Skip to main content

Leveraging Semantic Information for Sonographic Wrist Fracture Assessment Within Children

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2023 (BVM 2023)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 686 Accesses


The use of ultrasound for the diagnosis of pediatric distal forearmfractures provides a radiation-free, rapid, and inexpensive alternative to radiography. Computer-aided examination and diagnosis support may contribute to the increasing popularity of fracture sonography. Although machine learning approaches are considered the tool of choice for medical image processing, the success of datadriven methods is highly dependent on the quality and quantity of image data. Both conditions are not necessarily met in the field of pediatric bone sonography, so supporting measures for the application of deep learning techniques are required. One possible solution is the incorporation of additional semantic information. In this work, we investigate to what extent the use of existing state-of-the-art frameworks together with segmentations of anatomical structures can increase the classification accuracy of the detection of distal forearm fractures in children ausing ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Kraus R, Schneidmüller D, Röder C. Häufigkeit von Frakturen der langen Röhrenknochen im Wachstumsalter. Deutsches Ärzteblatt. 2005:5.

    Google Scholar 

  2. Ackermann O, ed. Fraktursonografie. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019.

    Google Scholar 

  3. Ackermann O, Wojciechowski P, Dzierzega M, Grosser K, Schmitz-Franken A, Rudolf H et al. Sokrat II – an international, prospective, multicenter, phase IV diagnostic trial to evaluate the efficacy of the wrist SAFE algorithm in fracture sonography of distal forearm fractures in children. Ultraschall in Med. 2019;40(03):349–58.

    Google Scholar 

  4. Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX et al. Deep learning in medical ultrasound analysis: a review. Engineering. 2019;5(2):261–75.

    Google Scholar 

  5. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016:770–8.

    Google Scholar 

  6. Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learningbased biomedical image segmentation. Nat Methods. 2021;18(2):203–11.

    Google Scholar 

  7. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. Proc IEEE ICCV. IEEE, 2017:2980–8.

    Google Scholar 

  8. Zhang J, Boora N, Melendez S, Rakkunedeth Hareendranathan A, Jaremko J. Diagnostic accuracy of 3D ultrasound and artificial intelligence for detection of pediatric wrist injuries. Children. 2021;8(6):431.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Großbröhmer, C., Bartram, L., Rheinbay, C., Heinrich, M.P., Tüshaus, L. (2023). Leveraging Semantic Information for Sonographic Wrist Fracture Assessment Within Children. In: Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2023. BVM 2023. Informatik aktuell. Springer Vieweg, Wiesbaden.

Download citation

Publish with us

Policies and ethics