Skip to main content

Interaktive Anwendungen

  • Chapter
  • First Online:
Virtual Reality kompakt

Part of the book series: IT kompakt ((IT))

  • 674 Accesses

Zusammenfassung

Wir machen uns mit Unity vertraut und implementieren C#-Komponenten. Als Vorbereitung auf die Realisierung von Interaktionen in einer VR-Anwendung führen wir das Package Input System ein. Die Themen Kollisionen und Raycasting spielen in VR-Anwendungen eine große Rolle. Nicht nur für die Fehlersuche, sondern auch bei Evaluationen von VR-Anwendungen, werden wir in Dateien und in der Unity-Konsole protokollieren. Wir verwenden dazu die in Unity verfügbaren Lösungen und das C#-Framework log4net. Wir schließen das Kapitel mit dem Thema Unit-Testing ab und verbinden dies mit der Implementierung der World-in-Miniature Technik.

Don't think of that thing as a screen, think of it as a window, a window through which one looks into a virtual world. The challenge to computer graphics is to make that virtual world look real, sound real, move and respond to interaction in real time, and even feel real. Ivan Sutherland,

„The Ultimate Display“ [ 78 ].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 14.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 19.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Ablett, D., Cunningham, A., Lee, G.A., Thomas, B.H.: Portal rendering and creation interactions in virtual reality. In: 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), S. 160–168 (2022). https://doi.org/10.1109/ISMAR55827.2022.00030

  2. AiUnity: Nlog logger powerful logging framework. https://assetstore.unity.com/packages/tools/utilities/nlog-logger-powerful-logging-framework-78220. Zugegriffen am 14.06.2022

  3. Al Zayer, Majed, MacNeilage, Paul, Folmer, Eelke: Virtual locomotion: a survey. IEEE Trans. Vis. Comput. Graph. 26(6), 2315–2334 (2020). https://doi.org/10.1109/TVCG.2018.2887379

  4. Amat, C.: Advanced logging in unity with log4net. https://www.linkedin.com/pulse/advanced-logging-unity-log4net-charles-amat. Zu- gegriffen am 17.06.2022

  5. Apache Software Foundation: What is Apache log4net. https://logging.apache.org/log4net/. Zugegriffen am 02.06.2022

  6. Azmandian, M.: The redirected walking toolkit. https://github.com/USC-ICT-MxR/RDWT. Zugegriffen am 23.02.2023

  7. Azmandian, M., Grechkin, T., Bolas, M., Suma, E.: The redirected walking toolkit: a unified development platform for exploring large virtual environments. In: 2016 IEEE 2nd Workshop on Everyday Virtual Reality (WEVR), S. 9–14 (2016). https://doi.org/10.1109/WEVR.2016.7859537

  8. Azmandian, M., Yahata, R., Bolas, M., Suma, E.: An enhanced steering algorithm for redirected walking in virtual environments. In: 2014 IEEE Virtual Reality (VR), S. 65–66 (2014). https://doi.org/10.1109/VR.2014.6802053

  9. Beck, Kent: Test-Driven Development by Example. Addison-Wesley (2003)

    Google Scholar 

  10. Boysen, Y., Husung, M., Mantei, T., Müller, L.M., Schimmelpfennig, J., Uzolas, L., Langbehn, E.: Scale & Walk: Evaluation von skalierungsbasierten Interaktionstechniken zur natürlichen Fortbewegung in VR. In: Dachselt, R., Weber, G. (Hrsg.) Mensch und Computer 2018 – Tagungsband. Gesellschaft für Informatik e.V., Bonn (2018). https://doi.org/10.18420/muc2018-mci-0219

  11. Brill, Manfred: Repository Virtual Reality Kompakt. https://github.com/MBrill/VRKompakt. Zugegriffen am 28.04.2023

  12. Brill, Manfred: Website zu Virtual Reality Kompakt. https://mbrill.github.io/VRKompakt/index.html. Zugegriffen am 28.04.2023

  13. Brill, Manfred: Virtuelle Realität. Springer, Berlin (2009)

    MATH  Google Scholar 

  14. Brooks, Frederick: What's real about virtual reality? IEEE Comput. Graph. Appl. 19(6), 16–27 (1999)

    Article  Google Scholar 

  15. Conn, Coco, Lanier, Jaron, Minsky, Margaret, Fisher, Scott, Druin, Allison: Virtual environments and interactivity: Windows to the future. SIGGRAPH Comput. Graph. 23(5), 7–18 (1989). https://doi.org/10.1145/77277.77278

    Google Scholar 

  16. Coomer, N., Bullard, S., Clinton, W., Williams, B.: Evaluating the effects of four VR locomotion methods: joystick, arm-cycling, point-tugging, and teleporting. In: Proceedings of the 15th ACM Symposium on Applied Perception, S. 1–8. ACM (2018). https://doi.org/10.1145/3225153.3225175

  17. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992)

    Article  Google Scholar 

  18. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: SIGGRAPH '93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, S. 135–142. ACM, Anaheim (1993)

    Google Scholar 

  19. Darken, R.P., Cockayne, W.R., Carmein, D.: The omni-directional treadmill: a locomotion device for virtual worlds. In: UIST '97: Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology, S. 213–221. Banff (1997)

    Google Scholar 

  20. De Luca, A., Mattone, R., Robuffo Giordano, P., Ulbrich, H., Schwaiger, M., Van den Bergh, M., Koller-Meier, E., Van Gool, L.: Motion control of the cybercarpet platform. IEEE Trans. Control Syst. Technol. 21(2), 410–427 (2013). https://doi.org/10.1109/TCST.2012.2185051

    Article  Google Scholar 

  21. DIN ISO 33402-2:2005-12: Körpermaße des Menschen Teil 2 – Ergonomie. Beuth (2005). https://doi.org/10.31030/9655264

  22. Dodgson, Neil A.: Variation and extrema of human interpupillary distance. In: Stereoscopy Displays and Virtual Reality Systems XI. 5291, 36–46 (2004)

    Google Scholar 

  23. Dörner, R., Broll, W., Grimm, P., Jung, B.: Virtual und Augmented Reality (AR/VR), 2. Aufl. Springer Vieweg, Wiesbaden (2019)

    Google Scholar 

  24. Epic Games: Unreal engine—the world's most open and advanced real-time 3D creation tool. https://www.unrealengine.com/en-US. Zugegriffen am 22.08.2022

  25. Feasel, J., Whitton, M.C., Wendt, J.D.: LLCM-WIP: Low-Latency, Continuous-Motion Walking-in-Place. In: Proceedings of the 2008 IEEE Symposium on 3D User Interfaces, 3DUI '08, S. 97–104. IEEE Computer Society (2008). https://doi.org/10.1109/3DUI.2008.4476598

  26. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable Object-Oriented Software. Addison Wesley, Boston (1994)

    Google Scholar 

  27. Gülcü, A.E., Atalay, F.B.: Infinite spaces using recursive portals. In: 2022 7th International Conference on Computer Science and Engineering (UBMK), S. 332–337 (2022). https://doi.org/10.1109/UBMK55850.2022.9919479

  28. Google: Google Cardboard XR Plugin for Unity. https://github.com/googlevr/cardboard-xr-plugin. Zugegriffen am 04.03.2023

  29. Google VR: Jetzt bis du dran! https://arvr.google.com/intl/de_de/cardboard/manufacturers/. Zugegriffen am 11.01.2023

  30. Grechkin, T., Thomas, J., Azmandian, M., Bolas, M., Suma, E.: Revisiting detection thresholds for redirected walking: Combining translation and curvature gains. In: Proceedings of the ACM Symposium on Applied Perception, SAP '16, S. 113–120. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2931002.2931018

  31. Grosjean, J., Burkhardt, J.-M., Coquillart, S., Richard, P.: Evaluation of the command and control cube. In: Proceedings of the 4th IEEE International Conference on Multimodal Interfaces, ICMI '02, S. 473. IEEE Computer Society, USA (2002). https://doi.org/10.1109/ICMI.2002.1167041

  32. Grosjean, J., Coquillart, S.: Command and Control Cube: a Shortcut Paradigm for Virtual Environments. In: Froehlich, B., Deisinger, J., Bullinger, H.J. (Hrsg.) Eurographics Workshop on Virtual Environments. The Eurographics Association (2001). https://doi.org/10.2312/EGVE/EGVE01/001-012

  33. Hashemian, A.M., Adhikari, A., Kruijff, E., Heyde, M.v.d., Riecke, B.E.: Leaning-based interfaces improve ground-based VR locomotion in reach-the-target, follow-the-path, and racing tasks. IEEE Trans. Vis. Comput. Graph. 29(3), 1748–1768 (2023). https://doi.org/10.1109/TVCG.2021.3131422

  34. Hashemian, A.M., Lotfaliei, M., Adhikari, A., Kruijff, E., Riecke, B.E.: HeadJoystick: improving flying in VR using a novel leaning-based interface. IEEE Trans. Vis. Comput. Graph. 28(4), 1792–1809 (2022). https://doi.org/10.1109/TVCG.2020.3025084

    Article  Google Scholar 

  35. HTC Corporation: VIVE Wave XR Plugin. https://hub.vive.com/storage/docs/en-us/UnityXR/UnityXRSdk.html. Zugegriffen am 25.04.2023

  36. HTC Corporation: Welcome to Vive Input Utility. https://github.com/ViveSoftware/ViveInputUtility-Unity/wiki. Zugegriffen am 04.04.2023

  37. Huang, J.Y.: An omnidirectional stroll-based virtual reality interface and its application on overhead crane training. IEEE Trans. Multimedia 5(1), 39–51 (2003). https://doi.org/10.1109/TMM.2003.808822

    Article  Google Scholar 

  38. Interrante, V., Ries, B., Anderson, L.: Seven League Boots: a new metaphor for augmented locomotion through large scale immersive virtual environments. In: In Proceedings of IEEE Symposium on 3D User Interfaces (3DUI). IEEE Computer Society, Charlotte (2007)

    Google Scholar 

  39. Khronos Group: Khronos OpenXR Registry. https://registry.khronos.org/OpenXR/. Zugegriffen am 14.12.2022

  40. Khronos Group: OpenXR API documentation project. https://github.com/KhronosGroup/OpenXR-Docs. Zugegriffen am 14.12.2022

  41. Khronos Group: Openxr SDK project. https://github.com/KhronosGroup/OpenXR-SDK. Zugegriffen am 14.12.2022

  42. Kwon, S.U., Jeon, S.B., Hwang, J.Y., Cho, Y.H., Park, J., Lee, I.K.: Infinite virtual space exploration using space tiling and perceivable reset at fixed positions. In: 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), S. 758–767 (2022). https://doi.org/10.1109/ISMAR55827.2022.00094

  43. Langbehn, E., Lubos, P., Bruder, G., Steinicke, F.: Bending the curve: sensitivity to bending of curved paths and application in room-scale VR. IEEE Trans. Vis. Comput. Graph. 23(4), 1389–1398 (2017). https://doi.org/10.1109/TVCG.2017.2657220

    Article  Google Scholar 

  44. Langbehn, E., Husung, M.: Of portals and orbs: an evaluation of scene transition techniques for virtual reality. In: Mensch und Computer 2019. https://doi.org/10.1145/3340764.3340779

  45. LaViola, J., Kruijff, E., McMahan, R., Bowman, D., Poupyrev, I.: 3D User Interfaces, 2. Aufl. Addison Wesley, Boston (2017)

    Google Scholar 

  46. Li, Y.J.: OpenRDW. https://github.com/yaoling1997/OpenRDW. Zugegriffen am 23.02.2023

  47. Li, Y.J.: Awesome-redirected walking. https://github.com/yaoling1997/Awesome-RDW (2023). Zugegriffen am 23.02.2023

  48. Li, Y.J., Wang, M., Steinicke, F., Zhao, Q.: OpenRDW: A Redirected Walking Library and Benchmark with Multi-User, Learning-based Functionalities and State-of-the-art Algorithms. In: 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), S. 21–30 (2021). https://doi.org/10.1109/ISMAR52148.2021.00016

  49. Lisle, L., Lu, F., Davari, S., Tahmid, I.A., Giovannelli, A., Ilo, C., Pavanatto, L., Zhang, L., Schlueter, L., Bowman, D.A.: Clean the Ocean: An Immersive VR Experience Proposing New Modifications to Go-Go and WiM Techniques. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), S. 920–921 (2022). https://doi.org/10.1109/VRW55335.2022.00311

  50. Macedo, V.: Head-Mounted displays – Messung räumlicher Präzision bei VR-Trackingsystemen. https://www.vdc-fellbach.de/fileadmin/user_upload/Applikationszentrum_VAR_-_Bericht__04_2_-_AP2_-_Werkstattbericht__02_-_Messung_VR-Tracking-Praezision_-_Update.pdf

  51. Microsoft: MSTest.exe command line options. https://msdn.microsoft.com/de-de/library/ms182489(v=vs.120).aspx. Zugegriffen am 12.08.2022

  52. Microsoft: OpenXR Samples for Mixed Reality Developers. https://github.com/microsoft/OpenXR-MixedReality. Zugegriffen am 18.02.2023

  53. Microsoft: Protokollierung in .NET. https://docs.microsoft.com/de-DE/dotnet/core/extensions/logging?tabs=command-line. Zugegriffen am 14.12.2022

  54. Microsoft Corporation: A Tour of the C# Language. https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/. Zugegriffen am 26.02.2023

  55. Microsoft Corporation: C++ \(\to \) C#: What You Need to Know to Move from C++ to C# (2001). https://learn.microsoft.com/en-us/archive/msdn-magazine/2001/july/c-csharp-what-you-need-to-know-to-move-from-c-to-csharp. Zugegriffen am 26.02.2023

  56. Microsoft Corporation: Csharp for java developers—cheat sheet (2011). https://download.microsoft.com/download/D/E/E/DEE91FC0-7AA9-4F6E-9FFA-8658AA0FA080/CSharp for Java Developers - Cheat Sheet.pdf. Zugegriffen am 26.02.2023

  57. MiddleVR: Virtual reality for professionals. http://www.middlevr.com/home/. Zugegriffen am 03.06.2022

  58. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77-D(12), 1321–1329 (1994)

    Google Scholar 

  59. Nabiyouni, M., Bowman, D.A.: A taxonomy for designing walking-based locomotion techniques for virtual reality. In: Proceedings of the 2016 ACM Companion on Interactive Surfaces and Spaces, ISS '16 Companion, pp. 115–121. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/3009939.3010076

  60. Nilsson, N.C., Peck, T., Bruder, G., Hodgson, E., Serafin, S., Whitton, M., Steinicke, F., Rosenberg, E.S.: 15 years of research on redirected walking in immersive virtual environments. IEEE Comput. Graph. Appl. 38(2), 44–56 (2018). https://doi.org/10.1109/MCG.2018.111125628

    Article  Google Scholar 

  61. Nilsson, N.C., Serafin, S., Nordahl, R.: Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion. IEEE Trans. Vis. Comput. Graph. 20(4), 569–578 (2014). https://doi.org/10.1109/TVCG.2014.21

    Article  Google Scholar 

  62. NLogOfficial: Flexible and Open-Source Logging for .NET. https://nlog-project.org/. Zugegriffen am 14.11.2022

  63. NUnit Team: Nunit. http://nunit.org/. http://www.nunit.org/. Zugegriffen am 12.08.2022

  64. Oculus: Get Started with Oculus in Unity. https://developer.oculus.com/documentation/unity/unity-gs-overview/. Zugegriffen am 29.04.2023

  65. OpenXR Working Group: Unifying Reality. https://www.khronos.org/openxr. Zugegriffen am 22.08.2022

  66. Poupyrev, I., Billinghurst, M., Weghorst, S., Ichikawa, T.: The Go-Go interaction technique: non-linear mapping for direct manipulation in VR. In: Proceedings of the 9th Annual ACM Symposium on User Interface Software and Technology, UIST '96, pp. 79–80. Association for Computing Machinery (1996). https://doi.org/10.1145/237091.237102

  67. Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking. In: Proceedings of Eurographics, S. 289–294. Eurographics Association, Eindhoven (2001)

    Google Scholar 

  68. Schwaiger, M., Thuimmel, T., Ulbrich, H.: Cyberwalk: An advanced prototype of a belt array platform. In: 2007 IEEE International Workshop on Haptic, Audio and Visual Environments and Games, S. 50–55 (2007). https://doi.org/10.1109/HAVE.2007.4371586

  69. Silva, L., Valença, L., Gomes, A., Figueiredo, L., Teichrieb, V.: Gothrough: a tool for creating and visualizing impossible 3d worlds using portals. In: 2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), S. 97–106 (2020). https://doi.org/10.1109/SBGames51465.2020.00023

  70. Slater, Mel, Usoh, Martin, Steed, Anthony: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact. 2, 201–219 (1995). https://doi.org/10.1145/210079.210084

  71. Stackoverflow: How to use log4net with unity? https://stackoverflow.com/questions/23796412/how-to-use-use-log4net-with-unity. Zugegriffen am 17.06.2022

  72. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Analyses of human sensitivity to redirected walking. In: Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology, VRST '08, S. 149–156. Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1450579.1450611

  73. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Vis. Comput. Graph. 16(1), 17–27 (2010). https://doi.org/10.1109/TVCG.2009.62

    Article  Google Scholar 

  74. Steinicke, F., Visell, Y., Campos, J., Lécuyer, A. (eds.): Human walking in virtual environments. Springer, New York. https://doi.org/10.1007/978-1-4419-8432-6

  75. Stoakley, R., Conway, M., Pausch, R.: Virtual reality on a wim: interactive worlds in miniature. In: Proceedings of CHI95, S. 265–272. ACM, New York

    Google Scholar 

  76. Suma, E.A., Babu, S., Hodges, L.F.: Comparison of travel techniques in a complex, multi-level 3D environment. In: 2007 IEEE Symposium on 3D User Interfaces (2007). https://doi.org/10.1109/3DUI.2007.340788

  77. Suma, E.A., Clark, S., Krum, D., Finkelstein, S., Bolas, M., Warte, Z.: Leveraging change blindness for redirection in virtual environments. In: 2011 IEEE Virtual Reality Conference, S. 159–166 (2011). https://doi.org/10.1109/VR.2011.5759455

  78. Sutherland, Ivan E.: The ultimate display. In: Proceedings of the IFIP Congress, Bd. 2, S. 506–508. New York (1965)

    Google Scholar 

  79. Taylor, R.: Virtual reality peripheral network—official repo. https://github.com/vrpn/vrpn/wiki. Zugegriffen am 10.02.2023

  80. Taylor, R., Hudson, T., Seeger, A., Weber, H., Juliano, J., Helser, A.: VRPN: a device-independent, network-transparent vr peripheral system. In: Proceedings of the ACM symposium on Virtual reality software and technology (VRST), S. 55–61. ACM (2001). http://doi.acm.org/10.1145/505008.505019

  81. Trueba, R., Andujar, C., Argelaguet, F.: Complexity and occlusion management for the world-in-miniature metaphor. In: A. Butz, B. Fisher, M. Christie, A. Krüger, P. Olivier, R. Therón (Hrsg.) Smart Graphics, pp. 155–166. Springer, Berlin/Heidelberg (2009)

    Chapter  Google Scholar 

  82. Trueba, R., Andújar, C.a.: Dynamic worlds in miniature. S. 1–10 (2008)

    Google Scholar 

  83. Unity: About the Mock HMD XR Plugin. https://docs.unity3d.com/Packages/com.unity.xr.mock-hmd@1.0/manual/index.html. Zugegriffen am 26.03.2023

