Skip to main content

Markov Models of Landscape Dynamics

  • Chapter
  • First Online:
Modelling Landscape Dynamics

Abstract

Markov matrices of landscape change are efficient and reliable for stochastic modelling and forecasting landscape dynamics. After a detailed presentation of how to build them and how to handle them for deriving predictions, it is shown how it is possible to derive the equilibrium allocation from the limiting matrix on the basis of the Perron-Frobenius theorem and how to evaluate epistemologically the predictions that can be derived from such models (i.e. by focusing on issues such as the presence of absorbing states, the stationarity/non-stationarity of transition probabilities, ergodicity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaviksoo, K. (1993). Simulating vegetation dynamics and land use in a mire landscape using a Markov model. Landscape and Urban Planning, 31, 129–142.

    Article  Google Scholar 

  • Adhikari, S., & Southworth, J. (2012). Simulating forest cover changes of Bannerghatta national park based on a CA-Markov model: A remote sensing approach. Remote Sensing, 4(10), 3215–3243.

    Article  Google Scholar 

  • Austin, M. B. (1980). An exploratory analysis of grassland dynamics An example of a lawn succession. Vegetatio, 43, 87–94.

    Article  Google Scholar 

  • Baker, W. L. (1989). A review of models of landscape change. Landscape Ecology, 2(2), 111–133.

    Article  Google Scholar 

  • Brauer, A. (1962).On the theorems of Perron and Frobenius on non-negative matrices. In S. Gilbag et al. (eds.). Studies in mathematical analysis and related topics. (pp. 48–55). Stanford University Press.

    Google Scholar 

  • Cooke, D. (1981). A Markov chain model of plant succession. In R. W. Hiorns & D. Cooke (Eds.), The mathematical theory of the dynamics of biological populations (pp. 231–247). Academic.

    Google Scholar 

  • Debussche, M., Godron, M., Lepart, J., & Romane, F. (1977). An account of the use of a transition matrix. Agroecosystems, 3, 81–92.

    Google Scholar 

  • Dunn, C. P., Sharpe, D. M., Guntenspergen, G. R., Stearns, F., & Yang, Z. (1990). Methods for analyzing temporal changes in landscape pattern. In M. G. Turner & R. H. Gardner (Eds.), Quantitative methods in landscape ecology (pp. 173–198). Springer.

    Google Scholar 

  • Fu, F., Deng, S., Wu, D., Liu, W., & Bai, Z. (2022). Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustainable Cities and Society, 80, 103760.

    Article  Google Scholar 

  • Guan, D., Gao, W., Watari, K., & Fukahori, H. (2008). Land use change of Kitakyushu based on landscape ecology and Markov model. Journal of Geographical Sciences, 18, 455–468.

    Article  Google Scholar 

  • Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222(20–22), 3761–3772.

    Article  Google Scholar 

  • Hobbs, R. J., & Legg, C. J. (1983). Markov models and initial floristic composition in heathland vegetation dynamics. Vegetatio, 56, 31–43.

    Article  Google Scholar 

  • Kac, M., & Ulam, S. M. (1992). Mathematics and logic. Dover.

    Google Scholar 

  • Kumar, S., Radhakrishnan, N., & Mathew, S. (2014). Land use change modelling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk, 5(2), 145–156.

    Article  Google Scholar 

  • Larson, J. S., Mueller, A. J., & McConnell, W. P. (1980). A model of natural and man- induced changes in open freshwater wetlands on the Massachussetts coastal plain. Journal of Applied Ecology, 17, 667–673.

    Article  Google Scholar 

  • Legg, C. J. (1980). A Markovian approach to the study of heath vegetation dynamics. Bulletin of Ecology, 11, 393–404.

    Google Scholar 

  • Marsden, M. A. (1983). Modeling the effect of wildfire frequency on forest structure and succession in the northern Rocky Mountains. Journal of Environmental Management, 16, 45–62.

    Google Scholar 

  • Motlagh, Z. K., Lotfi, A., Pourmanafi, S., Ahmadizadeh, S., & Soffianian, A. (2020). Spatial modeling of land-use change in a rapidly urbanizing landscape in central Iran: Integration of remote sensing, CA-Markov, and landscape metrics. Environmental Monitoring and Assessment, 192, 1–19.

    Article  Google Scholar 

  • Nath, B., Wang, Z., Ge, Y., Islam, K., P. Singh, R., & Niu, Z. (2020). Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process. ISPRS International Journal of Geo-Information, 9(2), 134.

    Google Scholar 

  • Papadimitriou, F. (1997). Land use modelling, land degradation and land use planning in East Attica, Greece. D.Phil. Thesis, University of Oxford.

    Google Scholar 

  • Papadimitriou, F. (2009). Modelling spatial landscape complexity using the Levenshtein Algorithm. Ecological Informatics, 4, 48–55.

    Article  Google Scholar 

  • Papadimitriou, F. (2010). Conceptual modelling of landscape complexity. Landscape Research, 35(5), 563–570.

    Article  Google Scholar 

  • Papadimitriou, F. (2020a). The algorithmic basis of spatial complexity. In F. Papadimitriou (Ed.), Spatial complexity: Theory, mathematical methods and applications (pp. 81–99). Springer Nature.

    Google Scholar 

  • Papadimitriou, F. (2020b). The probabilistic basis of spatial complexity. In F. Papadimitriou (Ed.), Spatial complexity: Theory, mathematical methods and applications (pp. 51–61). Springer Nature.

    Google Scholar 

  • Papadimitriou, F. (2020c). Spatial complexity: Theory, mathematical methods and applications. Springer Nature.

    Google Scholar 

  • Papadimitriou, F. (2022a). Spatial entropy of landscapes simulated with artificial life and Swarm intelligence. In F. Papadimitriou (Ed.), Spatial entropy and landscape analysis (pp. 57–73). Springer VS.

    Google Scholar 

  • Papadimitriou, F. (2022b). Emergence, sustainability and cyber-physical landscapes. In F. Papadimitriou (Ed.), Spatial entropy and landscape analysis (pp. 123–139). Springer VS.

    Google Scholar 

  • Papadimitriou, F. (2022c). Spatial entropy, non-extensive thermodynamics and landscape change. In F. Papadimitriou (Ed.), Spatial entropy and landscape analysis (pp. 103–121). Springer VS.

    Google Scholar 

  • Papadimitriou, F. (2022d). Spatial entropy and landscape analysis. Springer VS.

    Google Scholar 

  • Papadimitriou, F., (2023). Linear modelling of landscape dynamics. In F. Papadimitriou (Ed.), Modelling landscape dynamics (in this volume). Springer VS.

    Google Scholar 

  • Prajneshu, C., Gupta, C. K., & Sharma, U. (1986). Stochastic analysis of environmental fluctuations in a compartmental system. Journal of Biological Cybernetics, 53, 343–346.

    Article  Google Scholar 

  • Seneta, E. (1973). Non-negative matrices. An introduction to theory and applications. G. Allen and Unwin.

    Google Scholar 

  • Sklar, F., & Costanza, R. (1990). The development of dynamic spatial models for landscape ecology. A review and prognosis. In M. G. Turner, & R. H. Gardner (eds.), Quantitative methods in landscape ecology (pp. 239–288). Springer.

    Google Scholar 

  • Tang, J., Wang, L., & Yao, Z. (2007). Spatio-temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm. International Journal of Remote Sensing, 28(15), 3255–3271.

    Article  Google Scholar 

  • Turner, M. G. (1987). Spatial simulation of landscape changes in Georgia A comparison of 3 transition models. Landscape Ecology, 1(1), 29–36.

    Article  Google Scholar 

  • Usher, M. B. (1981). Modelling ecological succession, with particular reference to Markovian models. Vegetatio, 46, 11–18.

    Article  Google Scholar 

  • Van Hulst, R. (1992). From population dynamics to community dynamics modelling succession as a species replacement process. In D. C. Glenn-Lewin, R. K. Peet, & T. T. Veblen (eds.), Plant succession. Theory and prediction (pp. 188–214). Chapman and Hall.

    Google Scholar 

  • Veblen, T. T. (1992). Regeneration dynamics. In D. C. Glenn-Lewin, R. K. Peet, & T. T. Veblen (eds.), Plant succession. Theory and prediction (pp. 152–187). Chapman and Hall.

    Google Scholar 

  • Yang, X., Zheng, X. Q., & Chen, R. (2014). A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecological Modelling, 283, 1–7.

    Article  Google Scholar 

  • Zubair, O. A., Ji, W., & Weilert, T. E. (2017). Modeling the impact of urban landscape change on urban wetlands using similarity weighted instance-based machine learning and Markov model. Sustainability, 9(12), 2223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fivos Papadimitriou .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papadimitriou, F. (2023). Markov Models of Landscape Dynamics. In: Modelling Landscape Dynamics. RaumFragen: Stadt – Region – Landschaft. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-42496-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-42496-1_4

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-42495-4

  • Online ISBN: 978-3-658-42496-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics