A New Approach for Separable Nonconvex Minimization Problems including a Method for Finding the Global Minimum of a Function of one Variable

Conference paper
Part of the Proceedings in Operations Research 7 book series (ORP, volume 1977)


We consider the following programing problem: Find a vector \( \bar x\varepsilon D\Lambda Q \) satisfying
$$ f(\bar x) = \mathop {\min }\limits_{x\varepsilon D\Lambda Q} f(x) $$
(Problem P).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Armijo, “Minimization of a function having Lipschitz continuous first partial derivatives”, Pacific J. Math. 16 (1966) 1–3.CrossRefGoogle Scholar
  2. [2]
    J.E. Falk and R.M. Soland, “An algorithn for separable nonconvex programming problems”, Management Sci. 15(1969) 550–569.CrossRefGoogle Scholar
  3. [3]
    R. Horst, “An algorithm for nonconvex programing problems”, Mathematical Programmning 10 (1976) 312–321.CrossRefGoogle Scholar
  4. [4]
    P. Huard, “Implementation of gradientmethods by tangential discretization”, Publication Nr. 73 du Laboratoire de Calaul de l’Université des Sciences et Techniques de Lille, 1976.Google Scholar
  5. [5]
    G.P. MoCormick, “Converting general nonlinear programming problems to separable nonlinear programming problems”, Techn.-Paper T-267, Washingbon, D.C. (1972).Google Scholar
  6. [6]
    G.P. Mc Cormick, “Computability of global Solutions to factorable none convex programs: Part I-Convex underestimating problems, Mathematical Programming 10, (1976), 147–175.CrossRefGoogle Scholar
  7. [7]
    P. Wolfe, “Convergence conditions for ascent methods”, SIAM Review 11 (1969) 226–235.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  1. 1.DarmstadtGermany

Personalised recommendations