  84. Unity: About the oculus xr plugin. https://docs.unity3d.com/Packages/com.unity.xr.oculus@3.0/manual/index.html. Zugegriffen am 26.08.2022

  85. Unity: About unity test framework. https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html. Zugegrif- fen am 29.02.2023

  86. Unity: Guidelines for using unity trademarks. https://unity.com/legal/branding-trademarks. Zugegriffen am 04.05.2023

  87. Unity: OpenXR Interaction Toolkit. https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@1.0/manual. Zugegriffen am 10.02.2023

  88. Unity: ScriptableObject. https://docs.unity3d.com/ScriptReference/ScriptableObject.html. Zugegriffen am 14.02.2023

  89. Unity: Unity learn. https://learn.unity.com/. Zugegriffen am 22.04.2023

  90. Unity: Windows.speech classes. https://docs.unity3d.com/ScriptReference. Zugegriffen am 23.02.2023

  91. Unity: XR. https://docs.unity3d.com/Manual/XR.html. Zugegriffen am 26.08.2022

  92. Unity: XR Interaction Toolkit Examples. https://github.com/Unity-Technologies/XR-Interaction-Toolkit-Examples. Zugegriffen am 18.02.2023

  93. Unity: XR Plug-in Framework. https://docs.unity3d.com/Manual/XRPluginArchitecture.html. Zugegriffen am 26.04.2023

  94. Unity Technologies: Unity—the world's leading platform for real-time content creation. https://unity.com/. https://unity.com/download/. Zugegriffen am 22.08.2022

  95. Usoh, M., Arthur, K., Whitton, M., Bastos, R., Steed, A., Slater, M., Brooks, F.: Walking \(>\) walking-in-place \(>\) flying in virtual environments. In: Proceedings of SIGGRAPH 1999, S. 359–364. ACM, New York (1999)

    Google Scholar 

  96. Valve: SteamVR Unity Plugin. https://valvesoftware.github.io/steamvr_unity_plugin/. Zugegriffen am 04.04.2023

  97. Vasylevska, K., Kaufmann, H., Bolas, M., Suma, E.A.: Flexible spaces: dynamic layout generation for infinite walking in virtual environments. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI), S. 39–42 (2013). https://doi.org/10.1109/3DUI.2013.6550194

  98. Wachowsky, L., Wachowsky, L.: The Matrix. Warner Brothers, 1999

    Google Scholar 

  99. Williams, B., Narasimham, G., Rump, B., McNamara, T.P., Carr, T.H., Rieser, J., Bodenheimer, B.: Exploring large virtual environments with an HMD when physical space is limited. In: Proceedings of the 4th Symposium on Applied Perception in Graphics and Visualization, APGV '07, S. 41–48. Association for Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1272582.1272590

  100. Wilson, P., Kalescky, W., MacLaughlin, A., Williams, B.: VR Locomotion: Walking > Walking in Place > Arm Swinging. In: VRCAI 16, S. 243–249 (2016). https://doi.org/10.1145/3013971.3014010

    Google Scholar 

  101. Wingrave, C., Haciahmetoglu, Y., Bowman, D.: Overcoming world in miniature limitations by a scaled and scrolling wim. In: 3D User Interfaces (3DUI'06), S. 11–16 (2006). https://doi.org/10.1109/VR.2006.106

  102. Wong, L.: VIVE Input Utility for Unity. https://github.com/ViveSoftware/ViveInputUtility-Unity. Zugegriffen am 02.05.2023

  103. Wulff, H.J.: Lexikon der Filmbegriffe: Suspension of Disbelief. https://filmlexikon.uni-kiel.de/doku.php/s:suspensionofdisbelief-4370. Zugegriffen am 04.01.2023

  104. xUnit.net: About xunit.net. https://xunit.net/. Zugegriffen am 12.01.2023

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brill, M. (2023). Interaktive Anwendungen. In: Virtual Reality kompakt. IT kompakt. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-41245-6_2

Download citation

Publish with us

Policies and ethics