Skip to main content

Software-Entwicklung für die virtuelle Realität

  • Chapter
  • First Online:
Virtual Reality kompakt

Part of the book series: IT kompakt ((IT))

  • 677 Accesses

Zusammenfassung

Wir konkretisieren das Modell eines VR-Systems und beschreiben die Lösungen für das räumliche Sehen, den Einsatz von Ton und für Eingaben an das System. Neben den Eingaben, die wir mit Hilfe von Peripheriegeräten erzeugen, verwendet ein VR-System unbewusst erzeugte Eingaben durch die Positionsverfolgung. Wir betrachten mit OpenXR einen Industrie-Standard, mit dessen Hilfe es möglich wird eine Anwendung für möglichst viele System zu realisieren. Anschließend führen wir die Unity-Packages Unity XR und VIVE Input Utility ein, die wir für die Implementierung der Verfahren und Beispiele einsetzen werden. Die möglichen Interaktionen können wir in Systemsteuerung, Selektion, Manipulation und Fortbewegung einteilen. Für diese Bereiche einer Benutzungsoberfläche realisieren wir Techniken aus der Literatur.

„As usual with infant technologies, realizing the early dreams for virtual reality (VR) and harnessing it to real work has taken longer than the initial wild hype predicted. Now, finally, it's happening.“ Frederick P. Brooks,

„What's real about virtual reality?“ [ 7 ].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 14.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 19.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Ablett, D., Cunningham, A., Lee, G.A., Thomas, B.H.: Portal rendering and creation interactions in virtual reality. In: 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), S. 160–168 (2022). https://doi.org/10.1109/ISMAR55827.2022.00030

  2. Al Zayer, M., MacNeilage, P., Folmer, E.: Virtual locomotion: a survey. IEEE Trans. Vis. Comput. Graph. 26(6), 2315–2334 (2020). https://doi.org/10.1109/TVCG.2018.2887379

    Article  Google Scholar 

  3. Azmandian, M.: The redirected walking toolkit. https://github.com/USC-ICT-MxR/RDWT. Zugegriffen am 23.02.2023

  4. Azmandian, M., Grechkin, T., Bolas, M., Suma, E.: The redirected walking toolkit: a unified development platform for exploring large virtual environments. In: 2016 IEEE 2nd Workshop on Everyday Virtual Reality (WEVR), S. 9–14 (2016). https://doi.org/10.1109/WEVR.2016.7859537

  5. Azmandian, M., Yahata, R., Bolas, M., Suma, E.: An enhanced steering algorithm for redirected walking in virtual environments. In: 2014 IEEE Virtual Reality (VR), S. 65–66 (2014). https://doi.org/10.1109/VR.2014.6802053

  6. Boysen, Y., Husung, M., Mantei, T., Müller, L.M., Schimmelpfennig, J., Uzolas, L., Langbehn, E.: Scale & Walk: Evaluation von skalierungsbasierten Interaktionstechniken zur natürlichen Fortbewegung in VR. In: Dachselt, R., Weber, G. (Hrsg.) Mensch und Computer 2018 – Tagungsband. Gesellschaft für Informatik e.V., Bonn (2018). https://doi.org/10.18420/muc2018-mci-0219

  7. Brooks, F.: What's real about virtual reality? IEEE Comput. Graph. Appl. 19(6), 16–27 (1999)

    Article  Google Scholar 

  8. Coomer, N., Bullard, S., Clinton, W., Williams, B.: Evaluating the effects of four VR locomotion methods: joystick, ARM-cycling, point-tugging, and teleporting. In: Proceedings of the 15th ACM Symposium on Applied Perception, S. 1–8. ACM (2018). https://doi.org/10.1145/3225153.3225175

  9. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992)

    Article  Google Scholar 

  10. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: SIGGRAPH '93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, S. 135–142. ACM (1993)

    Google Scholar 

  11. Darken, R.P., Cockayne, W.R., Carmein, D.: The omni-directional treadmill: a locomotion device for virtual worlds. In: UIST '97: Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology, S. 213–221 (1997)

    Google Scholar 

  12. De Luca, A., Mattone, R., Robuffo Giordano, P., Ulbrich, H., Schwaiger, M., Van den Bergh, M., Koller-Meier, E., Van Gool, L.: Motion control of the cybercarpet platform. IEEE Trans. Control Syst. Technol. 21(2), 410–427 (2013). https://doi.org/10.1109/TCST.2012.2185051

    Article  Google Scholar 

  13. DIN ISO 33402-2:2005-12: Körpermaße des Menschen Teil 2 – Ergonomie. Beuth (2005). https://doi.org/10.31030/9655264

  14. Dodgson, N.A.: Variation and extrema of human interpupillary distance. In: Stereoscopy Displays and Virtual Reality Systems XI. 5291, 36–46 (2004)

    Google Scholar 

  15. Feasel, J., Whitton, M.C., Wendt, J.D.: LLCM-WIP: Low-Latency, Continuous-Motion Walking-in-Place. In: Proceedings of the 2008 IEEE Symposium on 3D User Interfaces, 3DUI '08, S. 97–104. IEEE Computer Society (2008). https://doi.org/10.1109/3DUI.2008.4476598

  16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable Object-Oriented Software. Addison Wesley, Boston (1994)

    Google Scholar 

  17. Gülcü, A.E., Atalay, F.B.: Infinite spaces using recursive portals. In: 2022 7th International Conference on Computer Science and Engineering (UBMK), S. 332–337 (2022). https://doi.org/10.1109/UBMK55850.2022.9919479

  18. Google: Google Cardboard XR Plugin for Unity. https://github.com/googlevr/cardboard-xr-plugin. Zugegriffen am 04.03.2023

  19. Google VR: Jetzt bis du dran! https://arvr.google.com/intl/de_de/cardboard/manufacturers/. Zugegriffen am 11.01.2023

  20. Grechkin, T., Thomas, J., Azmandian, M., Bolas, M., Suma, E.: Revisiting detection thresholds for redirected walking: Combining translation and curvature gains. In: Proceedings of the ACM Symposium on Applied Perception, SAP '16, S. 113–120. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2931002.2931018

  21. Grosjean, J., Burkhardt, J.-M., Coquillart, S., Richard, P.: Evaluation of the command and control cube. In: Proceedings of the 4th IEEE International Conference on Multimodal Interfaces, ICMI '02, S. 473. IEEE Computer Society, USA (2002). https://doi.org/10.1109/ICMI.2002.1167041

  22. Grosjean, J., Coquillart, S.: Command and control cube: a shortcut paradigm for virtual environments. In: Froehlich, B., Deisinger, J., Bullinger, H.J. (Hrsg.) Eurographics Workshop on Virtual Environments. The Eurographics Association (2001). https://doi.org/10.2312/EGVE/EGVE01/001-012

  23. Hashemian, A.M., Adhikari, A., Kruijff, E., Heyde, M.v.d., Riecke, B.E.: Leaning-based interfaces improve ground-based VR locomotion in reach-the-target, follow-the-path, and racing tasks. IEEE Trans. Vis. Comput. Graph. 29(3), 1748–1768 (2023). https://doi.org/10.1109/TVCG.2021.3131422

  24. Hashemian, A.M., Lotfaliei, M., Adhikari, A., Kruijff, E., Riecke, B.E.: HeadJoystick: improving flying in VR using a novel leaning-based interface. IEEE Trans. Vis. Comput. Graph. 28(4), 1792–1809 (2022). https://doi.org/10.1109/TVCG.2020.3025084

    Article  Google Scholar 

  25. HTC Corporation: VIVE Wave XR Plugin. https://hub.vive.com/storage/docs/en-us/UnityXR/UnityXRSdk.html. Zugegriffen am 25.04.2023

  26. HTC Corporation: Welcome to Vive Input Utility. https://github.com/ViveSoftware/ViveInputUtility-Unity/wiki. Zugegriffen am 04.04.2023

  27. Huang, J.Y.: An omnidirectional stroll-based virtual reality interface and its application on overhead crane training. IEEE Trans. Multimedia 5(1), 39–51 (2003). https://doi.org/10.1109/TMM.2003.808822

    Article  Google Scholar 

  28. Interrante, V., Ries, B., Anderson, L.: Seven League Boots: a new metaphor for augmented locomotion through large scale immersive virtual environments. In: In Proceedings of IEEE Symposium on 3D User Interfaces (3DUI). IEEE Computer Society, Charlotte (2007)

    Google Scholar 

  29. Khronos Group: Khronos OpenXR Registry. https://registry.khronos.org/OpenXR/. Zugegriffen am 14.12.2022

  30. Khronos Group: OpenXR API documentation project. https://github.com/KhronosGroup/OpenXR-Docs. Zugegriffen am 14.12.2022

  31. Khronos Group: Openxr SDK project. https://github.com/KhronosGroup/OpenXR-SDK. Zugegriffen am 14.12.2022

  32. Kwon, S.U., Jeon, S.B., Hwang, J.Y., Cho, Y.H., Park, J., Lee, I.K.: Infinite virtual space exploration using space tiling and perceivable reset at fixed positions. In: 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), S. 758–767 (2022). https://doi.org/10.1109/ISMAR55827.2022.00094

  33. Langbehn, E., Lubos, P., Bruder, G., Steinicke, F.: Bending the curve: sensitivity to bending of curved paths and application in room-scale VR. IEEE Trans. Vis. Comput. Graph. 23(4), 1389–1398 (2017). https://doi.org/10.1109/TVCG.2017.2657220

    Article  Google Scholar 

  34. Langbehn, E., Husung, M.: Of portals and orbs: an evaluation of scene transition techniques for virtual reality. In: Mensch und Computer 2019 (2019). https://doi.org/10.1145/3340764.3340779

  35. LaViola, J., Kruijff, E., McMahan, R., Bowman, D., Poupyrev, I.: 3D User Interfaces, 2. Aufl. Addison Wesley, Boston (2017)

    Google Scholar 

  36. Li, Y.J.: OpenRDW. https://github.com/yaoling1997/OpenRDW. Zugegriffen am 23.02.2023

  37. Li, Y.J.: Awesome-redirected walking (2023). https://github.com/yaoling1997/Awesome-RDW. Zugegriffen am 23.02.2023

  38. Li, Y.J., Wang, M., Steinicke, F., Zhao, Q.: OpenRDW: a redirected walking library and benchmark with multi-user, learning-based functionalities and state-of-the-art algorithms. In: 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), S. 21–30 (2021). https://doi.org/10.1109/ISMAR52148.2021.00016

  39. Lisle, L., Lu, F., Davari, S., Tahmid, I.A., Giovannelli, A., Ilo, C., Pavanatto, L., Zhang, L., Schlueter, L., Bowman, D.A.: Clean the ocean: an immersive VR experience proposing new modifications to go-go and WiM techniques. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), S. 920–921 (2022). https://doi.org/10.1109/VRW55335.2022.00311

  40. Macedo, Vitor: Head-Mounted displays – Messung räumlicher Präzision bei VR-Trackingsystemen. https://www.vdc-fellbach.de/fileadmin/user_upload/Applikationszentrum_VAR_-_Bericht__04_2_-_AP2_-_Werkstattbericht__02_-_Messung_VR-Tracking-Praezision_-_Update.pdf. Zuge- griffen am 22.03.2023

  41. Microsoft: OpenXR Samples for Mixed Reality Developers. https://github.com/microsoft/OpenXR-MixedReality. Zugegriffen am 18.02. 2023

  42. Nabiyouni, M., Bowman, D.A.: A taxonomy for designing walking-based locomotion techniques for virtual reality. In: Proceedings of the 2016 ACM Companion on Interactive Surfaces and Spaces, ISS '16 Companion, S. 115–121. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/3009939.3010076

  43. Nilsson, N.C., Peck, T., Bruder, G., Hodgson, E., Serafin, S., Whitton, M., Steinicke, F., Rosenberg, E.S.: 15 years of research on redirected walking in immersive virtual environments. IEEE Comput. Graph. Appl. 38(2), 44–56 (2018). https://doi.org/10.1109/MCG.2018.111125628

    Article  Google Scholar 

  44. Nilsson, N.C., Serafin, S., Nordahl, R.: Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion. IEEE Trans. Vis. Comput. Graph. 20(4), 569–578 (2014). https://doi.org/10.1109/TVCG.2014.21

    Article  Google Scholar 

  45. Oculus: Get Started with Oculus in Unity. https://developer.oculus.com/documentation/unity/unity-gs-overview/. Zugegriffen am 29.04.2023

  46. OpenXR Working Group: Unifying Reality. https://www.khronos.org/openxr. Zugegriffen am 22.08.2022

  47. Poupyrev, I., Billinghurst, M., Weghorst, S., Ichikawa, T.: The Go-Go Interaction Technique: Non-Linear Mapping for Direct Manipulation in VR. In: Proceedings of the 9th Annual ACM Symposium on User Interface Software and Technology, UIST '96, S. 79–80. Association for Computing Machinery (1996). https://doi.org/10.1145/237091.237102

  48. Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking. In: Proceedings of Eurographics, S. 289–294. Eurographics Association, Eindhoven (2001)

    Google Scholar 

  49. Schwaiger, M., Thuimmel, T., Ulbrich, H.: Cyberwalk: An advanced prototype of a belt array platform. In: 2007 IEEE International Workshop on Haptic, Audio and Visual Environments and Games, S. 50–55 (2007). https://doi.org/10.1109/HAVE.2007.4371586

  50. Silva, L., Valença, L., Gomes, A., Figueiredo, L., Teichrieb, V.: Gothrough: a tool for creating and visualizing impossible 3d worlds using portals. In: 2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), S. 97–106 (2020). https://doi.org/10.1109/SBGames51465.2020.00023

  51. Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact. 2, 201–219 (1995). https://doi.org/10.1145/210079.210084

    Article  Google Scholar 

  52. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Analyses of human sensitivity to redirected walking. In: Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology, VRST '08, S. 149–156. Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1450579.1450611

  53. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Vis. Comput. Graph. 16(1), 17–27 (2010). https://doi.org/10.1109/TVCG.2009.62

    Article  Google Scholar 

  54. Steinicke, F., Visell, Y., Campos, J., Lécuyer, A. (Hrsg.): Human Walking in Virtual Environments. Springer, New York. https://doi.org/10.1007/978-1-4419-8432-6

  55. Suma, E.A., Babu, S., Hodges, L.F.: Comparison of travel techniques in a complex, multi-level 3d environment. In: 2007 IEEE Symposium on 3D User Interfaces (2007). https://doi.org/10.1109/3DUI.2007.340788

  56. Suma, E.A., Clark, S., Krum, D., Finkelstein, S., Bolas, M., Warte, Z.: Leveraging change blindness for redirection in virtual environments. In: 2011 IEEE Virtual Reality Conference, S. 159–166 (2011). https://doi.org/10.1109/VR.2011.5759455

  57. Unity: About the Mock HMD XR Plugin. https://docs.unity3d.com/Packages/com.unity.xr.mock-hmd@1.0/manual/index.html. Zugegriffen am 26.03.2023

  58. Unity: About the oculus xr plugin. https://docs.unity3d.com/Packages/com.unity.xr.oculus@3.0/manual/index.html. Zugegriffen am 26.08.2022

  59. Unity: OpenXR Interaction Toolkit. https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@1.0/manual. Zugegriffen am 10.02.2023

  60. Unity: Windows.speech classes. https://docs.unity3d.com/ScriptReference. Zugegriffen am 23.02.2023

  61. Unity: XR. https://docs.unity3d.com/Manual/XR.html. Zugegriffen am 26.08.2022

  62. Unity: XR Interaction Toolkit Examples. https://github.com/Unity-Technologies/XR-Interaction-Toolkit-Examples. Zugegriffen am 18.02.2023

  63. Unity: XR Plug-in Framework. https://docs.unity3d.com/Manual/XRPluginArchitecture.html. Zugegriffen am 26.04.2023

  64. Usoh, M., Arthur, K., Whitton, M., Bastos, R., Steed, A., Slater, M., Brooks, F.: Walking \(>\) walking-in-place \(>\) flying in virtual environments. In: Proceedings of SIGGRAPH 1999, S. 359–364. ACM, New York (1999)

    Google Scholar 

  65. Valve: SteamVR Unity Plugin. https://valvesoftware.github.io/steamvr_unity_plugin/. Zugegriffen am 04.04.2023

  66. Vasylevska, K., Kaufmann, H., Bolas, M., Suma, E.A.: Flexible spaces: Dynamic layout generation for infinite walking in virtual environments. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI), S. 39–42 (2013). https://doi.org/10.1109/3DUI.2013.6550194

  67. Williams, B., Narasimham, G., Rump, B., McNamara, T.P., Carr, T.H., Rieser, J., Bodenheimer, B.: Exploring large virtual environments with an HMD when physical space is limited. In: Proceedings of the 4th Symposium on Applied Perception in Graphics and Visualization, APGV '07, S. 41–48. Association for Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1272582.1272590

  68. Wilson, P., Kalescky, W., MacLaughlin, A., Williams, B.: VR Locomotion: Walking > Walking in Place > Arm Swinging. In: VRCAI 16, S. 243–249 (2016). https://doi.org/10.1145/3013971.3014010

    Google Scholar 

  69. Wingrave, C., Haciahmetoglu, Y., Bowman, D.: Overcoming world in miniature limitations by a scaled and scrolling wim. In: 3D User Interfaces (3DUI'06), S. 11–16 (2006). https://doi.org/10.1109/VR.2006.106

  70. Wong, L.: VIVE Input Utility for Unity. https://github.com/ViveSoftware/ViveInputUtility-Unity. Zugegriffen am 02.05.2023

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brill, M. (2023). Software-Entwicklung für die virtuelle Realität. In: Virtual Reality kompakt. IT kompakt. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-41245-6_3

Download citation

Publish with us

Policies and ethics