Skip to main content

Erregungsübertragung von Zelle zu Zelle

  • Chapter
Physiologie des Menschen

Part of the book series: Springer-Lehrbuch ((SLB))

  • 2440 Accesses

Zusammenfassung

Der in Frankfurt geborene Pharmakologe Otto Loewi (1873–1961), Nobelpreisträger für Medizin 1936 (desungeachtet 1938 von den Nazis als Jude aus Graz vertrieben), berichtet in seiner Autobiographie (Perspectives in Biol. Med. 4, 3–25, 1960), er habe schon 1903 diskutiert, Nervenendigungen könnten Substanzen enthalten, die bei Erregung freigesetzt werden und den Nervenimpuls auf Effektororgane übertragen. Er sah jedoch keinen Weg, dies zu beweisen. In der Osternacht 1920 hatte er dann einen Traum, über den er Notizen niederschrieb, die er am Morgen aber nicht entziffern konnte. In der nächsten Nacht um 3 Uhr morgens wiederholte sich dieser Traum. Es war die Idee zu einem Experiment, das chemische Erregungsübertragung nachweisen könnte.„Ich stand sofort auf, ging ins Labor und machte ein einfaches Experiment an einem Froschherzen“.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Handbücher

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson ID (1990) Molekularbiologie der Zelle, 2. Aufl. VCH, Weinheim

    Google Scholar 

  2. Eccles JC (1964) The physiology of synapses. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  3. Hierholzer K, Schmidt RF (Hrsg) (1991) Pathophysiologie des Menschen. VCH, Weinheim

    Google Scholar 

  4. Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  5. Hoppe W, Lohmann W, Markl H, Ziegler H (Hrsg) (1984) Biophysik. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Kandel ER, Schwartz JH, Jesse’ TM (eds) (1991) Principles of neural science, 3rd edn. Elsevier, New York

    Google Scholar 

  7. Nicholls JG, Martin AR, Wallace BG (1992) From neuron to brain, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  8. Schiebler TH, Schmidt W (1983) Lehrbuch der gesamten Anatomie des Menschen, 3. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

Einzel- und Übersichtsarbeiten

  1. Artola A, Singer W (1993) Long-term depression. Trends Neurosci 16: 480–487

    Google Scholar 

  2. Bennett MLV (1977) Electrical transmission: a functional analysis and comparison with chemical transmission. In: Kandel ER (ed) Cellular biology of neurons, vol 1. Handbook of physiology, sect 1: the nervous system. Williams and Wilkins, Baltimore, pp 357–416:

    Google Scholar 

  3. Blumberg H, Jänig W (1982) Activation of fibers via experimentally produced stump neuromas of skin nerves: ephapic transmission or retrograde sprouting? Exp Neuro176: 468–482

    Google Scholar 

  4. Colquhoun D, Dreyer F, Sheridan RE (1979) The actions of tubo-curarine at the frog neuromuscular junction. Physiol (Lond) 293:247–284

    Google Scholar 

  5. Colquhoun D, Sakmann B (1985) Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol (Lond) 369:501–557

    Google Scholar 

  6. Dodge FA, Rahamimoff R (1967) Cooperative action of calcium ions in transmitter release at the neuromuscular junction. J Physiol (Lond) 193: 419–432

    CAS  Google Scholar 

  7. Dudel J (1965) The mechanism of presynaptic inhibition at the crayfish neuromuscular junction. Pflügers Arch 248: 66–80

    Article  Google Scholar 

  8. Dudel J, Kufler SW (1961) Presynaptic inhibition at the crayfish neuromuscular junction. J Physiol (Lond) 155:543–562

    Google Scholar 

  9. Dudel J (1984) Control of quantal transmitter release at frogs motor nerve terminals. Pflügers Arch 402:225–234

    Google Scholar 

  10. Dudel J, Rüdel R (1969) Voltage controlled contractions and current-voltage relations of crayfish muscle fibers in chloride-free solutions. Pflugers Arch 308: 291–314

    Article  PubMed  CAS  Google Scholar 

  11. Franke C, Parnas H, Hovav G, Dudel J (1993) A molecular scheme for the reaction between acetylcholine and nicotinic channels. Biophys J 64:339–356

    Article  PubMed  CAS  Google Scholar 

  12. Furshpan EJ, Potter D (1959) Transmission at the giant motor synapses of the crayfish. J Physiol (Lond) 145: 289–325

    Google Scholar 

  13. Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signaling in the nervous system. Trends Neurosci 14:60–71

    Article  PubMed  CAS  Google Scholar 

  14. Ito Y, Miledi R, Vincent A, Newsom-Davis J (1978) Acetylcholine receptors and end-plate electrophysiology in myasthenia gravis. Brain 101: 345–368

    Article  PubMed  CAS  Google Scholar 

  15. Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglia of the frog. J Physiol (Lond) 327: 219–246

    CAS  Google Scholar 

  16. Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol (Lond) 195:481–492

    Google Scholar 

  17. Katz B, Thesleff S (1957) A study of the „desensitization“ produced by acetylcholine at the motor end-plate. J Physiol (Lond) 138: 63–80

    CAS  Google Scholar 

  18. Kuffler SW (1980) Slow synaptic responses in autonomic ganglia and the pursuit of a peptidergic transmitter. J Exp Biol 89: 257–286

    PubMed  CAS  Google Scholar 

  19. Libet B (1984) Heterosynaptic interaction at a sympathetic neuron as a model for induction and storage of a postsynaptic memory trace. In: Lynch G, McGaugh JL, Weinberger NM (eds) Neurobiology of learning and memory. Guilford, New York, pp 405–430

    Google Scholar 

  20. Linden DJ, Connor JA (1991) Participation of synaptic PKC in cerebellar longterm depression in culture. Science 245: 1556–1559

    Google Scholar 

  21. Llinâs RR (1982) Calcium in synaptic transmission. Sci Am 10: 38–48

    Google Scholar 

  22. Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61: 829–913

    PubMed  CAS  Google Scholar 

  23. Magleby KL, Stevens CF (1972) The effect of voltage on the time course of end-plate currents. J Physiol (Lond) 223: 151–171

    CAS  Google Scholar 

  24. Magleby KL, Zengel JE (1982) A quantitative description of stimulation-induced changes in transmitter release at the frog neuromuscular junction. J Gen Physiol 80: 613–638

    Article  PubMed  CAS  Google Scholar 

  25. Makowski L, Caspar DLD, Phillips WC, Goodenough DA (1977) Gap junction structures. II. Analysis of the X-ray diffraction data. J Cell Biol 84: 629–645

    Google Scholar 

  26. Numa S, Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Kikyotoni S (1983) Molecular structure of the nicotinic acetylcholine receptor. Cold Spring Harb Symp Quant Biol 48: 57–69

    Article  PubMed  CAS  Google Scholar 

  27. O’Dell T, Howkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 88: 11285–11289

    Article  PubMed  Google Scholar 

  28. Parnas H, Dudel J, Parnas I (1986) Neurotransmitter release and its facilitation in crayfish. VII. Another voltage dependent process beside Ca entry controls the time course of phasic release. Pflügers Arch 406: 121–130

    Google Scholar 

  29. Parnas H, Flashner M, Spira ME (1989) Sequential model to describe the nicotinic synaptic current. Biophys J 55:875–884

    Google Scholar 

  30. Peper K, Bradley RJ, Dreyer F (1982) The acetylcholine receptor at the neuromuscular junction. Physiol Rev 62: 1271–1340

    PubMed  CAS  Google Scholar 

  31. Popot JL, Changeux JP (1984) Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol Rev 64: 1162–1239

    PubMed  CAS  Google Scholar 

  32. Sakmann B, Methfessel C, Mishina M, Takahashi T, Takai T, Kurasaki M, Fukuda K, Numa S (1985) Role of acetylcholine receptor subunits in gating of the channel. Nature 318:538–543

    Article  PubMed  CAS  Google Scholar 

  33. Sojima M, Noma A (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 400:424–431

    Google Scholar 

  34. Schmidt RF (1971) Presynaptic inhibition. Springer, Berlin Heidelberg New York (Ergebnisse der Physiologie, vol 63 )

    Google Scholar 

  35. Trautwein W, Cavalié A (1985) Cardiac calcium channels and their control by neurotransmitters and drugs. J Am Coll Cardiol 6: 1409–1416

    Article  PubMed  CAS  Google Scholar 

  36. White JD, Stewart KD, Krause JE, McKelvy JF (1985) Biochemistry of peptide-secreting neurons. Physiol Rev 65: 553–606

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dudel, J. (1997). Erregungsübertragung von Zelle zu Zelle. In: Schmidt, R.F., Thews, G. (eds) Physiologie des Menschen. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00485-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00485-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00486-9

  • Online ISBN: 978-3-662-00485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics