Skip to main content

Neural Connectivities: Between Determinism and Randomness

  • Conference paper
Dynamics of Macrosystems

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 257))

Abstract

When studying the structure and function of the brain using theoretical methods from macrodynamics it is necessary to emphasize two concepts: cooperation and hierarchy. It is often found that the properties of a system composed of many elements and subsystems are not those that would be expected from a simple superposition of the properties of the individual subsystems (at least according to the non-reductionist point of view). Interaction between the subsystems can lead to completely new characteristics and may produce temporal and spatial patterns on a macroscopic scale in an entirely self-organizing way (e.g.,Haken, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amari, S. and Arbib, M.S. (Eds.) (1982). Competition and cooperation in neural nets. Lecture Notes in iomathematics, Vol. 45. Springer. Berlin, Heidelberg, New York.

    Google Scholar 

  • Anninos, P.A., Beek, B., Csermely, T.J., Harth, E. and Perile, G. (1970). Dynamics of neural structures. Journal of Theoretical Biology, 26: 121–148.

    Article  Google Scholar 

  • Erdi, P. and Barna, G. (1984). Self-organizing mechanism for the formation of ordered neural mappings. Biological Cybernetics 51: 93–101.

    Article  Google Scholar 

  • Geman, S. (1980). The law of large numbers in neural modelling. In:S. Grossberg (Ed.), Mathematical Psychology and Psychophysiology. American Mathematical Society, Providence, R.I., pp. 91–105.

    Google Scholar 

  • Grossberg, S. (1980). Mathematical Psychology and Psychophysiology. American Mathematical Society, Providence, R. I.

    Google Scholar 

  • Haken, H. (1980). Synergetics. Are cooperative phenomena governed by universal principles? Naturwissenschaften, 67: 121–128.

    Article  Google Scholar 

  • Harth, E., Csermely, T.J., Beek, B. and Lindsay, R.O. (1970). Brain functi-ons and neural dynamics. Journal of Theoretical Biology, 26: 121–148. Hebb, C.O. ( 1949 ). The Organization of Behavior. Wiley, New York.

    Google Scholar 

  • Hirai, Y. (1980). A new hypothesis for synaptic modification: an interactiveprocess between postsynaptic competition and presynaptic regulation.Biological Cybernetics 36: 41–50.

    Google Scholar 

  • Holden, A.V. (1976). Models of stochastic activity of neuron, Lecture

    Google Scholar 

  • Notes in Biomathematics, Vol. 12. Springer-Verlag, Berlin,Heidelberg, New York.

    Google Scholar 

  • Horsthemke, W. and Lefevre, R. (1984). Noise-induced translations. Theory and applications in physics, chemistry and biology. In: H. Haken (Ed.) Springer Series in Synergetics. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Kalman, R.E., Faln, P.L. and Arbib, M.A. (1969). Topics in Mathematical Systems Theory. McGraw-Hill, New York.

    Google Scholar 

  • Levine, D.S. (1983). Neural population modeling and psychology: review. Mathematical Biosciences, 66: 1–86.

    Article  Google Scholar 

  • Malsburg, Ch. von der (1976). Self-organization of orientation sensitive cells in the striate cortex. Kybernetika, 14: 85–100.

    Article  Google Scholar 

  • Singer, W. (1979). The role of matching operations between pre-and post-synaptic activity in experience-dependent modifications of visual cortex functions. In: E. Meisami and M.E.B. Brazier (Eds.), Neural Growth and Differentiation. Raven Press, New York.

    Google Scholar 

  • Sperry, R.W. (1943). Visuomotor coordination in the newt(Triturus viridescens) after regeneration of the optic nerve. Journal of Comparative Neurology, 79: 33–53.

    Article  Google Scholar 

  • Szentâgothai, J. (1978). Specificity versus (quasi-) randomness in cortical connectivity. In: M.A.B. Brazier and H. Petsche (Eds.), Architectonics of the Cerebral Cortex. Raven Press, New York.

    Google Scholar 

  • Szentâgothai, J. (1984). Downward causation? Annual Review of Neuroscience, 7: 1–11.Udin, S.B. (1977). Rearrangements of the retinotectal projection in Rana

    Google Scholar 

  • Pipiens after unilateral caudal half-tectum ablation. Journal of Comparative Neurology, 173: 561–582.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 International Institute for Applied Systems Analysis, Laxenburg/Austria

About this paper

Cite this paper

Erdi, P., Szentágothai, J. (1985). Neural Connectivities: Between Determinism and Randomness. In: Aubin, JP., Saari, D., Sigmund, K. (eds) Dynamics of Macrosystems. Lecture Notes in Economics and Mathematical Systems, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00545-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00545-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15987-2

  • Online ISBN: 978-3-662-00545-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics