Skip to main content

Abstract

Soon after the method of in situ hybridization (ISH) had been published (Pardue and Gall, 1969), reports appeared showing that it could also be used with great success in the study of virus-infected systems (Orth et al., 1970; Geukens and May, 1974). Now it was possible to study the biology of viruses and the mechanisms of viral infections in detail and to both improve diagnosis and form the basis of prognosis of viral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blum HE, Haase AT, Harris JD, Walker D, Vyas G (1984) Asymmetric replication of hepatitis B virus DNA in human liver: demonstration of cytoplasmic minus-strand DNA by blot analysis and in situ hybridization. Virology 139: 87–96

    Article  PubMed  CAS  Google Scholar 

  • Eagle H (1959) Amino acid metabolism in mammalian cell cultures. Science 130: 432–439

    Article  PubMed  CAS  Google Scholar 

  • Geukens M, May E (1981) Ultrastructural localization of SV 40 viral DNA in cells, during lytic infection, by in situ molecular hybridization. Exp Cell Res 87: 175–185

    Article  Google Scholar 

  • Heiles BJ, Genersch E, Kessler C, Neumann R, Eggers HJ (1988) In situ hybridization with digoxigenin labeled DNA of human papilloma viruses (HPV 16/18) in HeLa and SiHa cells. BioTechniques 6: 978–981

    PubMed  CAS  Google Scholar 

  • Neumann R, Genersch E, Eggers HJ (1987) Detection of adenovirus nucleic sequences in human tonsils in the absence of infectious virus. Virus Res 7: 93–97

    Article  PubMed  CAS  Google Scholar 

  • Neumann R, Eggers HJ, Zippel HH, Remy B, Nelles G, Heiles BJ, Molitor E, Schulz KD (1989) Beitrag zur klinischen Relevanz des Nukleinsäurenachweises der humanen Papillomaviren ( HPV) in Abstrichzellen der Cervix uteri. Geburtsh u Frauenheilk 49: 11–16

    Google Scholar 

  • Orth G, Jeanteur P, Croissant 0 (1970) Evidence for and localization of vegetative viral DNA replication by autographic detection of RNA-DNA hybrids in sections of tumours induced by Shope papilloma virus. Proc Natl Acad Sci USA 68: 1876–1881

    Google Scholar 

  • Pardue ML, Gall JG (1969) Chromosomal localization of mouse satellite DNA. Science 168: 1356–1358

    Article  Google Scholar 

  • Tourtellotte WW, Verity AN, Schmid P, Martinez S, Shapshak P (1987) Covalent binding of formalin fixed paraffin embedded brain tissue sections to glass slides suitable for in situ hybridization. J Virol Meth 15: 87–95

    Article  CAS  Google Scholar 

  • Vafai A, Murray RS, Welish M, Devlin M, Gilden DH (1988) Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia. Proc Natl Acad Sci USA 85: 2362–2366

    Article  PubMed  CAS  Google Scholar 

  • Cooper K, Herrington CS, Graham AK, Evans MF, McGee JO’D (1991a) In situ HPV genotyping of cervical intraepithelial neoplasia in South African and British patients: evidence for putative HPV integration in vivo. J Clin Pathol 44: 400–405

    CAS  Google Scholar 

  • Cooper K, Herrington CS, Graham AK, Evans MF, McGee JO’D (1991b) In situ evidence for HPV 16, 18, 33 integration in cervical squamous cell cancer in Britain and South Africa. J Clin Pathol 44: 406–409

    CAS  Google Scholar 

  • Cooper K, Herrington CS, Stickland JE, Evans MF, McGee JO’D (1992a) Episomal and integrated HPV in cervical neoplasia demonstrated by nonisotopic in situ hybridization. J Clin Pathol (in press)

    Google Scholar 

  • Cooper K, Herrington CS, Lo ES, Evans MF, McGee JO’D (1992b) HPV 16 and 18 integration in cervical adenocarcinoma. J Clin Pathol (in press)

    Google Scholar 

  • Herrington CS, Burns J, Graham AK, Evans MF, McGee JO’D (1989a) Interphase cytogenetics using biotin and digoxigenin labeled probes I: relative sensitivity of both reporters for detection of HPV 16 in CaSki cells. J Clin Pathol 42: 592–600

    CAS  Google Scholar 

  • Herrington CS, Burns J, Graham AK, Bhatt B, McGee JO’D (1989b) Interphase cytogenetics using biotin and digoxigenin labeled probes II: simultaneous detection of two nucleic acid species in individual nuclei. J Clin Pathol 42: 601–606

    CAS  Google Scholar 

  • Herrington CS, Burns J, Graham AK, McGee JO’D (1990a) Discrimination of closely homologous HPV types by in situ hybridization: definition and derivation iof Tmts. Histochem J 22: 545–554

    CAS  Google Scholar 

  • Herrington CS, Flannery DMJ, McGee JO’D (1990b) Single and simultaneous nucleic acid detection in archival human biopsies: application of non-isotopic in situ hybridization and the polymerase chain reaction to the analysis of human and viral genes. In: Polak JM and McGee JO’D (eds) In situ hybridization: principles and practice, Oxford University Press, Oxford, pp 187–215

    Google Scholar 

  • Herrington CS, McGee JO’D (1990c) Interphase cytogenetics. Neurochem Res 4: 467–474

    Google Scholar 

  • Herrington CS, Graham AK, McGee JO’D (1991) Interphase cytogenetics using biotin and digoxigenin labeled probes: III. Increased sensitivity and flexibility for detecting HPV in cervical biopsy specimens and cell lines. J Clin Pathol 44: 33–38

    Google Scholar 

  • Herrington CS, de Angelis M, Evans MF, Troncone G, McGee JO’D (1992a) High risk HPV detection in routine cervical smears: a strategy for screening J Clin Pathol 45: 385–390

    CAS  Google Scholar 

  • Herrington CS, Troncone G, McGee JO’D (1992b) Screening for high and low risk HPV types in single routine cervical smears by nonisotopic in situ hybridization ( NISH ). Cytopathology 3: 71–78

    Google Scholar 

  • Herrington CS, McGee JO’D (1992c) Principles and basic methodology of DNA/RNA detection by in situ hybridization. In: Herrington CS and McGee JO’D (eds) Diagnostic molecular pathology: a practical approach Vol 1, Oxford University Press (in press)

    Google Scholar 

  • Herrington CS, McGee JO’D (1992d) In situ hybridization in diagnostic cytopathology. In: Herrington CS and McGee JO’D (eds) Diagnostic molecular pathology: A practical approach Vol 1, Oxford University Press (in press)

    Google Scholar 

  • Troncone G, Herrington CS, Cooper K, de Angelis ML, McGee JO’D (1992) HPV detection in matched cervical smears and biopsies by nonisotopic in situ hybridization. J Clin Pathol 45: 308–313

    CAS  Google Scholar 

  • Allan GM, Todd D, Smyth JA, Mackie DP, Burns J, McNulty MS (1989) In situ hybridization: an optimised detection protocol for a biotinylated DNA probe renders it more sensitive than a comparable 355-labeled probe. J Virol Meth 24: 181–190

    Article  CAS  Google Scholar 

  • Beckmann AM, Myerson D, Daling JR, Kiviat NB, Fenoglio CM, McDougall JK (1985) Detection and localization of human papillomavirus DNA in human genital condylomas by in situ hybridization with biotinylated probes. J Med Virol 16: 265–273

    Article  PubMed  CAS  Google Scholar 

  • Burns J, Redfern DRM, Esiri MM, McGee JO’D (1986) Human and viral gene detection in routine paraffin embedded tissue by in situ hybridization with biotinylated probes: viral localisation in herpes encephalitis. J Clin Pathol 39: 1066–1073

    CAS  Google Scholar 

  • Burns J, Graham AK, Frank C, Fleming KA, Evans MF, McGee JO’D (1987) Detection of low copy human papilloma virus DNA and mRNA in routine paraffin sections of cervix by nonisotopic in situ hybridization. J Clin Pathol 40: 858–864

    CAS  Google Scholar 

  • Choi YJ (1990) In situ hybridization using a biotinylated DNA probe on formalin-fixed liver biopsies with hepatitis B virus infections: In situ hybridization superior to immunohistochemistry. Mod Pathol 3: 343–347

    PubMed  CAS  Google Scholar 

  • Cosby SL, McQuaid S, Taylor MJ, Bailey M, Rima BK, Martin SJ, Allen IV (1989) Examination of eight cases of multiple sclerosis and 56 neurological and non-neurological controls for genomic sequences of measles virus, canine distemper virus, simian virus 5 and rubella virus. J Gen Virol 70: 2027–2036

    Article  PubMed  Google Scholar 

  • Crum CP, Nagai N, Levine RU, Silverstein S (1986) In situ hybridization analysis of HPV 16 DNA sequences in early cervical neoplasia. Am J Pathol 123: 174–182

    PubMed  CAS  Google Scholar 

  • Furuta Y, Shinohara T, Sano K, Meguro M, Nagashima K (1990) In situ hybridization with digoxigenin-labeled DNA probes for detection of viral genomes. J Clin Pathol 43: 806–809

    Article  PubMed  CAS  Google Scholar 

  • Heino P, Hukkanen V, Arstila P (1989) Detection of human papilloma virus ( HPV) DNA in genital biopsy specimens by in situ hybridization with digoxigenin-labeled probes. J Virol Meth 26: 331–338

    Google Scholar 

  • Hukkanen V, Heino P, Sears AE, Roizman B (1990) Detection of herpes simplex virus latency-associated RNA in mouse trigeminal ganglia by in situ hybridization using nonradioactive digoxigenin-labeled DNA and RNA probes. Meth Mol Cell Biol 2: 70–81

    CAS  Google Scholar 

  • Konno R, Shikano K, Horiguchi M, Endo A, Chiba H, Yaegashi N, Sato S, Yajima H, Tase T, Yajima A (1990) Detection of human papillomavirus DNA in genital condylomata in women and their male partners by using in situ hybridization with digoxigenin labeled probes. Tohoku J Exp Med 160: 383–390

    Article  PubMed  CAS  Google Scholar 

  • Lewis FA, Griffiths S, Dunnicliff R, Wells M, Dudding N, Bird CC (1987) Sensitive in situ hybridization technique using biotin-streptavidin polyalkaline phosphatase complex. J Clin Pathol 40: 163–166

    Article  PubMed  CAS  Google Scholar 

  • Maples JA (1985) A method for the covalent attachment of cells to glass slides for use in immunohistochemical assays. Am J Clin Pathol 83: 356–363

    PubMed  CAS  Google Scholar 

  • McQuaid S, Isserte S, Allan GM, Taylor MJ, Allen IV, Cosby SL (1990) Use of immunocytochemistry and biotinylated in situ hybridization for detecting measles virus in central nervous system tissue. J Clin Pathol 43: 329–333

    Article  PubMed  CAS  Google Scholar 

  • Morris RG, Arends MJ, Bishop PE, Sizer K, Duvall E, Bird CC (1990) Sensitivity of digoxigenin and biotin labeled probes for detection of human papillomavirus by in situ hybridization. J Clin Pathol 43: 800–805

    Article  PubMed  CAS  Google Scholar 

  • Murphy JK, Young LS, Bevan IS, Lewis FA, Dockey D, Ironside JW, O’Brien CJ, Wells M (1990) Demonstration of Epstein-Barr virus in primary brain lymphoma by in situ DNA hybridization in paraffin wax embedded tissue. J Clin Pathol 43: 220–223

    Article  PubMed  CAS  Google Scholar 

  • Musiani G, Gentilomi G, Zerbini M, Gibellini D, Gallinella G, Pileri S, Baglioni P, La Placa M (1990) In situ detection of cytomegalovirus DNA in biopsies of AIDS patients using a hybrido-immunocytochemical assay. Histochem 94: 21–25

    Article  CAS  Google Scholar 

  • Negro F, Berninger M, Chiaberge E, Gugliotti P, Bussolati G, Actis GC, Rizzetto M, Bonino F (1985) Detection of HBV-DNA by in situ hybridization using a biotin-labeled probe. J Med Virol 15: 373–382

    Article  PubMed  CAS  Google Scholar 

  • Permeen AMY, Sam CK, Pathmanathan R, Prasad U, Wolf H (1990) Detection of Epstein-Barr virus DNA in nasopharyngeal carcinoma using a nonradioactive digoxigenin-labeled probe. J Viral Meth 27: 261–268

    Article  CAS  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci 83: 2934–2938

    Article  PubMed  CAS  Google Scholar 

  • Syrjänen S, Partanen P, Mäntyjärvi R, Syrjänen K (1988) Sensitivity of in situ hybridization techniques using biotin-and 35S-labeled human papillomavirus ( HPV) DNA probes. J Virol Meth 19: 225–238

    Google Scholar 

  • Unger ER, Budgeon LR, Myerson D, Brigati DJ (1986) Viral diagnosis by in situ hybridization. Description of a rapid simplified colorimetric method. Am J Surg Pathol 10: 1–8

    Google Scholar 

  • Ambros PF, Karlic HI (1987) Chromosome insertion of human papillomavirus 18 sequences in HeLa cells detected by nonisotopic in situ hybridization and reflection contrast microscopy. Hum Genet 77: 251–254

    Article  PubMed  CAS  Google Scholar 

  • Baldini A, Ward DC (1991) In situ hybridization of human chromosomes with Alu-PCR products: a simultaneous karyotype for gene mapping studies. Genomics 9: 770–774

    Article  PubMed  CAS  Google Scholar 

  • Boyle AL, Ballard SG, Ward DC (1990) Differential distribution of long and short interspersed elements in the mouse genome: Chromosome karyotyping by fluorescence in situ hybridization. Proc Natl Acad Sci USA 87: 7757–7761

    Google Scholar 

  • Cherif D, Julier C, Delattre O, Derre J, Lathrop GM, Berger R (1990) Simultaneous localization of cosmids and chromosome R-banding by fluorescence microscopy: Application to regional mapping of human chromosome 11. Proc Natl Acad Sci USA 87: 6639–6643

    Article  PubMed  CAS  Google Scholar 

  • Collins C, Kuo WL, Segraves R, Pinkel D, Fuscoe J, Gray JW (1991) Construction and characterization of plasmid libraries enriched in sequences from single human chromosomes. Genomics 11: 997–1006

    Article  PubMed  CAS  Google Scholar 

  • Dilla van MA, Deaven LL (1990) Construction of gene libraries for each human chromosomes. Cytometry 11: 208–218

    Article  PubMed  Google Scholar 

  • Fan YS, Davis LM, Shows TB (1990) Mapping small DNA sequences by fluorescence in situ hybridization directly on banded metaphase chromosomes. Proc Natl Acad Sci USA 87: 6223–6227

    Article  PubMed  CAS  Google Scholar 

  • Klever M, Grond-Ginsbach C, Scherthan H, Schroeder-Kurth T (1991) Chromosomal in situ suppression hybridization after Giemsa banding. Hum Genet 86: 484–486

    Article  PubMed  CAS  Google Scholar 

  • Korenberg JR, Rykowsky MC (1988) Human genome organization: Alu, LINES and molecular structure of metaphase chromosome bands. Cell 53: 391–400

    Google Scholar 

  • Kuwano A, Ledbetter SA, Dobyns WB, Emanuel BS, Ledbetter DH (1991) Detection of deletions and cryptic translocations in Miller-Dieker syndrome by in situ hybridiza-tion. Am J Hum Genet 49: 707–714

    PubMed  CAS  Google Scholar 

  • Landegent JE, Jansen in de Wal N, Dirks RW, Baas F, van der Ploeg M (1987) Use of whole cosmid cloned genomic sequences for chromosomal localization by nonradioactive in situ hybridization. Hum Genet 77: 366–370

    CAS  Google Scholar 

  • Lawrence JB, Singer RH, McNeil JA (1990) Interphase and metaphase resolution of different distances within the human dystrophin gene. Science 249: 928–932

    Article  PubMed  CAS  Google Scholar 

  • Lemieux N, Dutrillaux B, Viegas-Peqiugnot E (1992) A simple method for simultaneous R- or G-banding and fluorescence in situ hybridization of small single-copy genes. Cytogenet Cell Genet 59: 311–312

    Article  PubMed  CAS  Google Scholar 

  • Lengauer C, Green ED, Cremer T (1992) In situ hybridization of YAC clones after AluPCR amplification. Genomics 13: 826–828

    Article  PubMed  CAS  Google Scholar 

  • Lichter P, Jauch A, Cremer T, Ward DC (1990a) Detection of Down syndrome by in situ hybridization with chromosome 21 specific DNA probes. In: Patterson D (ed) Molecular Genetics of Chromosome 21 and Down Syndrom. Liss, New York, pp 69–78

    Google Scholar 

  • Lichter P, Tang CC, Call K, Hermanson G, Evans GA, Housman D, Ward DC (1990b) High resolution mapping of chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64–69

    Article  PubMed  CAS  Google Scholar 

  • Lichter P, Boyle AL, Cremer T, Ward DC (1991) Analysis of genes and chromosomes by non-isotopic in situ hybridization. Genet Anal Techn Appl 8: 24–35

    Article  CAS  Google Scholar 

  • Manuelidis L, Ward DC (1984) Chromosomal and nuclear distribution of the Hindlll 1.9-kb human DNA repeat segment. Chromosoma 91: 28–38

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L, Borden J (1988) Reproducible compartimentalization of individual chromosome domaine in human CNS cells revealed by in situ hybridization and three dimensional reconstruction. Chromosoma 96: 397–410

    Article  PubMed  CAS  Google Scholar 

  • Meltzer PS, Guan X-Y, Burgess A, Trent JM (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nature Genet 1: 24–28

    Article  PubMed  CAS  Google Scholar 

  • Moyzis RK, Albright KL, Bartholdi MF, Cram LS, Deaven LL, Hildebrand CE, Joste NE, Longmire JL, Meine J, Schwarzacher-Robinson T (1987) Human chromosome specific repetitive DNA sequences: Novel markers for genetic analysis. Chromosoma 95: 375–386

    Google Scholar 

  • Moyzis RK, Torney DC, Meyne J, Buckingham JW, Wu JR, Burks C, Sirotkin KM, Good WB (1989) The distribution of interspersed repetitive DNA sequence in the human genome. Genomics 4: 273–289

    Article  PubMed  CAS  Google Scholar 

  • Nelson DL, Ledbetter SA, Corbo L, Victoria MF, Ramirez-Solis R, Webster TD, Ledbetter DH, Caskey CT (1989) Alu polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci USA 86: 6686–6690

    Google Scholar 

  • Raap AK, Nederlof PM, Dirks JW, Wiegant JCAG, Van der Ploeg M (1990) Use of haptenized nucleic acid probes in fluorescent in situ hybridization. In: Harris N, Williams EG (eds) In Situ Hybridization: Application to Developmental Biology and Medicine. Cambridge University Press, Cambridge, pp 33–41

    Chapter  Google Scholar 

  • Ried T, Mahler V, Vogt P, Blonden C, van Ommen GJB, Cremer T, Cremer M (1990) Direct carrier detection by in situ suppression hybridization with cosmid clones for the Duchenne/Becker muscular dystrophy locus. Hum Genet 85: 581–586

    Article  PubMed  CAS  Google Scholar 

  • Ried T, Baldini A, Rand TC, Ward DC (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci USA 89: 1388–1392

    Article  PubMed  CAS  Google Scholar 

  • Slim R, Weissenbach J, Nguyen VC, Danglot G, Bernheim A (1991) Relative order determination of four Yp cosmids on metaphase and interphase chromosomes by two-color competitive in situ hybridization. Hum Genet 88: 21–26

    Article  PubMed  CAS  Google Scholar 

  • Smit VTHBM, Wessels JW, Mollevanger P, Schrier PI, Raap AK, Beverstock GC, Cornelisse CJ (1990) Combined GTG-banding and nonradioactive in situ hybridization improves characterization of complex karyotypes. Cytogenet Cell Genet 54: 20–23

    Article  PubMed  CAS  Google Scholar 

  • Takahashi E, Hari T, O’Connell P, Leppert M, White R (1990) R-banding and nonisotopic in situ hybridization: precise localization of the human type II collagen gene (COL2A1). Hum Genet 86: 14–16

    Article  PubMed  CAS  Google Scholar 

  • Tkachuk DC, Westbrook CA, Andreeff M, Donlon TA, Cleary ML, Suryanarayan K, Homge M, Redner A, Gray J, Pinkel D (1990) Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science 250: 559–562

    Article  PubMed  CAS  Google Scholar 

  • Trask BJ, Massa H, Kenwrick S, Gitschier J (1991) Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am J Hum Genet 48: 1–15

    PubMed  CAS  Google Scholar 

  • Trautmann U, Leuteritz G, Senger G, Claussen U, Ballhausen WG (1991) Detection of APC region-specific signals by nonisotopic chromosomal in situ suppression ( CISS)hybridization using a microdissection library as a probe. Hum Genet 87: 495–497

    Google Scholar 

  • Tucker JD, Christensen ML, Carrano AV (1988) Simultaneous identification and banding of human chromosome material in somatic cell hybrids. Cytogenet Cell Genet 48: 103–106

    Article  PubMed  CAS  Google Scholar 

  • Vogel W, Autenrieth M, Speit G (1986) Detection of bromodeoxyuridine-incorporation in mammalian chromosomes by a bromodeoxyuridine-antibody. I. Demonstration of replication patterns. Hum Genet 72: 129–132

    Google Scholar 

  • Ward DC, Lichter P, Boyle A, Baldini A, Menninger J, Ballard SG (1991) Gene mapping by fluorescent in situ hybridization and digital imaging microscopy. In: Lindsten J, Petterson U (eds) Etiology of human diseases at the DNA level. Raven, New York, pp 291–303

    Google Scholar 

  • Willard HF, Waye JS (1987) Hierachical order in chromosome-specific human alpha satellite DNA. Trends in Genet 3: 192–198

    Article  CAS  Google Scholar 

  • Wienberg J, Stanyon R, Jauch A, Cremer T (1992) Homologies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries. Chromosoma 101: 265–270

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ (1976) High resolution mapping of human chromosomes. Science 191: 1268–1270

    Article  PubMed  CAS  Google Scholar 

  • Gosden J, Hanratty D, Starling J, Mitchell A, Porteous D (1991) Oligonucleotide-primed in situ DNA synthesis (PRINS): a method for chromosome mapping, banding, and investigation of sequence organization. Cytogenet Cell Genet 57: 100–104

    Article  PubMed  CAS  Google Scholar 

  • Gosden J, Hanratty D (1992) Comparison of sensitivity of three haptens, in the PRINS (oligonucleotide PRimed IN Situ synthesis) reaction. Cytogenet Cell Genet (in press)

    Google Scholar 

  • Hindkjær J, Koch J, Mogensen J, Pedersen S, Fischer H, Nygard M, Junker S, Greger-sen N, Kolvraa S, Bolund L (1991) In situ labeling of nucleic acids for gene mapping, diagnostics and functional cytogenetics. Biotech Forum Europe 12:752–756

    Google Scholar 

  • Koch J, KOlvraa S, Corneliussen M, Gregersen N, Petersen KB, Bolund L (1988) Treat-ment of genomic DNA with T4 DNA ligase improves Southern blot analysis. Nucleic Acids Res 16: 10387

    Article  PubMed  CAS  Google Scholar 

  • Koch J, KOlvraa S, Gregersen N, Bolund L (1989) Oligonucleotide-priming methods for the chromosome-specific labeling of alpha satellite DNA in situ. Chromosoma 98: 259–265

    Article  PubMed  CAS  Google Scholar 

  • Koch J, Hindkjær J, Mogensen J, KOlvraa S, Bolund L (1991) An improved method for chromosom-specific labeling of alpha satellite DNA in situ using denatured double stranded DNA probes as primers in a PRimed IN Situ labeling ( PRINS) procedure. GATA 8: 171–178

    Google Scholar 

  • Koch J, Mogensen J, Pedersen S, Fischer H, Hindkjær J, KOlvraa S, Bolund L (1992) Fast one step procedure for the detection of nucleic acids in situ by primer induced sequence specific labeling with fluorescein-12-dUTP. Cytogenet Cell Genet 60: 1–3

    Article  PubMed  CAS  Google Scholar 

  • Mitchell A, Jeppesen P (1992) The organization of repetitive DNA sequence on human chromosomes with respect to the kinetochore analyzed using a combination of oligonucleotide primers and CREST anticentromere serum. Chromosoma (in press)

    Google Scholar 

  • Moens PB, Pearlman RE (1990) In situ DNA sequence mapping with surface-spread mouse pachytene chromosome. Cytogenet Cell Genet 53: 219–220

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Pearlman RE (1990) Telomere and centromere DNA are associated with the cores of meiotic chromosomes. Chromosoma 100: 8–14

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Pearlman RE (1991) Visualization of DNA sequences in meiotic chromosomes. Methods in Cell Biology 35: 101–108

    Article  PubMed  CAS  Google Scholar 

  • Mogensen J, Kolvraa S, Hindkjær J, Petersen S, Koch J, Nygard M, Jensen T, Gregersen N, Junker S, Bolund L (1991) Nonradioactive detection of mRNA subspecies in situ by PRimed IN Situ labeling ( PRINS ). Eptl Cell Res 196: 92–98

    Google Scholar 

  • Winter0 AK, Fredholm M, Thomsen PD (1992) Variable (dGdT)„•(dC-dA)„ sequences in the porcine genome. Genomics 12: 281–288

    Article  Google Scholar 

  • Albertson DG (1985) Mapping muscle protein genes by in situ hybridization using biotin-labeled probes. EMBO J 4: 2493–2498

    PubMed  CAS  Google Scholar 

  • Arnoldus EPJ, Wiegant J, Noordermeer IA, Wessels JW, Beverstock GC, Grosveld GC, Van der Ploeg M, Raap AK (1990) Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet Cell Genet 54: 108–111

    Article  PubMed  CAS  Google Scholar 

  • Arnoldus EPJ, Noordermeer IA, Peters ACB, Voormolen JHC, Bots GTAM, Raap AK, Van der Ploeg M (1991a) Interphase cytogenetics of brain tumors. Genes, Chromosomes and Cancer 3: 101–107

    Google Scholar 

  • Arnoldus EPJ, Dreef EJ, Noordermeer IA, Verheggen MM, Thierry RF, Peters ACB, Cornelisse CJ, van der Ploeg M, Raap AK (1991) Feasibility of in situ hybridization with chromosome-specific DNA probes to paraffin wax embedded tissues. J Clin Pathol 4.4: 900–904

    Google Scholar 

  • Brandiff B, Gordon L, Trask B (1991) A new system for high-resolution DNA sequence mapping in interphase pronuclei. Genomics 10: 75–82

    Article  Google Scholar 

  • Cherif D, Julier D, Delattre O, Derre J, Lathrop GM, Berger R (1990) Simultaneous localization of cosmids and chromosome R-banding by fluorescence microscopy: application to regional mapping of chromosome 11. Proc Natl Acad Sci USA 87: 6639–6643

    Article  PubMed  CAS  Google Scholar 

  • Collins C, Kuo WL, Segraves R, Fuscoe J, Pinkel D, Gray JW (1991) Construction characterization of plasmid libraries enriched in sequence from single human chromosomes. Genomics 11: 997–1000

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome specific library probes. Hum Genet 80: 235–246

    Article  PubMed  CAS  Google Scholar 

  • Dauwerse JG, Kievits T, Beverstock GC, Van der Keur D, Smit E, Wessels HW, Hagemeijer A, Pearson PL, Van Ommen GJB, Breuning MH (1990) Rapid detection of chromosome 16 inversion in acute nonlymphocytic leukemia, subtype M4: regional localization of the breakpoint in 16p. Cytogenet Cell Genet 53: 126–128

    Article  PubMed  CAS  Google Scholar 

  • Emmerich P, Jauch A, Hofman MC, Cremer T, Walt H (1989) Interphase cytogenetics in paraffin embedded sections from testicular germ cell tumor xenografts and in corresponding cell cultures. Lab Invest 61: 235–240

    PubMed  CAS  Google Scholar 

  • Fuscoe JC, Collins CC, Pinkel D, Gray JW (1989) An efficient method for selecting unique sequence clones from DNA libraries and its application to fluorescent staining of human chromosome 21 using in situ hybridization. Genomics 5: 100–109

    Article  PubMed  CAS  Google Scholar 

  • Hopman AHN, Wiegant J, Raap AK, Landegent JE, van der Ploeg M, van Duijn P (1986) Bicolour detection of two target DNAs by nonradioactive in situ hybridization. Histochemistry 85: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Hopman AHN, Moesker O, Smeets AWGB, Pauwels RPE, Vooijs GP, Ramaekers FCS (1991) Numerical chromosome 1, 7, 9 and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res 51: 644–651

    CAS  Google Scholar 

  • Hopman AHN, Van Hooren E, Van de Kaa CA, Vooijs GP, Ramaekers FCS (1991) Detection of numerical chromosome aberrations using in situ hybridization in paraffin sections of routinely bladder cancers. Modern Pathol 4: 503–513

    CAS  Google Scholar 

  • James J, Tanke HJ (1991) Fluorescence microscopy; in: Biomedical light microscopy, Kluwer Academic Publ., Dordrecht, the Netherlands; Chapter 3, pp50–66

    Google Scholar 

  • Kievits T, Dauwerse JG, Wiegant J, Devilee P, Breuning MH, Cornelisse CJ, Van Ommen GJB, Pearson PL (1990) Rapid subchromosomal localization of cosmids by nonradioactive in situ hybridization. Cytogenet Cell Genet 53: 134–136

    Article  PubMed  CAS  Google Scholar 

  • Landegent JE, Jansen in de Wal N, Ommen GJB, Baas F, De Vijlder JJM, Van Duijn P, Van der Ploeg M (1985) Chromosomal localization of a unique gene by nonautoradiographic in situ hybridization. Nature 317: 175–177

    Article  PubMed  CAS  Google Scholar 

  • Landegent JE, Jansen in de Wal, Dirks RW, Baas F, van der Ploeg M (1987) Use of whole cosmid cloned genomic sequence for chromosomal localization by nonradioactive in situ hybridization. Hum Genet 77: 366–370

    CAS  Google Scholar 

  • Lawrence JB, Villnave CA, Singer RH (1988) Interphase chromatin and chromosome gene mapping by fluorescence detection of in situ hybridization reveals the presence and orientation of two closely linked copies of EBV in a human lymphoblastoid cell line. Cell 52: 51–61

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JB, Singer RH, McNeil JA (1990) Interphase and metaphase resolution of different distances within the human dystrophin gene. Science 249: 928–931

    Article  PubMed  CAS  Google Scholar 

  • Lengauer C, Eckelt A, Weith A, Endlich N, Ponelies N, Lichter P, Greulich KO, Cremer T (1991) Painting of defined chromosomal regions by in situ suppression hybridization of libraries from laser-microdissected chromosomes. Cytogenet Cell Genet 56: 27–30

    Article  PubMed  CAS  Google Scholar 

  • Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988a) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80: 224–234

    Article  PubMed  CAS  Google Scholar 

  • Lichter P, Cremer T, Tang CC, Watkins PC, Manuelidis L, Ward DC (1988b) Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc Natl Acad Sci USA 85: 9664–9668

    Article  PubMed  CAS  Google Scholar 

  • Lichter P Tang CC, Call K, Hermanson G, Evans G, Housman D, Ward DC (1990) High resolution mapping of human chromosome 11 by in situ hybridization with cos-mid probes. Science 247:64–69

    Article  PubMed  CAS  Google Scholar 

  • Lichter P, Boyle AL, Cremer T, Ward DC (1991) Analysis of genes and chromosomes by nonisotopic in situ hybridization. Genet Anal Techn Appl 8: 24–35

    Article  CAS  Google Scholar 

  • McNeil JA, Johnson CV, Carter KC, Singer RH, Lawrence JB (1991) Localizing DNA and RNA within nuclei and chromosomes by fluorescence in situ hybridization. Genet Anal Techn Appl 8: 41–58

    Article  CAS  Google Scholar 

  • Nederlof PM, Robinson D, Abuknesha R, Wiegant J, Hopman AHN, Tanke HJ, Raap AK (1989) Three colour fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry 10: 20–27

    Article  PubMed  CAS  Google Scholar 

  • Nederlof PM, van der Flier S, Wiegant J, Raap AK, Tanke HJ, Ploem JS, Van der Ploeg M (1990) Multiple fluorescence in situ hybridization. Cytometry 11: 126–131

    Article  PubMed  CAS  Google Scholar 

  • Nederlof PM, van der Flier S, Vrolijk J, Tanke HJ, Raap AK (1992) Quantification of in situ hybridization signals by fluorescence digital imaging microscopy. II. Fluorescence ratio measurements of double labeled probes. Cytometry (in press)

    Google Scholar 

  • Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome specific libraries: detection of trisomy 21 and translocation of chromosome 4. Proc Natl Acad Sci 85: 9138–9142

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative high sensitivity fluorescence hybridization. Proc Natl Acad Sci USA 83: 2934–2938

    Article  PubMed  CAS  Google Scholar 

  • Ploem JS, Tanke HJ (1987) Introduction to fluorescence microscopy. In: RMS Microscopy Handbooks Series No. 10, Oxford Science Publications

    Google Scholar 

  • Raap AK, Dirks RW, Jiwa NM, Nederlof PM, Van der Ploeg M (1990a) In situ hybridization with hapten-modified DNA probes. In: Racz P, Haase AT, Gluckman JC (eds) Modern Pathology of AIDS and Other Retroviral Infections, Karger, Basel, pp 17–28

    Google Scholar 

  • Raap AK, Nederlof PM, Dirks RW, Wiegant JCAG, Van der Ploeg M (1990b) Use of haptenized nucleic acid probes in fluorescent in situ hybridization. In: Harris N, Williams DG (eds) In Situ Hybridization: Application to Developmental Biology and Medicine, Cambridge University Press, Cambridge, pp 33–41

    Chapter  Google Scholar 

  • Ried T, Mahler V, Vogt P, Blonden L, van Ommen GJB, Cremer T, Cremer M (1990) Carrier detection by in situ suppression hybridization with cosmid clones of the DuchenneBecker muscular dystrophy ( DMDBMD)-locus. Hum Genet 85: 581–586

    Google Scholar 

  • Ried T, Baldini A, Rand T, Ward DC (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digitial imaging microscopy. Proc Natl Acad Sci USA, in press

    Google Scholar 

  • Ried T, Lengauer C, Cremer T, Wiegant J, Raap AK, van der Ploeg M, Groitl P, Lipp M (1991) Specific metaphase and interphase detection of the breakpoint region in 8q24 of Burkitt lymphoma cells by triple colour fluorescence in situ hybridization. Genes Chromosomes and Cancer 4: 1–6

    Google Scholar 

  • Tkatchuk D, Westbrook C, Andreef M, Donlon TA, Cleary ML, Suryanarayan K, Homge M, Redner A, Gray JW, Pinkel D (1990) Detection of BCR-ABL fusion in chronic myeologeneous leukemia by two colour fluorescence in situ hybridization Science 220: 559–562

    Google Scholar 

  • Trask B, Pinkel D, Van den Engh G (1989) The proximity of DNA sequences in interphase nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5: 710–717

    Article  PubMed  CAS  Google Scholar 

  • Trask BJ, Massa H, Kenwrick S, Gitschier J (1991) Mapping of human chromosome Xq28 by 2-colour fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am J Hum Genet 48: 1–15

    PubMed  CAS  Google Scholar 

  • Wiegant J, Ried Th, Van der Ploeg M, Nederlof PM, Tanke HJ, Raap AK (1991a) In situ hybridization with fluoresceinated DNA. Nucleic Acids Res 19: 3237–3241

    Article  PubMed  CAS  Google Scholar 

  • Wiegant J, Galjart N, Raap AK, d’Azzo A (1991b) The gene encoding human protective protein is on chromosome 20. Genomics 10: 345–349

    Article  PubMed  CAS  Google Scholar 

  • Wiegant J, Wiesmeijer CC, Hoovers J, Schuuring E, d’Azzo A, Vrolijk J, Tanke HJ, Raap AK (1992) Sensitive and multiple in situ hybridization with rhodamine-, fluorescein-and coumarin-labeled DNAs, submitted

    Google Scholar 

  • Willard HF, Waye JS (1987) Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet 3: 192–198

    Article  CAS  Google Scholar 

  • Bonner ii, Pardue ML (1976) Ecdyson-stimulated RNA synthesis in imaginal discs of Drosophila melanogaster. Assay by in situ hybridization. Chromosoma 58: 87–99

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13

    Article  PubMed  CAS  Google Scholar 

  • Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA 79: 4381–4385

    Article  PubMed  CAS  Google Scholar 

  • Schmidt ER (1988) Exonuclease digestion of chromosomes for in situ hybridization. Nucleic Acids Res 16: 10381

    Article  PubMed  CAS  Google Scholar 

  • Schmidt ER, Keyl HG, Hankeln T (1988) In situ localization of two hemoglobin gene clusters in the chromosomes of 13 species of Chironomus. Chromosoma 96: 353–359

    Article  Google Scholar 

  • Singh L, Purdom JF, Jones KW (1977) Effect of denaturing agents on the detectability of specific DNA sequences of various base compositions by in situ hybridization. Chromosoma 60: 377–389

    Article  PubMed  CAS  Google Scholar 

  • Herget T, Goldowitz D, Oelemann W, Starzinski-Powitz A (1988) Description of putative ribosomal RNAs with low abundance, developmental regulation, and the identifier sequence. Exp Cell Res 176: 141–154

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML (1985) In situ hybridization. In: Hames BD, Higgins SJ (eds) Nucleic Acid Hybridization — A Practical Approach, IRL Press, Oxford, England, Chapter 8, pp 179–202

    Google Scholar 

  • Zimmermann K, Herget T, Salbaum JM, Schubert W, Hilbich C, Multhaup G, Kang J, Lemaire H-G, Beyreuther K, Starzinski-Powitz A (1988) Localization of the putative precursor of Alzheimer’s disease-specific amyloid at nuclear envelopes of adult human muscle. EMBO J 7: 367–372

    PubMed  CAS  Google Scholar 

  • Cox KH, DeLeon DV, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Develop Biol 101: 485–502

    Article  PubMed  CAS  Google Scholar 

  • Morris RG, Arends MJ, Bishop PE, Sizer K, Duvall E, Bird CC (1990) Sensitivity of digoxigenin and biotin labeled probes for detection of human papillomavirus by in situ hybridization. J Clin Path 43: 800–805

    Article  PubMed  CAS  Google Scholar 

  • Wood GS, Warnke R (1981) Suppression of endogenous avidin binding activity in tissues and its relevance to biotin-avidin detection systems. J Histochem Cytochem 29: 1196

    Article  PubMed  CAS  Google Scholar 

  • Baldino F Jr, Chesselet M-F, Lewis ME (1989) High resolution in situ hybridization histochemistry. In: Conn PM (ed) Methods in enzymology: hormone action, Part K, Neuroendocrine peptides Vol 168, Academic Press 761–777

    Chapter  Google Scholar 

  • Baldino F Jr, Deutch AY, Roth RH, Lewis ME (1988) In situ hybridization histochemistry of tyrosine hydroxylase messenger RNA in rat brain. Ann NY Acad Sci 537: 484–487

    Article  Google Scholar 

  • Baldino F Jr, Lewis ME (1989) Nonradioactive in situ hybridization histochemistry with digoxigenin-dUTP labeled oligonucleotides. In: Conn PM (ed) Methods in Neuroscience, Academic Press 282–292

    Google Scholar 

  • Baldino F Jr, Roberts-Lewis JM, Lewis ME (1992) In situ hybridization histochemistry as a tool for the study of brain function. In: Osbourne NN (ed) Current aspects of the neurosciences Vol 4, Macmillan Publishers, in press

    Google Scholar 

  • Lewis ME, Baldino F Jr (1990) Probes in situ hybridization histochemistry. In: Chesselet MF (ed) In situ hybridization histochemistry. CRC Press 1–21

    Google Scholar 

  • Lewis ME, Krause RG, Roberts-Lewis JM (1988) Recent developments in the use of synthetic oligonucleotides for in situ hybridization histochemistry. Synapse 2: 308–316

    Article  PubMed  CAS  Google Scholar 

  • Lewis ME, Robbins E, Grega D, Baldino F Jr (1990) Nonradioactive detection of vasopressin and somatostatin mRNA with digoxigenin-labeled oligonucleotide probes. Ann N Y Acad Sci 579: 246–253

    Article  PubMed  CAS  Google Scholar 

  • Lewis ME, Sherman TG, Watson SJ (1985) In situ hybridization histochemistry with synthetic oligonucleotides. Peptides 6 (suppl 2) 75–87

    Article  PubMed  CAS  Google Scholar 

  • Robbins E, Baldino F Jr, Roberts-Lewis JM, Meyer S, Grega DS, Lewis ME (1991) Quantitative nonradioactive in situ hybridization of preproenkephalin mRNA with digoxigenin-labeled cRNA probes. Anat Rec 231: 559–562

    Article  PubMed  CAS  Google Scholar 

  • Springer JE, Robbins E, Gwag BJ, Lewis ME, Baldino F Jr (1991) Nonradioactive detection of nerve growth factor receptor mRNA in the rat brain using in situ hybridization histochemistry. J Histochem Cytochem 39: 231–234

    Article  PubMed  CAS  Google Scholar 

  • Young WS III (1989) Simultaneous use of digoxigenin-and radiolabeled oligodeoxyribonucleotide probes for hybridization histochemistry. Neuropeptides 13: 271–275

    Article  PubMed  CAS  Google Scholar 

  • Young WS III, Bonner TI, Brann MR (1986) Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNA in the rat forebrain. Proc Natl Acad Sci 83: 9827–9831

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Frank D, Bolce ME, Brown BD, Sive HL, Harland RM (1990) Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization. Development 110: 325–330

    PubMed  CAS  Google Scholar 

  • Kurz E, Holstein T, Petri B, Engel J, David C (1991) Mini-collagens in hydra nematocytes. J Cell Bid 115: 1159–1169

    Article  CAS  Google Scholar 

  • Sommer R, Tautz D (1991) Segmentation gene expression in the house fly Musca domestica. Development 113: 419–430

    PubMed  CAS  Google Scholar 

  • Tautz D, Pfeifle C (1989) A nonradioactive in situ hybridization method for the localization of specific Rnas in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Wieschans E, Nusslein-Vollhard C (1986) Looking at embryos. In: Roberts DB (ed) Drosophila — A Practical Approach. IRL Press, Oxford, pp 199–228

    Google Scholar 

  • Dynlacht BD, Attardi LD, Admon A, Freeman M, Tijian R (1989) Functional analysis of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements. Genes Dev 3: 1677–1688

    Article  PubMed  CAS  Google Scholar 

  • Hortsch M, Patel NH, Bieber AJ, Traquina ZR, Goodman CS (1990) Drosophila neurotactin, a surface glycoprotein with homology to serine esterases, is dynamically expressed during embryogenesis. Development 110: 1327–1340

    PubMed  CAS  Google Scholar 

  • Nighorn A, Healy MJ, Davis RL (1991) The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Neuron 6: 455–467

    Article  PubMed  CAS  Google Scholar 

  • Perkins KK, Admon A, Patel NH, Tijian R (1990) The Drosophila fos-related AP-1 protein is a developmentally regulated transcription factor. Genes Dev 4: 822–834

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Pfeifle C (1989) A nonradioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Cohen B, Wimmer E, Cohen SM (1991) Early development of the leg and wing primordia in the Drosophila embryo. Mech Devel 33: 229–240

    Article  CAS  Google Scholar 

  • Cohen SM (1990) Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature 343: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Guesdon J, Ternynck T, Avrameas S (1979) The use of avidin biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27 (8): 1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Hülskamp M, Tautz D (1991) Gap genes and gradients — the logic behind the gaps. Bio Essays 14, No 6: 261–268

    Google Scholar 

  • Ingham P, Taylor AM, Nakano Y (1991) Role of the Drosophila patched gene in positional signaling. Nature 353: 184–187

    Article  PubMed  CAS  Google Scholar 

  • Kellermann KA, Mattson DM and Duncan I (1990) Mutations affecting the stability of the fushi tarazu protein of Drosophila. Genes and Dev 4: 1936–1950

    Article  Google Scholar 

  • Lawrence PA and Johnston P (1989) Pattern formation in the Drosophila embryo: allocation of cells to parasegments by even-skipped and fushi tarazu. Development 105: 761–767

    PubMed  CAS  Google Scholar 

  • O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84: 9123–9127

    Article  PubMed  Google Scholar 

  • Phillips RG, Roberts IJH, Ingham PW, Whittle JRS (1990) The Drosophila segment polarity gene patched is involved in a position-signaling mechanism in imaginal discs. Development 110: 105–114

    PubMed  CAS  Google Scholar 

  • Tautz D and Pfeifle C (1989) A nonradioactive in situ hybridization method for the localization of specific Rnas in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98: 81–85

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Genersch, E. et al. (1992). In Situ Formats. In: Kessler, C. (eds) Nonradioactive Labeling and Detection of Biomolecules. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00144-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00144-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00146-2

  • Online ISBN: 978-3-662-00144-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics