Skip to main content

Grundlagen zur automatisierten Baufortschrittsüberwachung mittels Deep Learning basierend auf Punktwolken und Bauinformationsmodellen

  • Chapter
  • First Online:
IoC - Internet of Construction

Zusammenfassung

In diesem Kapitel werden die theoretischen Grundlagen für die spätere Entwicklung und Umsetzung einer vollautomatischen, Deep Learning unterstützten Prozesskette beschrieben, die den Baufortschritt durch den Vergleich eines Bauinformationsmodells mit den Punktwolken der Baustelle ermitteln kann. Dazu werden digitale Baustellenabbildungen in Form von 3D-Punktwolken betrachtet und deren Eigenschaften beschrieben. Darüber hinaus werden die theoretischen Grundlagen zur Verarbeitung dieser Punktwolkenund deren Registrierung zum Soll-Ist-Vergleich erläutert. Weiterhin werden verschiedene Datenverarbeitungsmethoden diskutiert, die das Ziel haben, Bauelemente in den Punktwolken zu erkennen. Dabei werden sowohl numerische Methoden als auch Deep-Learning-Ansätze zur Datenanalyse und Klassifikation zusammengefasst und analysiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Kirner L, Lublasser E, Brell-Cokcan S (2021) Internet of Construction: Research Methods for Practical Relevance in Construction. In Technology|Architecture + Design: vol 5, pp 146–152. https://doi.org/10.1080/24751448.2021.1967053

  2. Braun A, Tuttas S, Borrmann A et al. (2020) Improving progress monitoring by fusing point clouds, semantic data and computer vision. Automation in Construction 116:103210. https://doi.org/10.1016/j.autcon.2020.103210

    Article  Google Scholar 

  3. Becker R, Falk V, Hoenen S et al. (2018) BIM – Towards the entire lifecycle. Int J SDP 13:84–95. https://doi.org/10.2495/SDP-V13-N1-84-95

    Article  Google Scholar 

  4. Boje C, Guerriero A, Kubicki S et al. (2020) Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction 114:1–16. https://doi.org/10.1016/j.autcon.2020.103179

    Article  Google Scholar 

  5. Bergs T, Gierlings S, Auerbach T et al. (2021) The Concept of Digital Twin and Digital Shadow in Manufacturing. Procedia CIRP 101:81–84. https://doi.org/10.1016/j.procir.2021.02.010

    Article  Google Scholar 

  6. Braun A (2020) Automated BIM-based construction progress monitoring by processing and matching semantic and geometric data, Technische Universität München

    Google Scholar 

  7. Borrmann A, König M, Koch C et al. (2018) Building Information Modeling: Why? What? How? In: Building Information Modeling, pp 1–24. https://doi.org/10.1007/978-3-319-92862-3_1

  8. Yang B, Dong Z, Liang F et al. (2016) Automatic registration of large-scale urban scene point clouds based on semantic feature points. ISPRS Journal of Photogrammetry and Remote Sensing 113:43–58. https://doi.org/10.1016/j.isprsjprs.2015.12.005

    Article  Google Scholar 

  9. Hesam Hamledari, Brenda McCabe, Shakiba Davari et al. (2017) Automated Schedule and Progress Updating of IFC-Based 4D BIMs. Journal of Computing in Civil Engineering.https://doi.org/10.1061/(ASCE)CP.1943-5487.0000660

  10. Han K, Golparvar-Fard M (2017) Crowdsourcing BIM-guided collection of construction material library from site photologs. Vis in Eng 5. https://doi.org/10.1186/s40327-017-0052-3

  11. Krämer M, Besenyői Z (2018) Towards Digitalization of Building Operations with BIM. IOP Conf Ser.: Mater Sci Eng 365:22067. https://doi.org/10.1088/1757-899X/365/2/022067

  12. Akanmu A, Anumba CJ (2015) Cyber-physical systems integration of building information models and the physical construction. Engineering, Construction and Architectural Management 22:516–535. https://doi.org/10.1108/ECAM-07-2014-0097

    Article  Google Scholar 

  13. Srewil Y, Scherer RJ (2013) Effective Construction Process Monitoring and Control through a Collaborative Cyber-Physical Approach. In: Camarinha-Matos LM, Scherer RJ (eds) Collaborative Systems for Reindustrialization, vol 408. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 172–179

    Google Scholar 

  14. Yuan X, Anumba CJ, Parfitt MK (2016) Cyber-physical systems for temporary structure monitoring. Automation in Construction 66:1–14. https://doi.org/10.1016/j.autcon.2016.02.005

    Article  Google Scholar 

  15. Braun A (2020) Automated BIM-based construction progress monitoring by processing and, Technische Universität München

    Google Scholar 

  16. Brilakis I, Haas C (eds) (2019) Infrastructure Computer Vision. Elsevier

    Google Scholar 

  17. Guo Y, Wang H, Hu Q et al. (2020) Deep Learning for 3D Point Clouds: A Survey. IEEE Trans Pattern Anal Mach Intell 43:4338–4364. https://doi.org/10.1109/TPAMI.2020.3005434

    Article  Google Scholar 

  18. Qi CR, Su H, Kaichun M et al. (2017) PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 77–85

    Google Scholar 

  19. Qi CR, Yi L, Su H et al. (2017) PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

    Google Scholar 

  20. Furlani KM, Pfeffer LE (2000) Automated Tracking of Structural Steel Members at the Construction Site. International Symposium on Automation and Robotics in Construction

    Google Scholar 

  21. Chin S, Yoon S, Choi C et al. (2008) RFID+4D CAD for Progress Management of Structural Steel Works in High-Rise Buildings. J Comput Civ Eng 22:74–89. https://doi.org/10.1061/(ASCE)0887-3801(2008)22:2(74)

    Article  Google Scholar 

  22. Son H, Kim C, Kwon Cho Y (2017) Automated Schedule Updates Using As-Built Data and a 4D Building Information Model. J Manage Eng 33. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000528

  23. Dong P, Chen Q (2018) LiDAR remote sensing and applications. Taylor & Francis, Boca Raton FL

    Google Scholar 

  24. Pučko Z, Šuman N, Rebolj D (2018) Automated continuous construction progress monitoring using multiple workplace real time 3D scans. Advanced Engineering Informatics 38:27–40. https://doi.org/10.1016/j.aei.2018.06.001

    Article  Google Scholar 

  25. Puri N, Turkan Y (2020) Bridge construction progress monitoring using lidar and 4D design models. Automation in Construction 109:1–15. https://doi.org/10.1016/j.autcon.2019.102961

    Article  Google Scholar 

  26. Golparvar-Fard M, Peña-Mora F, Savarese S (2011) Integrated Sequential As-Built and As-Planned Representation with D4AR Tools in Support of Decision-Making Tasks in the AEC/FM Industry. J Constr Eng Manage 137:1099–1116. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000371

    Article  Google Scholar 

  27. Omar T, Nehdi ML (2016) Data acquisition technologies for construction progress tracking. Automation in Construction 70:143–155. https://doi.org/10.1016/j.autcon.2016.06.016

    Article  Google Scholar 

  28. Boulch A, Le Saux B, Audebert N (2017) Unstructured Point Cloud Semantic Labeling Using Deep Segmentation Networks. The Eurographics Association

    Google Scholar 

  29. Cheng L, Chen S, Liu X et al. (2018) Registration of Laser Scanning Point Clouds: A Review. Sensors (Basel) 18. https://doi.org/10.3390/s18051641

  30. Paffenholz J-A (2013) Effiziente Geo-Referenzierung von 3D Punktwolken

    Google Scholar 

  31. Pan Y, Yang B, Liang F et al. (2018) Iterative Global Similarity Points : A robust coarse-to-fine integration solution for pairwise 3D point cloud registration

    Google Scholar 

  32. Huang R, Ye Z, Boerner R et al. (2019) Fast Pairwise Coarse Registration Between Point Clouds Of Construction Sites Using 2D Projection Based Correlation. Int Arch Photogramm Remote Sens Spatial Inf Sci XLII-2/W13:1015–1020. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1015-2019

  33. Kim C, Son H, Kim C (2013) Fully automated registration of 3D data to a 3D CAD model for project progress monitoring. Automation in Construction 35:587–594. https://doi.org/10.1016/j.autcon.2013.01.005

    Article  Google Scholar 

  34. Bosché F (2010) Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction. Advanced Engineering Informatics 24:107–118. https://doi.org/10.1016/j.aei.2009.08.006

    Article  Google Scholar 

  35. Díez Y, Roure F, Lladó X et al. (2015) A Qualitative Review on 3D Coarse Registration Methods. ACM Comput Surv 47:1–36. https://doi.org/10.1145/2692160

    Article  Google Scholar 

  36. Al-Nuaimi A (2016) Methods of Point Cloud Alignment with Applications to 3D Indoor Mapping and Localization, Technische Universität München

    Google Scholar 

  37. Yuan C, Yu X, Luo Z (2016) 3D point cloud matching based on principal component analysis and iterative closest point algorithm:404–408. https://doi.org/10.1109/ICALIP.2016.7846655

  38. Fischler MA, Bolles RC (1981) Random sample consensus. Commun ACM 24:381–395. https://doi.org/10.1145/358669.358692

    Article  Google Scholar 

  39. Schnabel R, Wahl R, Klein R (2007) Efficient RANSAC for Point-Cloud Shape Detection. Computer Graphics Forum 26:214–226. https://doi.org/10.1111/j.1467-8659.2007.01016.x

    Article  Google Scholar 

  40. Zeineldin RA, El-Fishawy NA (2017) A Survey of RANSAC enhancements for Plane Detection in 3D Point Clouds. Menoufia Journal of Electronic Engineering Research 26:519–537. https://doi.org/10.21608/mjeer.2017.63627

  41. Huber PJ, Ronchetti EM (2009) Robust statistics, 2. ed. Wiley series in probability and statistics. Wiley, Hoboken, N.J

    Google Scholar 

  42. Stewart CV (1999) Robust Parameter Estimation in Computer Vision. SIAM Rev 41:513–537. https://doi.org/10.1137/S0036144598345802

    Article  MathSciNet  Google Scholar 

  43. Zuliani M (2014) RANSAC for Dummies

    Google Scholar 

  44. Li F, Stoddart D, Hitchens C (2017) Method to automatically register scattered point clouds based on principal pose estimation. Opt Eng 56:1–11. https://doi.org/10.1117/1.OE.56.4.044107

    Article  Google Scholar 

  45. Cheng L, Tong L, Li M et al. (2013) Semi-Automatic Registration of Airborne and Terrestrial Laser Scanning Data Using Building Corner Matching with Boundaries as Reliability Check. Remote Sensing 5:6260–6283. https://doi.org/10.3390/rs5126260

    Article  Google Scholar 

  46. Zhang K, Yan J, Chen S-C (2006) Automatic Construction of Building Footprints From Airborne LIDAR Data. IEEE Trans Geosci Remote Sensing 44:2523–2533. https://doi.org/10.1109/TGRS.2006.874137

    Article  Google Scholar 

  47. Rusu RB, Blodow N, Beetz M (2009) Fast Point Feature Histograms (FPFH) for 3D registration:3212–3217. https://doi.org/10.1109/ROBOT.2009.5152473

  48. Johnson AE, Hebert M (1999) Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans Pattern Anal Machine Intell 21:433–449. https://doi.org/10.1109/34.765655

    Article  Google Scholar 

  49. Barnea S, Filin Sagi (2007) Registration of Terrestrial Laser Scans Via Visual Image Features:32–37

    Google Scholar 

  50. Chen H, Bhanu B (2004) 3D free-form object recognition in range images using local surface patches 3:136–139. https://doi.org/10.1109/ICPR.2004.1334487

  51. Zhong Y (2009) Intrinsic shape signatures: A shape descriptor for 3D object recognition:689–696. https://doi.org/10.1109/ICCVW.2009.5457637

  52. Mian A, Bennamoun M, Owens R (2010) On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes. Int J Comput Vis 89:348–361. https://doi.org/10.1007/s11263-009-0296-z

    Article  Google Scholar 

  53. Sun J, Ovsjanikov M, Guibas L (2009) A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. Computer Graphics Forum 28:1383–1392. https://doi.org/10.1111/j.1467-8659.2009.01515.x

    Article  Google Scholar 

  54. Unnikrishnan R, Hebert M (2008) Multi-scale interest regions from unorganized point clouds:1–8. https://doi.org/10.1109/CVPRW.2008.4563030

  55. Zaharescu A, Boyer E, Varanasi K et al. (2009) Surface feature detection and description with applications to mesh matching

    Google Scholar 

  56. Sipiran I, Bustos B (2011) Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis Comput 27:963–976. https://doi.org/10.1007/s00371-011-0610-y

    Article  Google Scholar 

  57. Lowe DG (2004) Distinctive Image Features from Scale-Invariant Keypoints. Int J Comput Vis 60:91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  58. Aiger D, Mitra NJ, Cohen-Or D (2008) 4-points congruent sets for robust pairwise surface registration. ACM Trans Graph 27:1–10. https://doi.org/10.1145/1360612.1360684

    Article  Google Scholar 

  59. Corsini M, Dellepiane M, Ganovelli F et al. (2013) Fully Automatic Registration of Image Sets on Approximate Geometry. Int J Comput Vis 102:91–111. https://doi.org/10.1007/s11263-012-0552-5

    Article  Google Scholar 

  60. Theiler PW, Wegner JD, Schindler K (2014) Keypoint-based 4-Points Congruent Sets – Automated marker-less registration of laser scans. ISPRS Journal of Photogrammetry and Remote Sensing 96:149–163. https://doi.org/10.1016/j.isprsjprs.2014.06.015

    Article  Google Scholar 

  61. Mellado N, Aiger D, Mitra NJ (2014) Super 4PCS Fast Global Pointcloud Registration via Smart Indexing. Computer Graphics Forum 33:205–215. https://doi.org/10.1111/cgf.12446

    Article  Google Scholar 

  62. Fan Y, Wang M, Geng N et al. (2018) A self-adaptive segmentation method for a point cloud. Vis Comput 34:659–673. https://doi.org/10.1007/s00371-017-1405-6

    Article  Google Scholar 

  63. Habib A, Ghanma M, Morgan M et al. (2005) Photogrammetric and Lidar Data Registration Using Linear Features. photogramm eng remote sensing 71:699–707. https://doi.org/10.14358/pers.71.6.699

  64. Nagashima S, Aoki T, Higuchi T et al. (2006) A Subpixel Image Matching Technique Using Phase-Only Correlation:701–704. https://doi.org/10.1109/ISPACS.2006.364751

  65. Lazaridis G, Petrou M (2006) Image registration using the Walsh transform. IEEE Trans Image Process 15:2343–2357. https://doi.org/10.1109/tip.2006.877346.

    Article  Google Scholar 

  66. Horn B (1984) Extended Gaussian images. Proc IEEE 72:1671–1686. https://doi.org/10.1109/PROC.1984.13073

  67. Kang SB, Horn BKP (2014) Extended Gaussian Image (EGI):420–424. https://doi.org/10.1007/978-3-030-63416-2_651

  68. Makadia A, Patterson AI, Daniilidis K (2006) Fully Automatic Registration of 3D Point Clouds. Fully Automatic Registration of 3D Point Clouds

    Google Scholar 

  69. Sanchez J, Denis F, Checchin P et al. (2017) Global Registration of 3D LiDAR Point Clouds Based on Scene Features: Application to Structured Environments. Remote Sensing 9:1014. https://doi.org/10.3390/rs9101014

    Article  Google Scholar 

  70. Bosché F (2012) Plane-based registration of construction laser scans with 3D/4D building models. Advanced Engineering Informatics 26:90–102. https://doi.org/10.1016/j.aei.2011.08.009

    Article  Google Scholar 

  71. He Y, Liang B, Yang J et al. (2017) An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features. Sensors (Basel) 17. https://doi.org/10.3390/s17081862.

  72. Turkan Y, Bosche F, Haas CT et al. (2012) Automated progress tracking using 4D schedule and 3D sensing technologies. Automation in Construction 22:414–421. https://doi.org/10.1016/j.autcon.2011.10.003

    Article  Google Scholar 

  73. Park S-Y, Subbarao M (2003) An accurate and fast point-to-plane registration technique. Pattern Recognition Letters 24:2967–2976. https://doi.org/10.1016/S0167-8655(03)00157-0

    Article  Google Scholar 

  74. Yamany SM, Farag AA (2002) Surface signatures: an orientation independent free-form surface representation scheme for the purpose of objects registration and matching. IEEE Trans Pattern Anal Machine Intell 24:1105–1120. https://doi.org/10.1109/TPAMI.2002.1023806

    Article  Google Scholar 

  75. Sharp GC, Lee SW, Wehe DK (2002) ICP registration using invariant features. IEEE Trans Pattern Anal Machine Intell 24:90–102. https://doi.org/10.1109/34.982886

    Article  Google Scholar 

  76. Jiang J, Cheng J, Chen X (2009) Registration for 3-D point cloud using angular-invariant feature. Neurocomputing 72:3839–3844. https://doi.org/10.1016/j.neucom.2009.05.013

    Article  Google Scholar 

  77. Yang J, Cao Z, Zhang Q (2016) A fast and robust local descriptor for 3D point cloud registration. Information Sciences 346-347:163–179. https://doi.org/10.1016/j.ins.2016.01.095

    Article  Google Scholar 

  78. Golyanik V, Ali SA, Stricker D (2016) Gravitational Approach for Point Set Registration:5802–5810. https://doi.org/10.1109/CVPR.2016.625

  79. Liu Y, Kong D, Zhao D et al. (2018) A Point Cloud Registration Algorithm Based on Feature Extraction and Matching. Mathematical Problems in Engineering 2018:1–9. https://doi.org/10.1155/2018/7352691

    Article  Google Scholar 

  80. Huhnt W, Richter S, Enge F (2008) Modification management for construction processes. Tinshhua Sci Technol 13:185–191. https://doi.org/10.1016/S1007-0214(08)70147-0

    Article  Google Scholar 

  81. Kim C, Son H, Kim C (2013) Automated construction progress measurement using a 4D building information model and 3D data. Automation in Construction 31:75–82. https://doi.org/10.1016/j.autcon.2012.11.041

    Article  Google Scholar 

  82. Maalek R, Lichti DD, Ruwanpura JY (2019) Automatic Recognition of Common Structural Elements from Point Clouds for Automated Progress Monitoring and Dimensional Quality Control in Reinforced Concrete Construction. Remote Sensing 11:1102. https://doi.org/10.3390/rs11091102

    Article  Google Scholar 

  83. Bosche F, Haas CT, Akinci B (2009) Automated Recognition of 3D CAD Objects in Site Laser Scans for Project 3D Status Visualization and Performance Control. J Comput Civ Eng 23:311–318. https://doi.org/10.1061/(ASCE)0887-3801(2009)23:6(311)

    Article  Google Scholar 

  84. Bosché F, Guillemet A, Turkan Y et al. (2014) Tracking the Built Status of MEP Works: Assessing the Value of a Scan-vs-BIM System. J Comput Civ Eng 28. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000343

  85. Maalek R, Lichti DD, Walker R et al. (2019) Extraction of pipes and flanges from point clouds for automated verification of pre-fabricated modules in oil and gas refinery projects. Automation in Construction 103:150–167. https://doi.org/10.1016/j.autcon.2019.03.013

    Article  Google Scholar 

  86. Turkan Y, Bosché F, T. Haas C et al. (2014) Tracking of secondary and temporary objects in structural concrete work. Construction Innovation 14:145–167. https://doi.org/10.1108/CI-12-2012-0063

  87. Zhang C, Arditi D (2013) Automated progress control using laser scanning technology. Automation in Construction 36:108–116. https://doi.org/10.1016/j.autcon.2013.08.012

    Article  Google Scholar 

  88. Son H, Kim C (2010) 3D structural component recognition and modeling method using color and 3D data for construction progress monitoring. Automation in Construction 19:844–854. https://doi.org/10.1016/j.autcon.2010.03.003

    Article  Google Scholar 

  89. Tuttas S, Braun A, Borrmann A et al. (2015) Validation of BIM components by photogrammetric point clouds for construction site monitoring. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. II-3/W4:231–237. https://doi.org/10.5194/isprsannals-II-3-W4-231-2015

  90. Braun A, Tuttas S, Borrmann A et al. (2015) A concept for automated construction progress monitoring using BIM-based geometric constraints and photogrammetric point clouds. Journal of Information Technology in Construction:68–79

    Google Scholar 

  91. El-Omari S, Moselhi O (2008) Integrating 3D laser scanning and photogrammetry for progress measurement of construction work. Automation in Construction 18:1–9. https://doi.org/10.1016/j.autcon.2008.05.006

    Article  Google Scholar 

  92. Behnam A, Wickramasinghe DC, Ghaffar MAA et al. (2016) Automated progress monitoring system for linear infrastructure projects using satellite remote sensing. Automation in Construction 68:114–127. https://doi.org/10.1016/j.autcon.2016.05.002

    Article  Google Scholar 

  93. Bassier M, Vergauwen M, Poux F (2020) Point Cloud vs. Mesh Features for Building Interior Classification. Remote Sensing 12:2224. https://doi.org/10.3390/rs12142224

  94. Lalonde J-F, Vandapel N, Huber DF et al. (2006) Natural terrain classification using three-dimensional ladar data for ground robot mobility. J Field Robotics 23:839–861. https://doi.org/10.1002/rob.20134

    Article  Google Scholar 

  95. Nguyen DV, Kuhnert L, Schlemper J et al. (2010) Terrain classification based on structure for autonomous navigation in complex environments:163–168. https://doi.org/10.1109/ICCE.2010.5670703

  96. Chai J, Chi H-L, Wang X et al. (2016) Automatic as-built modeling for concurrent progress tracking of plant construction based on laser scanning. Concurrent Engineering 24:369–380. https://doi.org/10.1177/1063293X16670449

    Article  Google Scholar 

  97. Maalek R, Lichti DD, Ruwanpura JY (2018) Robust Segmentation of Planar and Linear Features of Terrestrial Laser Scanner Point Clouds Acquired from Construction Sites. Sensors (Basel) 18. https://doi.org/10.3390/s18030819

  98. Son H, Kim C (2017) Semantic as-built 3D modeling of structural elements of buildings based on local concavity and convexity. Advanced Engineering Informatics 34:114–124. https://doi.org/10.1016/j.aei.2017.10.001

    Article  Google Scholar 

  99. Yulan G, Bennamoun M, Sohel F et al. (2014) 3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey. IEEE Trans Pattern Anal Machine Intell 36:2270–2287. https://doi.org/10.1109/TPAMI.2014.2316828

    Article  Google Scholar 

  100. Weinmann M, Jutzi B, Hinz S et al. (2015) Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS Journal of Photogrammetry and Remote Sensing 105:286–304. https://doi.org/10.1016/j.isprsjprs.2015.01.016

    Article  Google Scholar 

  101. Blomley R, Weinmann M, Leitloff J et al. (2014) Shape distribution features for point cloud analysis – a geometric histogram approach on multiple scales. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. II-3:9–16. https://doi.org/10.5194/isprsannals-II-3-9-2014

  102. Lin C-H, Chen J-Y, Su P-L et al. (2014) Eigen-feature analysis of weighted covariance matrices for LiDAR point cloud classification. ISPRS Journal of Photogrammetry and Remote Sensing 94:70–79. https://doi.org/10.1016/j.isprsjprs.2014.04.016

    Article  Google Scholar 

  103. Anand A, Koppula HS, Joachims T et al. (2011) Contextually Guided Semantic Labeling and Search for 3D Point Clouds. https://doi.org/10.48550/arXiv.1111.5358

  104. Dong W, Lan J, Liang S et al. (2017) Selection of LiDAR geometric features with adaptive neighborhood size for urban land cover classification. International Journal of Applied Earth Observation and Geoinformation 60:99–110. https://doi.org/10.1016/j.jag.2017.04.003

    Article  Google Scholar 

  105. Guo R, Hoiem D (2015) Labeling Complete Surfaces in Scene Understanding. Int J Comput Vis 112:172–187. https://doi.org/10.1007/s11263-014-0776-7

    Article  MathSciNet  Google Scholar 

  106. Husain F, Dellen L, Torras C (2014) Recognizing Point Clouds Using Conditional Random Fields:4257–4262. https://doi.org/10.1109/ICPR.2014.730

  107. Niemeyer J, Rottensteiner F, Soergel U (2012) CONDITIONAL RANDOM FIELDS FOR LIDAR POINT CLOUD CLASSIFICATION IN COMPLEX URBAN AREAS. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. I-3:263–268. https://doi.org/10.5194/isprsannals-I-3-263-2012

  108. Xiong X, Adan A, Akinci B et al. (2013) Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction 31:325–337. https://doi.org/10.1016/j.autcon.2012.10.006

    Article  Google Scholar 

  109. Arbeiter G, Fuchs S, Bormann R et al. (2012) Evaluation of 3D feature descriptors for classification of surface geometries in point clouds:1644–1650. https://doi.org/10.1109/IROS.2012.6385552

  110. Tombari F, Salti S, Di Stefano L (2010) Unique Signatures of Histograms for Local Surface Description:356–369. https://doi.org/10.1007/978-3-642-15558-1_26

  111. Guo Y, Sohel F, Bennamoun M et al. (2013) Rotational Projection Statistics for 3D Local Surface Description and Object Recognition. https://doi.org/10.48550/arXiv.1304.3192

  112. Khan SH, Bennamoun M, Sohel F et al. (2014) Geometry Driven Semantic Labeling of Indoor Scenes 8689:679–694. https://doi.org/10.1007/978-3-319-10590-1_44

  113. Poux F, Billen R (2019) Voxel-based 3D Point Cloud Semantic Segmentation: Unsupervised Geometric and Relationship Featuring vs Deep Learning Methods. IJGI 8:213. https://doi.org/10.3390/ijgi8050213

    Article  Google Scholar 

  114. Nguyen A, Le B (2013) 3D point cloud segmentation: A survey:225–230. https://doi.org/10.1109/RAM.2013.6758588

  115. Xiang B, Yao J, Lu X et al. (2018) Segmentation-based classification for 3D point clouds in the road environment. International Journal of Remote Sensing 39:6182–6212. https://doi.org/10.1080/01431161.2018.1455235

    Article  Google Scholar 

  116. Lin Y, Wang C, Cheng J et al. (2015) Line segment extraction for large scale unorganized point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 102:172–183. https://doi.org/10.1016/j.isprsjprs.2014.12.027

    Article  Google Scholar 

  117. Vosselman G, Coenen M, Rottensteiner F (2017) Contextual segment-based classification of airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 128:354–371. https://doi.org/10.1016/j.isprsjprs.2017.03.010

    Article  Google Scholar 

  118. Grilli E, Menna F, Remondino F (2017) A REVIEW OF POINT CLOUDS SEGMENTATION AND CLASSIFICATION ALGORITHMS. Int Arch Photogramm Remote Sens Spatial Inf Sci XLII-2/W3:339–344. https://doi.org/10.5194/isprs-archives-XLII-2-W3-339-2017

  119. Weinmann M, Weinmann M, Mallet C et al. (2017) A Classification-Segmentation Framework for the Detection of Individual Trees in Dense MMS Point Cloud Data Acquired in Urban Areas. Remote Sensing 9:277. https://doi.org/10.3390/rs9030277

    Article  Google Scholar 

  120. Shi W, Ahmed W, Li N et al. (2019) Semantic Geometric Modelling of Unstructured Indoor Point Cloud. IJGI 8:9. https://doi.org/10.3390/ijgi8010009

    Article  Google Scholar 

  121. Ochmann S, Vock R, Klein R (2019) Automatic reconstruction of fully volumetric 3D building models from point clouds. https://doi.org/10.48550/arXiv.1907.00631

  122. Hong S, Jung J, Kim S et al. (2015) Semi-automated approach to indoor mapping for 3D as-built building information modeling. Computers, Environment and Urban Systems 51:34–46. https://doi.org/10.1016/j.compenvurbsys.2015.01.005

    Article  Google Scholar 

  123. Pu S, Vosselman G (2009) Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing 64:575–584. https://doi.org/10.1016/j.isprsjprs.2009.04.001

    Article  Google Scholar 

  124. Li L, Su F, Yang F et al. (2018) Reconstruction of Three-Dimensional (3D) Indoor Interiors with Multiple Stories via Comprehensive Segmentation. Remote Sensing 10:1281. https://doi.org/10.3390/rs10081281

    Article  Google Scholar 

  125. Díaz-Vilariño L, Conde B, Lagüela S et al. (2015) Automatic Detection and Segmentation of Columns in As-Built Buildings from Point Clouds. Remote Sensing 7:15651–15667. https://doi.org/10.3390/rs71115651

    Article  Google Scholar 

  126. Steinwart I, Christmann A (2008) Support Vector Machines. https://doi.org/10.1007/978-0-387-77242-4

    Article  Google Scholar 

  127. Himmelsbach M, Luettel T, Wuensche H-J (2009) Real-time object classification in 3D point clouds using point feature histograms:994–1000. https://doi.org/10.1109/IROS.2009.5354493

  128. Gordon C (2003) Combining Reality Capture Technologies for Construction Defect Detection: A Case Study

    Google Scholar 

  129. Arman F, Aggarwal JK (1993) Model-based object recognition in dense-range images – a review. ACM Comput Surv 25:5–43. https://doi.org/10.1145/151254.151255

    Article  Google Scholar 

  130. Wu I-C, Borrmann A, Beißert U et al. (2010) Bridge construction schedule generation with pattern-based construction methods and constraint-based simulation. Advanced Engineering Informatics 24:379–388. https://doi.org/10.1016/j.aei.2010.07.002

    Article  Google Scholar 

  131. Han KK, Golparvar-Fard M (2015) Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs. Automation in Construction 53:44–57. https://doi.org/10.1016/j.autcon.2015.02.007

    Article  Google Scholar 

  132. Han KK, Cline D, Golparvar-Fard M (2015) Formalized knowledge of construction sequencing for visual monitoring of work-in-progress via incomplete point clouds and low-LoD 4D BIMs. Advanced Engineering Informatics 29:889–901. https://doi.org/10.1016/j.aei.2015.10.006

    Article  Google Scholar 

  133. Golparvar, Fard, Mani, Feniosky P-M (2007) Application of Visualization Techniques for Construction Progress Monitoring:216–223. https://doi.org/10.1061/40937(261)27

  134. Tang P, Huber D, Akinci B et al. (2010) Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Automation in Construction 19:829–843. https://doi.org/10.1016/j.autcon.2010.06.007

    Article  Google Scholar 

  135. Ma L, Sacks R, Kattel U et al. (2018) 3D Object Classification Using Geometric Features and Pairwise Relationships. Computer-Aided Civil and Infrastructure Engineering 33:152–164. https://doi.org/10.1111/mice.12336

    Article  Google Scholar 

  136. Macher H, Landes T, Grussenmeyer P (2017) From Point Clouds to Building Information Models: 3D Semi-Automatic Reconstruction of Indoors of Existing Buildings. Applied Sciences 7:1030. https://doi.org/10.3390/app7101030

    Article  Google Scholar 

  137. Dargan S, Kumar M, Ayyagari MR et al. (2020) A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning. Arch Computat Methods Eng 27:1071–1092. https://doi.org/10.1007/s11831-019-09344-w

    Article  MathSciNet  Google Scholar 

  138. Ahmed E, Saint A, Shabayek AER et al. (2018) A survey on Deep Learning Advances on Different 3D Data Representations. https://doi.org/10.48550/arXiv.1808.01462

  139. Wu Z, Song S, Khosla A et al. (2015) 3D ShapeNets: A Deep Representation for Volumetric Shapes. https://doi.org/10.48550/arXiv.1406.5670

  140. Uy MA, Pham Q-H, Hua B-S et al. (2019) Revisiting Point Cloud Classification: A New Benchmark Dataset and Classification Model on Real-World Data. https://doi.org/10.48550/arXiv.1908.04616

  141. Chang AX, Funkhouser T, Guibas L et al. (2015) ShapeNet: An Information-Rich 3D Model Repository. https://doi.org/10.48550/arXiv.1512.03012

  142. Mo K, Zhu S, Chang AX et al. (2019) PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR):909–918. https://doi.org/10.1109/CVPR.2019.00100

  143. Armeni I, Sener O, Zamir AR et al. (2016) 3D Semantic Parsing of Large-Scale Indoor Spaces. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR):1534–1543. https://doi.org/10.1109/CVPR.2016.170

  144. Dai A, Chang AX, Savva M et al. (2017) ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR):2432–2443. https://doi.org/10.1109/CVPR.2017.261

  145. Hackel T, Savinov N, Ladicky L et al. (2017) Semantic3D.net: A new Large-scale Point Cloud Classification Benchmark. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1704.03847

  146. Song X, Wang P, Zhou D et al. (2019) ApolloCar3D: A Large 3D Car Instance Understanding Benchmark for Autonomous Driving. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1811.12222

  147. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition:3354–3361. https://doi.org/10.1109/CVPR.2012.6248074

  148. Zhou J, Huang Y, Yu B (2015) Mapping Vegetation-Covered Urban Surfaces Using Seeded Region Growing in Visible-NIR Air Photos. IEEE J Sel Top Appl Earth Observations Remote Sensing 8:2212–2221. https://doi.org/10.1109/JSTARS.2014.2362308

    Article  Google Scholar 

  149. Han X-F, Laga H, Bennamoun M (2021) Image-Based 3D Object Reconstruction: State-of-the-Art and Trends in the Deep Learning Era. IEEE Trans Pattern Anal Machine Intell 43:1578–1604. https://doi.org/10.1109/TPAMI.2019.2954885

    Article  Google Scholar 

  150. Elbaz G, Avraham T, Fischer A (2017) 3D Point Cloud Registration for Localization Using a Deep Neural Network Auto-Encoder. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR):2472–2481. https://doi.org/10.1109/CVPR.2017.265

  151. Zeng A, Yu K-T, Song S et al. (2017) Multi-view self-supervised deep learning for 6D pose estimation in the Amazon Picking Challenge. Computer Vision and Pattern Recognition:1386–1383. https://doi.org/10.1109/ICRA.2017.7989165

  152. Ioannidou A, Chatzilari E, Nikolopoulos S et al. (2018) Deep Learning Advances in Computer Vision with 3D Data. ACM Comput Surv 50:1–38. https://doi.org/10.1145/3042064

    Article  Google Scholar 

  153. Rahman MM, Tan Y, Xue J et al. (2019) Recent Advances in 3D Object Detection in the Era of Deep Neural Networks: A Survey. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2019.2955239

    Article  Google Scholar 

  154. Xie Y, Tian J, Zhu XX (2020) Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geosci Remote Sens Mag 8:38–59. https://doi.org/10.1109/MGRS.2019.2937630

    Article  Google Scholar 

  155. Han KK, Golparvar-Fard M (2017) Potential of big visual data and building information modeling for construction performance analytics: An exploratory study. Automation in Construction 73:184–198. https://doi.org/10.1016/j.autcon.2016.11.004

    Article  Google Scholar 

  156. Braun A, Borrmann A (2019) Combining inverse photogrammetry and BIM for automated labeling of construction site images for machine learning. Automation in Construction 106:102879. https://doi.org/10.1016/j.autcon.2019.102879

    Article  Google Scholar 

  157. Wenkel S (2021) List of Open-Source Annotation Tools for Machine Learning Research

    Google Scholar 

  158. Pang G, Neumann U (2016) 3D point cloud object detection with multi-view convolutional neural network. 2016 23rd International Conference on Pattern Recognition:585–590. https://doi.org/10.1109/ICPR.2016.7899697

  159. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Machine Intell 39:2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  160. Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1505.04597

  161. He K, Gkioxari G, Dollar P et al. (2017) Mask R-CNN. 2017 IEEE International Conference on Computer Vision:2980–2988. https://doi.org/10.1109/ICCV.2017.322

  162. Lawin FJ, Danelljan M, Tosteberg P et al. (2017) Deep Projective 3D Semantic Segmentation. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1705.03428

  163. Chen X, Ma H, Wan J et al. (2017) Multi-view 3D Object Detection Network for Autonomous Driving. 2017 IEEE Conference on Computer Vision and Pattern Recognition:6526–6534. https://doi.org/10.1109/CVPR.2017.691

  164. Shi S, Wang Z, Shi J et al. (2020) From Points to Parts: 3D Object Detection From Point Cloud With Part-Aware and Part-Aggregation Network. IEEE Trans Pattern Anal Machine Intell 43:2647–2664. https://doi.org/10.1109/TPAMI.2020.2977026

    Article  MathSciNet  Google Scholar 

  165. Soilán M, Lindenbergh R, Riveiro B et al. (2019) POINTNET FOR THE AUTOMATIC CLASSIFICATION OF AERIAL POINT CLOUDS. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-2/W5:445–452. https://doi.org/10.5194/isprs-annals-IV-2-W5-445-2019

  166. Choy CB, Xu D, Gwak J et al. (2016) 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1604.00449

  167. Maturana D, Scherer S (2015) VoxNet: A 3D Convolutional Neural Network for real-time object recognition. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems:922–928. https://doi.org/10.1109/IROS.2015.7353481

  168. Qi CR, Su H, NieBner M et al. (2016) Volumetric and Multi-view CNNs for Object Classification on 3D Data. 2016 IEEE Conference on Computer Vision and Pattern Recognition:5648–5656. https://doi.org/10.1109/CVPR.2016.609

  169. Riegler G, Ulusoy AO, Geiger A (2017) OctNet: Learning Deep 3D Representations at High Resolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition:6620–6629. https://doi.org/10.1109/CVPR.2017.701

  170. Xu Y (2019) Reconstruction of building objects from point clouds of built environment and construction sites, Technische Universität München

    Google Scholar 

  171. Çiçek Ö, Abdulkadir A, Lienkamp SS et al. (2016) 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1606.06650

  172. Liu Z, Tang H, Lin Y et al. (2019) Point-Voxel CNN for Efficient 3D Deep Learning. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1907.03739

  173. Engelcke M, Rao D, Wang DZ et al. (2017) Vote3Deep: Fast object detection in 3D point clouds using efficient convolutional neural networks. 2017 IEEE International Conference on Robotics and Automation:1355–1361. https://doi.org/10.1109/ICRA.2017.7989161

  174. Tatarchenko M, Dosovitskiy A, Brox T (2017) Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1703.09438

  175. Klokov R, Lempitsky V (2017) Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models. 2017 IEEE International Conference on Computer Vision:863–872. https://doi.org/10.1109/ICCV.2017.99

  176. Hua B-S, Tran M-K, Yeung S-K (2018) Pointwise Convolutional Neural Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition:984–993. https://doi.org/10.1109/CVPR.2018.00109

  177. Wang Y, Sun Y, Liu Z et al. (2018) Dynamic Graph CNN for Learning on Point Clouds. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1801.07829

  178. Park J, Cho YK (2020) Point Cloud Information Modeling: Deep Learning–Based Automated Information Modeling Framework for Point Cloud Data. J Constr Eng Manage 148. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002227

  179. Varney N, Asari VK, Graehling Q (2020) DALES: A Large-scale Aerial LiDAR Data Set for Semantic Segmentation. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.2004.11985

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Luca Fahrendholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fahrendholz, J.L., Brell-Cokcan, S. (2024). Grundlagen zur automatisierten Baufortschrittsüberwachung mittels Deep Learning basierend auf Punktwolken und Bauinformationsmodellen. In: Brell-Cokcan, S., Schmitt, R.H. (eds) IoC - Internet of Construction . Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-42544-9_21

Download citation

Publish with us

Policies and ethics