634–637

    Google Scholar 

  16. H. J. Nussbaumer, P. Quandalle: Fast computation of discrete Fourier transforms using polynomial transforms. IEEE Trans. ASSP-27. 169–181 (1979)

    MathSciNet  Google Scholar 

  17. G. Bonnerot, M. Bellanger: Odd-time odd-frequency discrete Fourier transform for symmetric real-valued series. Proc. IEEE 64, 392–393 (1976)

    Article  Google Scholar 

  18. G. Bruun: z-transform DFT filters and FFTs. IEEE Trans. ASSP-26, 56–63 (1978)

    Google Scholar 

  19. G. K. McAuliffe: “Fourier Digital Filter or Equalizer and Method of Operation Therefore”, US Patent No. 3 679 882, July 25, 1972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nussbaumer, H.J. (1981). The Fast Fourier Transform. In: Fast Fourier Transform and Convolution Algorithms. Springer Series in Information Sciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00551-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00551-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00553-8

  • Online ISBN: 978-3-662-00551-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics