Skip to main content

Künstliche Intelligenz in der Medizin

Chancen und Anforderungen für einen erfolgreichen und nachhaltigen Einsatz im Gesundheitswesen

  • Chapter
  • First Online:
Health Data Management
  • 1210 Accesses

Zusammenfassung

Um aus großen Datenmengen Wissen mit einem echten Mehrwert zu generieren ist es notwendig aus der sich anbahnenden Big Data Situation in Krankenhäusern eine Smart Data Umgebung zu schaffen. Erst hierdurch werden Daten für innovative Algorithmen aus dem Bereich der Künstlichen Intelligenz (KI) verwertbar gemacht. Der Einsatz von KI-Methoden in der Medizin erfordert technische, organisatorische und medikolegale Aspekte. Das vorliegende Kapitel führt hierzu in den Begriff der Künstlichen Intelligenz (KI) ein, nennt hierzu beispielhafte Anwendungen in der Medizin und geht insbesondere auf technische Aspekte wie Datengenerierung, Datenanalyse und Regulatorik ein. Dies ermöglicht die Identifikation bekannter und wiederkehrender Herausforderungen sowie die Planung und Umsetzung von Lösungen in diesem noch jungen aber rasant wachsenden Bereich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.bfarm.de.

Literatur

  • Abràmoff, M. D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J. C., & Niemeijer, M. (2016). Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative Ophthalmology & Visual Science, 57(13), 5200–5206. https://doi.org/10.1167/iovs.16-19964

    Article  Google Scholar 

  • Arts, D. G., De Keizer, N. F., & Scheffer, G.-J. (2002). Defining and improving data quality in medical registries: A literature review, case study, and generic framework. Journal of the American Medical Informatics Association, 9(6), 600–611.

    Article  Google Scholar 

  • Becker, K., Lipprandt, M., Röhrig, R., & Neumuth, T. (2019). Digital health – Software as a medical device in focus of the medical device regulation (MDR). It – Information Technology, 61(5–6), 211–218. https://doi.org/10.1515/itit-2019-0026

    Article  Google Scholar 

  • Cukier, K. (2019). Ready for robots: How to think about the future of AI. Foreign Affairs, 98, 192.

    Google Scholar 

  • Dai, W., Yang, Q., Xue, G.-R., & Yu, Y. (2007). Boosting for transfer learning. In Z. Ghahramani (Hrsg.). ACM Press. https://doi.org/10.1145/1273496.1273521

  • Ethics guidelines for trustworthy AI|Shaping Europe’s digital future. (2019, April 8). https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai. Zugegriffen am 08.12.2023.

  • European MDR. (2021, July 26). Medical device regulation. https://www.medical-device-regulation.eu/download-mdr/. Zugegriffen am 08.12.2023.

  • FDA Review Report syngo.CT Extended Functionality. (2022). https://www.accessdata.fda.gov/cdrh_docs/pdf22/K221727.pdf. Zugegriffen am 08.12.2023.

  • FDA Review Report. 2022 DLIR. (o.J.). https://www.accessdata.fda.gov/cdrh_docs/pdf22/K220961.pdf. Zugegriffen am 21.02.2023.

  • Foersch, S., Glasner, C., Woerl, A.-C., Eckstein, M., Wagner, D.-C., Schulz, S., Kellers, F., Fernandez, A., Tserea, K., Kloth, M., Hartmann, A., Heintz, A., Weichert, W., Roth, W., Geppert, C., Kather, J. N., & Jesinghaus, M. (2023). Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer. Nature Medicine. https://doi.org/10.1038/s41591-022-02134-1

  • Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P., & Ng, A. Y. (2019). Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 25(1), 65.

    Article  Google Scholar 

  • Hegselmann, S., Greulich, L., Varghese, J., & Dugas, M. (2018) Reproducible Survival Prediction with SEER Cancer Data. Proceedings of Machine Learning Research, Palo Alto, California, 85, 49–66.

    Google Scholar 

  • Le Berre, C., Sandborn, W. J., Aridhi, S., Devignes, M.-D., Fournier, L., Smaïl-Tabbone, M., Danese, S., & Peyrin-Biroulet, L. (2020). Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology, 158(1), 76–94.e2. https://doi.org/10.1053/j.gastro.2019.08.058

    Article  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  • Lu, L., Zheng, Y., Carneiro, G., & Yang, L. (2017). Deep learning and convolutional neural networks for medical image computing. Advances in Computer Vision and Pattern Recognition.

    Google Scholar 

  • Mikołajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. 2018 International Interdisciplinary PhD Workshop (IIPhDW), 117–122. https://doi.org/10.1109/IIPHDW.2018.8388338

  • Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., & Liao, Q. (2017). Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing, 14(5), 503–519.

    Article  Google Scholar 

  • Strickland, E. (2019). IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care. IEEE Spectrum, 56(4), 24–31.

    Article  Google Scholar 

  • Torrey, L., & Shavlik, J. (2010). Transfer learning. In Handbook of research on machine learning applications and trends: Algorithms, methods, and techniques (S. 242–264). IGI Global.

    Chapter  Google Scholar 

  • Ulrich, H., Behrend, P., Wiedekopf, J., Drenkhahn, C., Kock-Schoppenhauer, A.-K., & Ingenerf, J. (2021). Hands on the medical informatics initiative core data set – Lessons learned from converting the MIMIC-IV. German Medical Data Sciences 2021: Digital Medicine: Recognize–Understand–Heal, IOSPress., 119–126.

    Google Scholar 

  • Varghese, J. (2020). Artificial intelligence in medicine: Chances and challenges for wide clinical adoption. Visceral Medicine, 1–7. https://doi.org/10.1159/000511930

  • Varghese, J., & Chapiro, J. (2023). ChatGPT: The transformative influence of generative AI on science and healthcare. Journal of Hepatology. https://doi.org/10.1016/j.jhep.2023.07.028

  • Varghese, J., Holz, C., Neuhaus, P., Bernardi, M., Boehm, A., Ganser, A., Gore, S., Heaney, M., Hochhaus, A., Hofmann, W.- K., Krug, U., Müller-Tidow, C., Smith, A., Weltermann, A., Witte, T., Hehlmann, R., & Dugas, M. (2016) Key Data Elements in Myeloid Leukemia. Studies in health technology and informatics, 228, 282–286.

    Google Scholar 

  • Varghese, J., Kleine, M., Gessner, S. I., Sandmann, S., & Dugas, M. (2018). Effects of computerized decision support system implementations on patient outcomes in inpatient care: A systematic review. Journal of the American Medical Informatics Association, 25(5), 593–602. https://doi.org/10.1093/jamia/ocx100

    Article  Google Scholar 

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Hrsg.), Advances in neural information processing systems (Bd. 30). Curran Associates, Inc.. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. Zugegriffen am 08.12.2023.

  • Wainer, J., & Cawley, G. (2018). Nested cross-validation when selecting classifiers is overzealous for most practical applications. ArXiv:1809.09446 [Cs, Stat]. http://arxiv.org/abs/1809.09446. Zugegriffen am 08.12.2023.

  • Weiskopf, N. G., & Weng, C. (2013). Methods and dimensions of electronic health record data quality assessment: Enabling reuse for clinical research. Journal of the American Medical Informatics Association, 20(1), 144–151. https://doi.org/10.1136/amiajnl-2011-000681

    Article  Google Scholar 

  • Yaeger, K. A., Martini, M., Yaniv, G., Oermann, E. K., & Costa, A. B. (2019). United States regulatory approval of medical devices and software applications enhanced by artificial intelligence. Health Policy and Technology, 8(2), 192–197. https://doi.org/10.1016/j.hlpt.2019.05.006

    Article  Google Scholar 

  • Zertifizierte KI. (2021, July 22). Zertifizierte KI. https://www.zertifizierte-ki.de/. Zugegriffen am 08.12.2023.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varghese, J. (2024). Künstliche Intelligenz in der Medizin. In: Henke, V., Hülsken, G., Schneider, H., Varghese, J. (eds) Health Data Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-43236-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-43236-2_50

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-43235-5

  • Online ISBN: 978-3-658-43236-2

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics