Skip to main content

Informationsvermittlung durch elektrische Erregung

  • Chapter
Physiologie des Menschen

Part of the book series: Springer-Lehrbuch ((SLB))

  • 2417 Accesses

Zusammenfassung

Die „Information“ als eine quantifizierbare Größe wurde erst in den vierziger Jahren durch N. Wiener formuliert. Sie prägt nach der industriellen Revolution die „Informationsgesellschaft“. Die Entwicklung der Gesellschaft bildet insofern unsere Evolution nach: Der Mensch ist mit seinem hochdifferenzierten Nervensystem und dem Sprachvermögen das auf Informationsverarbeitung spezialisierte Wesen schlechthin. Die Funktionen der Nervenzellen in der Aufnahme und Weitergabe von Informationen werden daher in den folgenden Kapiteln detalliert behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Handbücher

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1990) Molekularbiologie der Zelle, 2. Aufl. VCH, Weinheim

    Google Scholar 

  2. Cooke I, Lipkin M (1972) Cellular neurophysiology, a source book. Rinehart and Winston, New York

    Google Scholar 

  3. Hille B (1992) Ionic channels of exctable membranes, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  4. Hoppe W, Lohmann W, Markl H, Ziegler H (Hrsg) (1984) Biophysik. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Kandel ER, Schwartz JH, Jesse’ TM (eds) (1991) Principles of neural science, 3rd edn. Elsevier, New York

    Google Scholar 

  6. Nicholls JG, Martin AR, Wallace BG (1992) From neuron to brain, 3rd edn. Sinauer, Sunderland

    Google Scholar 

Einzel- and Übersichtsarbeiten

  1. Adrian RH (1956) The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol (Lond) 133: 631

    CAS  Google Scholar 

  2. Armstrong CM (1981) Sodium channels and gating currents. Physiol Rev 61: 644–683

    PubMed  CAS  Google Scholar 

  3. Catterall WA (1993)Structure and function of voltage-gated ion channels. Trends Neurosci 16:500–510

    Article  PubMed  CAS  Google Scholar 

  4. Connor JA, Stevens CF (1971) Inward and delayed outward membrane currents in isolated neural somata under voltage clamp. J Physiol (Lond) 213: 1–19

    CAS  Google Scholar 

  5. Gasser HS, Grundfest H (1939) Axon diameters in relation to the spike dimension and the conduction velocity in mammalian A-fibers. Am J Physiol 127: 393

    Google Scholar 

  6. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85-too

    Google Scholar 

  7. Heinemann U, Lux D (1983) Ionic changes during experimentally induced epilepsies. In: Rose RC (ed) Progress in epilepsy. Pitman Medical, London, pp 87–102

    Google Scholar 

  8. Hodgkin AL, Huxley AF (1952) Quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117: 500

    CAS  Google Scholar 

  9. Hodgkin AL, Rushton WAH (1946) The electrical constants of crustacean nerve fibre. Proc R Soc B 133: 444

    Article  Google Scholar 

  10. Huxley AF, Stämpfli R (1949) Evidence for saltatory conduction in peripheal myelinated nerve fibres. J Physiol (Lond) 108: 315

    Google Scholar 

  11. Kameyama M, Hofmann F, Trautwein (1985) On the mechanism of ß-adrenergic regulation of the Ca channel in the guineapig heart. Pflügers Arch 405:285–293

    Article  Google Scholar 

  12. Katz B (1948) Electrical properties of the muscle fibre membrane. Proc R Soc B 135: 506

    Article  Google Scholar 

  13. Läuger P (1985) Ionic channels with conformational sub-states. Biophys J 47: 581–590

    Article  PubMed  Google Scholar 

  14. Lloyd DPC, Chang HT (1948) Afferent fibres in muscle nerves. J Neurophysiol 11: 199

    PubMed  CAS  Google Scholar 

  15. Meves H (1978) Inactivation of the sodium permeability in squid giant nerve fibres. Prog Biophys Mol Biol 33: 207–230

    Article  PubMed  CAS  Google Scholar 

  16. Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes. Pflügers Arch 375: 219–228

    Google Scholar 

  17. Neumcke B, Schwarz W, Stämpfli R (1981) Block of Na channels in the membrane of myelinated nerve by benzocaine. Pflugers Arch 390: 230–236

    Article  PubMed  CAS  Google Scholar 

  18. Neumcke B, Stämpfli R (1984) Heterogeneity of external surface charges near sodium channels in the nodal membrane of frog nerve. Pflügers Arch 401: 125–131

    Article  PubMed  CAS  Google Scholar 

  19. Noble D (1966) Applications of Hodgkin-Huxley equations to excitable tissues. Physiol Rev 46: 1–50

    PubMed  CAS  Google Scholar 

  20. Patlak J (1991) Molecular kinetics of voltage dependent Na’ channels. Physiol Rev 71x047–1080

    Google Scholar 

  21. Rang HP, Ritchie JM (1968) Electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J Physiol (Lond) 196: 183

    CAS  Google Scholar 

  22. Rudel R, Ricker K, Lehmann-Horn F (1988) Transient weakness and altered membrane characteristic in recessive generalized myotonia ( Becker ). Muscle Nerve 2: 202–211

    Article  Google Scholar 

  23. Schwarz W, Pallade PT, Hille B (1977) Local anesthetics: Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys J 20:343–368

    Article  PubMed  CAS  Google Scholar 

  24. Sigworth FJ, Neher E (1980) Single Na’ channel currents observed in cultured red muscle cells. Nature 287:447–449

    Article  PubMed  CAS  Google Scholar 

  25. Stühmer W, Ruppersberg IP, Pongs 0 (1989) Molecular basis of voltage gated potassium channels in mammalian brain. EMBO J 11:3235–3244

    Google Scholar 

  26. Trautwein W, Pelzer D (1986) Voltage dependent gating of single calcium channels in cardiac cell membranes and its modulation by drugs. In: Marmé D (ed) Calcium physiology. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Ulbricht W (1981) Kinetics of drug action and equilibrium results at the node of Ranvier. Physiol Rev 61: 785–828

    PubMed  CAS  Google Scholar 

  28. Waxman SG (1980) Determinants of conduction velocity in nerve fibres. Muscle Nerve 3:141–150

    Article  PubMed  CAS  Google Scholar 

  29. White MW, Bezanilla B (1985) Activation of squid axon K` channel. Ionic and gating current studies. J Gen Physiol 85: 539–554

    Article  PubMed  CAS  Google Scholar 

  30. Quandt FN, Yeh JZ, Narahashi T (1985) All or none block of single Na* channels by tetrodotoxin. Neurosci Lett 54: 77–83

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dudel, J. (1997). Informationsvermittlung durch elektrische Erregung. In: Schmidt, R.F., Thews, G. (eds) Physiologie des Menschen. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00485-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00485-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00486-9

  • Online ISBN: 978-3-662-00485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics