Skip to main content

Abstract

The polymerase chain reaction (PCR) represents the most common and widespread method for the direct amplification of specific sequences of nucleic acid target molecules. The basic reaction is comprised of three steps:

  1. 1.

    Denaturation of the target DNA

  2. 2.

    Annealing of sequence specific primers

  3. 3.

    Template-specific elongation of these primers with a DNA polymerase and desoxynucleotides

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kessler C (1991) The digoxigenin: anti-digoxigenin (DIG) technology — a survey on the concept and realization of a novel bioanalytical indicator system. Mol Cell Probes 5: 161–205

    Article  PubMed  CAS  Google Scholar 

  2. Lanzillo JJ (1991) chemiluminescent nucleic acid detection with digoxigenin-labeled probes: a model system with probes for angiotensin converting enzyme which detect less than one attomole of target DNA. Anal Biochem 194:45–53

    Article  PubMed  CAS  Google Scholar 

  3. Levenson C, Chu-an, Chang (1990) Nonisotopically labeled probes and primers In: Innis MA et al. (eds) PCR protocols, Academic Press, Inc, London

    Google Scholar 

  4. Lion T, Haas OA (1990) Nonradioactive labeling of probe with digoxigenin by polymerase chain reaction. Anal Biochem 188, 335–337

    Article  PubMed  CAS  Google Scholar 

  5. Mühlegger K, Huber E, von der Eltz H, Rüger R, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: IV. Synthesis and properties of the nucleotide compounds of the digoxigenin system and of photodigoxigenin. Biol Chem Hoppe-Seyler 371: 953–965

    Article  PubMed  Google Scholar 

  6. Mullis KB, Faloona FA, Scharf SJ, Saiki RK, Horn GT, Erlich HA (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51: 263–273

    Article  PubMed  CAS  Google Scholar 

  7. Rüger R, Höltke HJ, Sagner G, Seibl R, Kessler C (1990) Rapid labeling methods using the DIG-system: incorporation of digoxigenin in PC reactions and labeling of nucleic acids with photodigoxigenin. Fresenius’ Z Anal Chem 337: 114

    Google Scholar 

  8. Rüger R, Höltke H-J, Reischl U, Sagner G, Kessler C (1991) Labeling of specific DNA sequences with digoxigenin during polymerase chain reaction. In: Rolfs A et al. (ed) PCR Topics, Springer-Verlag, Berlin

    Google Scholar 

  9. Saiki R, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of (3-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354

    Article  PubMed  CAS  Google Scholar 

  10. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    Article  PubMed  CAS  Google Scholar 

  11. Saiki RK, Scharf S, Falcona F, Mullis K, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350

    Article  PubMed  CAS  Google Scholar 

  12. Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR (1990) Isothermal, in vitro amplification of nucleic acids by multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA 87: 1874

    Article  PubMed  CAS  Google Scholar 

  13. Wu DY, Wallace RB (1989) The ligation amplification reaction ( LAR) — amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4: 560

    Article  PubMed  CAS  Google Scholar 

  14. Barringer K, Orgel L, Wahl G (1990) Blunt-end and single-stranded ligations by E. coli ligase: influence on an in vitro amplification scheme. Gene 89: 117

    CAS  Google Scholar 

  15. Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature (London) 324: 163

    Article  CAS  Google Scholar 

  16. Chebab FF, Doherty M, Cai S, Kan YW, Cooper S, Rubin EM (1987) Detection of sickel cell anemia and thalassemia. Nature (London) 329: 293

    Article  Google Scholar 

  17. Orita M, Iwahara H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86: 2766

    Article  PubMed  CAS  Google Scholar 

  18. Landegren U, Kaiser R, Sanders J, Hood L (1988) A ligase-mediated gene detection technique. Science 241: 1077

    Article  PubMed  CAS  Google Scholar 

  19. Wu DY, Nozari G, Schold, Conner BJ, Wallace RB (1988) Direct analysis of single nucleotide variation in human DNA and RNA using in situ dot hybridizing synthetic oligonucleotide probes. Nucleic Acids Res 16: 8723

    Article  Google Scholar 

  20. Alves AM, Can FJ (1988) Dot-blot detection of point mutations with adjacently hybridizing synthetic oligonucleotide probes. Nucleic Acids Res 16: 8723

    Article  PubMed  CAS  Google Scholar 

  21. Eisenach KD, Cave MD, Bates JH, Crawford JT (1990) Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infectious Diseases 161: 977–981

    Article  CAS  Google Scholar 

  22. Walker GT, Little MC, Nadeau JG, Shank DD (1992) Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Nat Acad Sci USA, 89: 392–396

    Article  PubMed  CAS  Google Scholar 

  23. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Strand displacement amplification — an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 20: 1692–1696

    Article  Google Scholar 

  24. Backman KC, Wang C-NJ (1989) Method for detecting a target nucleic acid sequence. Eur Pat Appl, 0 320 308

    Google Scholar 

  25. Barany F (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci USA 88: 189–193

    Article  PubMed  CAS  Google Scholar 

  26. Barker DG, Johnson AL, & Johnson LH (1985) An improved assay for DNA ligase reveals temperature-sensitive activity in cdc9 mutants of Saccharomyces cerevisiae. Mol Gen Genet 200: 458–462

    Article  PubMed  CAS  Google Scholar 

  27. Nickerson DA, Kaiser R, Lappin S, Stewart J, Hood L, Landegren U (1990) Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc Natl Acad Sci USA 87: 8923–8927

    Article  PubMed  CAS  Google Scholar 

  28. Orgel LE (1989) Ligase based amplification method. World Intellectual Property Organization, WO 89 /09835

    Google Scholar 

  29. Richards RM, Jones T (1989) Method and reagents for detecting nucleic acid sequences. PCT Int Appl WO 89 /12696

    Google Scholar 

  30. Royer GP, Cruickshank KA, Morrison LE (1989) Template-directed photoligation. Eur Pat Appl 0 324 616

    Google Scholar 

  31. Shimer Jr. GH, Backman KC (1992) Ligase chain reaction, in methods in molecular biology volume; modern bacteriology methods. In: Howard JJ, Walker JM (eds) Humana Press, USA, in press

    Google Scholar 

  32. Wallace BR (1989) Method of amplifying and detecting nucleic acid sequences. Eur Pat Appl, 0 336 731

    Google Scholar 

  33. Wu DY, Wallace RB (1989) The ligation amplification reaction (LAR): Amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4: 560–569

    Google Scholar 

  34. Barry T, Gennon F (1991) Direct genomic DNA amplification from autoclaved infectious microorganisms using PCR technology. PCR Meth Appl 1: 75

    CAS  Google Scholar 

  35. Bej AK, Mahbubani MH, Miller R, DiCesare JL, Haff L, Atlas RM (1990) Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl Environ Microbiol 56: 307–314

    PubMed  CAS  Google Scholar 

  36. Bej AK, Mahbubani MH, DiCesare JL, Atlas RM (1991) Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Appl Environ Microbiol 57: 3529–3534

    PubMed  CAS  Google Scholar 

  37. Böddinghaus B, Wolters J, Heikens W, Böttger EC (1990) Phylogenetic analysis and identification of different serovars of Mycobacterium intracellulare at the molecular level. FEMS Microbiol Lett 70: 197–204

    Article  Google Scholar 

  38. Böttger EC (1990) Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett 65: 171–176

    Article  Google Scholar 

  39. Bollet C, Gevaudan MJ, de Lambarellie X, Zandotti C, de Micco P (1991) A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria. Nucleic Acids Res 19: 1955

    Article  PubMed  CAS  Google Scholar 

  40. Giovannoni SJ, De Long EF, Schmidt TM, Pace NR (1990) Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl Environ Microbiol 56: 2572–2575

    PubMed  CAS  Google Scholar 

  41. Hon H, Osawa S (1979) Evolutionary change in 55 rRNA secondary structure and a phylogenetic tree of 54 55 rRNA species. Proc Natl Acad Sci USA 76: 381–385

