Abstract
The use and long-term utilisation of AI-supported assistive systems in vocational rehabilitation can offer great potential to improve the participation of persons with disabilities in working life. A prerequisite is the availability of market-ready intelligent assistive technologies that generate personal benefits for persons with diverse disabilities and can be used by companies with low effort. The diffusion of these technologies can succeed if the assistance potential of AI technologies is explained and AI-supported assistive technologies are developed and introduced in a demand-oriented and participatory way. It is also important that access for persons with disabilities to these technologies is ensured, competencies for their use are promoted, and continuous further development and support for their use are ensured.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Assistance systems are distinguished in the project KI.ASSIST into AI-based (whose functions are based on AI methods and are enabled by them) and AI-supported (digital assistive technologies that are supported by AI components in the sense of a functional extension). In this article, the term AI-supported is used, which also includes purely AI-based systems.
- 2.
KI.ASSIST—Assistance services and artificial intelligence for people with severe disabilities in vocational rehabilitation, funded by the BMAS from funds of the compensation fund.
- 3.
The exploratory analysis of AI components used in KI.ASSIST, based on the periodic table of AI of the platform Learning Systems (https://periodensystem-ki.de/), showed that the most frequently used concrete AI components are image recognition (26x) as well as language understanding (15x) and language generation (16x).
- 4.
Sample: 83 inclusion and AI experts, methods: guideline-based interviews, online survey; evaluation of the potential suitability of the technologies for people with disabilities based on profiles of 14 typical technology examples (two per task group); influencing factors and recommendations for action for the introduction of AI-supported assistive technologies into vocational rehabilitation.
References
AOK-Bundesverband. (2020). Zahlen und Fakten 2020. https://aok-bv.de/imperia/md/aokbv/aok/zahlen/zuf_2020_web.pdf. Accessed: 29. Juli 2021.
Beudt, S., & Pinkwart, N. (im Druck). KI-Anwendungen in der beruflichen Rehabilitation—Inklusionspotenziale und Herausforderungen. In S. Seufert, J. Guggemos, D. Ifenthaler, J. Seifried, & H. Ertl (Eds.), Künstliche Intelligenz in der beruflichen Bildung: Zukunft der Arbeit und Bildung mit intelligenten Maschinen. Zeitschrift für Berufs- und Wirtschaftspädagogik, Beiheft 31 (pp. 293–317). Steiner.
Bundesagentur für Arbeit. (2019). Fachkräfteengpassanalyse (Berichte: Blickpunkt Arbeitsmarkt). Nürnberg. https://statistik.arbeitsagentur.de/Statistikdaten/Detail/201906/arbeitsmarktberichte/fk-engpassanalyse/fk-engpassanalyse-d-0-201906-pdf. Accessed: 29. Juli 2021.
Bundesministerium für Wirtschaft und Energie. (2020). Einsatz von Künstlicher Intelligenz in der Deutschen Wirtschaft. Stand der KI-Nutzung im Jahr 2019. Berlin. https://www.bmwi.de/Redaktion/DE/Publikationen/Wirtschaft/einsatz-von-ki-deutsche-wirtschaft.pdf. Accessed: 29. Juli 2021.
Die Bundesregierung. (2020). Strategie Künstliche Intelligenz der Bundesregierung. Fortschreibung 2020. https://www.ki-strategie-deutschland.de/files/downloads/201201_Fortschreibung_KI-Strategie.pdf. Accessed: 29. Juli 2021.
Dziobek, I., Lucke, U., & Manzeschke, A. (2017). Emotions-sensitive Trainingssysteme für Menschen mit Autismus. In M. Eibl & M. Gaedke (Eds.), INFORMATIK 2017. Gesellschaft für Informatik. https://doi.org/10.18420/in2017_30.
Europäische Kommission. (2020). White paper on artificial intelligence—A European approach to excellence and trust. https://ec.europa.eu/info/sites/default/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf. Accessed: 29. Juli 2021.
Hastall, M. R., Dockweiler, C., & Mühlhaus, J. (2017). Achieving end user acceptance: Building blocks for an evidence-based user-centered framework for health technology development and assessment. In M. Antona & C. Stephanidis (Eds.), Universal access in human-computer interaction. Human and technological environments (pp. 13–25). Springer.
Marzin, C. (2018). Plug and pray? A disability perspective on artificial intelligence, automated decision-making and emerging technologies. European Disability Forum. https://www.edf-feph.org/content/uploads/2020/12/edf-emerging-tech-report-accessible.pdf. Zugegriffen: 29. Juli 2021.
Nedelkoska, J., & Quintini, G. (2018). Automation, skills use and training (OECD Social, Employment and Migration Working Papers Nr. 202). https://doi.org/10.1787/2e2f4eea-en.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature
About this chapter
Cite this chapter
Blanc, B., Feichtenbeiner, R., Beudt, S., Pinkwart, N. (2023). AI in Vocational Rehabilitation—Intelligent Assistance for People with Disabilities. In: Knappertsbusch, I., Gondlach, K. (eds) Work and AI 2030. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-40232-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-658-40232-7_41
Published:
Publisher Name: Springer, Wiesbaden
Print ISBN: 978-3-658-40231-0
Online ISBN: 978-3-658-40232-7
eBook Packages: Business and ManagementBusiness and Management (R0)