    Article  Google Scholar 

  42. Ibrahim A, Liesack W, Stackebrandt E (1992) Polymerase chain reaction — gene probe detection system exclusive to pathogenic strains of Yersinia enterocolitica. J Clin Microbiology 30: 1942–1947

    CAS  Google Scholar 

  43. Johnson JL (1985a) Determination of DNA base composition. Meth Microbiol 18:1–31 Johnson JL (1985b) DNA reassociation of RNA hybridization of bacterial nucleic acids. Meth Microbiol 18: 33–74

    Article  CAS  Google Scholar 

  44. Johnson JL (1991) Isolation and purification of nucleic acids. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics, John Wiley & Sons, Chichester, pp 1–20

    Google Scholar 

  45. Kirby KS (1964) Isolation and fractionation of nucleic acids. Progr Nucl Acid Res 3: 1–31

    Article  CAS  Google Scholar 

  46. Lane DJ (1991) 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics, Wiley & Sons, Chichester, pp 115–176

    Google Scholar 

  47. Liesack W, Stackebrandt E (1992) Occurence of novel types of bacteria as revealed by analysis of the genetic material isolated from an Australian terrestrial environment. J Bacteriol 174: 5072–5078

    PubMed  CAS  Google Scholar 

  48. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218

    Article  CAS  Google Scholar 

  49. Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Meth 7: 57–66

    Article  CAS  Google Scholar 

  50. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR (1986) Microbial ecology and evolution: A ribosomal RNA approach. Ann Rev Microbiol 40: 337–365

    Article  CAS  Google Scholar 

  51. Owen RJ, Pitcher D (1985) Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics, Academic Press, London, p 67–93

    Google Scholar 

  52. Paul JH, Cazares L, Thurmond J (1990) Amplification of the rbcL gene from dissolved and particulate DNA from aquatic environments. Appl Environ Microbiol 56: 1963–1966

    PubMed  CAS  Google Scholar 

  53. Pillai SD, Josephson KL, Bailey RL, Gerba CP, Pepper IL (1991) Rapid method for processing soil samples for polymerase chain reaction amplification of specific gene sequences. Appl Environ Microbiol 57: 2283–2286

    PubMed  CAS  Google Scholar 

  54. Sogin ML (1990) Amplification of ribosomal RNA genes for molecular evolution studies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols, Academic Press, San Diego, pp 307–314

    Google Scholar 

  55. Sommerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55: 548–554

    Google Scholar 

  56. Stackebrandt E, Charfreitag 0 (1990) Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces israelii-specific oligonucleotide probe. J Gen Microbiol 136: 37–43

    Article  PubMed  CAS  Google Scholar 

  57. Steffan RJ, Goksoyr J, Bej AK, Atlas RM (1988) Recovery of DNA from soils and sediments. Appl Environ Microbiol 54: 2908–2915

    PubMed  CAS  Google Scholar 

  58. Tsai Y-L, Olson BH (1992) Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl Environ Microbiol 58: 754–757

    PubMed  CAS  Google Scholar 

  59. Weisburg WG, Barns SM, Pelletier DA, Lane DA (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703

    PubMed  CAS  Google Scholar 

  60. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, Academic Press, San Diego, pp 315–322

    Google Scholar 

  61. Wisotzkey JD, Jurtshuk Jr P, Fox GE (1990) PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics. Curr Microbiol 21: 325–327

    Article  PubMed  CAS  Google Scholar 

  62. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74: 5088–5090

    Article  PubMed  CAS  Google Scholar 

  63. Woods S, Cole ST (1989) A rapid method for the detection of potentially viable Mycobacterium leprae in human biopsies: a novel application of PCR. FEMS Microbiology Letters 65: 305–310

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rüger, R. et al. (1992). Enhanced Signal Generation by Target Amplification. In: Kessler, C. (eds) Nonradioactive Labeling and Detection of Biomolecules. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00144-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00144-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00146-2

  • Online ISBN: 978-3-662-00144-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics