Skip to main content

Cluster of Excellence Living, Adaptive and Energy-Autonomous Materials Systems (livMatS)

  • Conference paper
  • First Online:
Future Automotive Production Conference 2022

Abstract

The Cluster of Excellence “Living, Adaptive, and Energy-autonomous Materials Systems” (livMatS) develops bioinspired materials systems that adapt autonomously to various environments and harvest clean energy from their surroundings. The intention of these purely technical—yet in a behavioral sense quasi-living—materials systems is to meet the demands of humans with regard to pioneering environmental, sustainability and energy technologies. The societal relevance of autonomous systems and their sustainability thus plays a crucial role in their development within the framework of livMatS. The current contribution provides an overview of the vision, research agenda and research goals of livMatS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cluster of Excellence Living, Adaptive and Energy-autonomous Materials Systems, “Materials Systems of the Future”. Cluster of Excellence Living, Adaptive and Energy-autonomous Materials Systems (2022) https://www.livmats.uni-freiburg.de/en. Accessed 20 Feb. 2022.

  2. Speck, O., Speck, T.: Functional morphology of plants—a key to biomimetic applications. New Phytol. 231(3), 950–956 (2021). https://doi.org/10.1111/nph.17396

  3. Walther, A.: From responsive to adaptive and interactive materials and materials systems: A roadmap. Adv. Mater. 32(20), 1905111 (2020). https://doi.org/10.1002/adma.201905111

  4. Speck, O., Speck, T.: An overview on bioinspired and biomimetic self-repairing materials. Biomimetics 4(1), 26 (2019). https://dx.doi.org/10.3390%2Fbiomimetics4010026

  5. Mazzolai, B., Carpi, F., Suzumori, K., Cianchetti, M., Speck, T., Smoukov, S.K., Burgert, I., Keplinger, T., De Freitas Siqueira, G., Vanneste, F., Goury, O., Duriez, C., Nanayakkara, T., Vanderborght, B., Brancart, J., Terryn, S., Rich, S., Liu, R., Fukuda, K., Someya, T., Calisti, M., Laschi, C., Sun, W., Wang, G., Wen, L., Baines, R., Patiballa, S., Kramer-Bottiglio, R., Rus, D., Fischer, P., Simmel, S.C., Lendlein, A.: Roadmap on soft robotics: Multifunctionality, adaptability and growth without borders. Multifunct. Mater., 100224 (2022) (in press). https://doi.org/10.1088/2399-7532/ac4c95

  6. Esser, F.J., Auth, P., Speck, T.: Artificial Venus flytraps: A research review and outlook on their importance for novel bioinspired materials systems. Front. Robot. AI 7, 75 (2020). https://doi.org/10.3389/frobt.2020.00075

  7. Speck, T., Poppinga, S., Speck, O., Tauber, F.: Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene? Anthropocene Rev. 20530196211039275 (2021). https://doi.org/10.1177%2F20530196211039275

  8. Hühn, L., Müller, O., Höfele, P. (eds.): The Role of Nature in the Anthropocene: Defining and Reacting to a New Geological Epoch. The Anthropocene Review (2022) (in press)

    Google Scholar 

  9. Möller, M., Höfele, P., Kiesel, A., Speck, O.: Reactions of sciences to the anthropocene: Highlighting inter- and transdisciplinary practices in biomimetics and sustainability research. Elementa Sci. Anthropocene 9(1), 035 (2021). https://doi.org/10.1525/elementa.2021.035

  10. Özdemir, B., Reski, R.: Automated and semi-automated enhancement, segmentation and tracing of cytoskeletal networks in microscopic images: A review. Comput. Struct. Biotechnol. J. 19, 2106–2120 (2021). https://doi.org/10.1016/j.csbj.2021.04.019

  11. Berestok, T., Diestel, C., Ortlieb, N., Buettner, J., Matthews, J., Schulze, P.S.C., Goldschmidt, J.C., Glunz, S.W., Fischer, A.: High-efficiency monolithic photosupercapacitors: smart integration of a perovskite solar cell with a mesoporous carbon double-layer capacitor. RRL Solar 5(11), 2100662 (2021). https://doi.org/10.1002/solr.202100662

  12. Hatt, T., Bartsch, J., Davis, V., Richter, A., Kluska, S., Glunz, S.W., Glatthaar, M., Fischer, A.: Hydrophobic AlOx surfaces by adsorption of a SAM on large areas for application in solar cell metallization patterning. ACS Appl. Mater. Interfaces 13(4), 5803–5813 (2021). https://doi.org/10.1021/acsami.0c20134

  13. Subhash, S.K., Gerach, T., Sherkat, N., Hillebrecht, H., Woias, P., Pelz, U.: Fabrication of μ TEGs based on nano-scale thermoelectric material dispersions. In: Paper presented at the 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (2021). https://doi.org/10.1109/Transducers50396.2021.9495526

  14. Acker, P., Wössner, J.S., Desmaizieres, G., Esser, B.: Conjugated copolymer design in phenothiazine-based battery materials enables high mass loading electrodes. ACS Sustain. Chem. Eng. 10(10), 3236–3244 (2022). https://doi.org/10.1021/acssuschemeng.1c07564

  15. Esser, B.: Redox polymers as electrode-active materials for batteries. Org. Mater. 1, 63–70 (2019). http://doi.org/10.1055/s-0039-3401016

  16. Beetz, M., Häringer, S., Elsässer, P., Kampmann, J., Sauerland, L., Wolf, F., Günther, M., Fischer, A., Bein, T.: Ultra‐thin protective coatings for sustained photoelectrochemical water oxidation with Mo: BiVO4. Adv. Funct. Mater. 31, 2011210 (2021). https://doi.org/10.1002/adfm.202011210

  17. Huber, M. C., Jonas, U., Schiller, S. M. (2022). An autonomous chemically fueled artificial protein muscle. Adv. Intell. Syst., 2100189 (2022). https://doi.org/10.1002/aisy.202100189

  18. Kost, J., Bleiziffer, A., Rusitov, D., Rühe, J.: Thermally induced cross-linking of polymers via C, H Insertion Cross-Linking (CHic) under mild conditions. J. Am. Chem. Soc. 143, 10108–10119 (2021). https://doi.org/10.1021/jacs.1c02133

  19. Specht, M., Berwind, M., Eberl, C.: Adaptive wettability of a programmable metasurface. Adv. Eng. Mater. 23, 2001037 (2020). https://doi.org/10.1002/adem.202001037

  20. Mader, M., Hambitzer, L., Schlautmann, P., Jenne, S., Greiner, C., Hirth, F., Helmer, D., Kotz-Helmer, F., Rapp, B.E.: Melt‐Extrusion‐Based Additive Manufacturing of Transparent Fused Silica Glass. Adv. Sci. 8(23), 2103180 (2021). https://doi.org/10.1002/advs.202103180.

  21. Thimons, L.A., Gujrati, A., Sanner, A., Pastewka, L., Jacobs, T.D.B.: Hard-material Adhesion: Which Scales of Roughness Matter? Exp. Mech. 61, 1109–1120 (2021). https://doi.org/10.1007/s11340-021-00733-6

  22. Tahouni, Y., Krüger, F., Poppinga, S., Wood, D., Pfaff, M., Rühe, J., Speck, T., Menges, A.: Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspiration Biomim. 16(5), 055002 (2021). https://doi.org/10.1088/1748-3190/ac0c8e

  23. Cheng, T., Tahouni, Y., Wood, D., Thielen, M., Poppinga, S., Buchholz, L., Steinberg, T., Menges, A., Speck, T.: Bio-inspired motion mechanisms: computational design and 4D-printing of self-adjusting wearable systems. Adv. Sci. 8(13), 2100411 (2021). https://doi.org/10.1002/advs.202100411

  24. Speck, O., Speck, T.: Biomimetics and education in Europe: challenge. Oppor. Var. Biomim. 6(3), 49 (2021). https://doi.org/10.3390/biomimetics6030049

  25. Cluster of Excellence Living, Adaptive and Energy-autonomous Materials Systems. Robotically Wound Natural Fibre Construction”, Cluster of Excellence Living, Adaptive and Energy-autonomous Materials Systems (2021). https://www.livmats.uni-freiburg.de/en/news-press/robotisch-gewickeltes-naturfasergebaude. Accessed: 20 Feb. 2022.

  26. Schwager, H., Haushahn, T., Neinhuis, C., Speck, T., Masselter, T.: Principles of branching morphology and anatomy in arborescent monocotyledons and columnar cacti as concept generators for branched fibre-reinforced composites. Advanced Engineering Materials 12(12), B659–B698 (2010). https://doi.org/10.1002/adem.201080057.

  27. Schwager, H., Masselter, T., Speck, T., Neinhuis, C.: Functional morphology and biomechanics of branch-stem junctions in columnar cacti. Proceedings of the Royal Society B 280, 0132244 (2013). https://doi.org/10.1098/rspb.2013.2244.

  28. Masselter, T., Hesse, L., Böhm, H., Gruhl, A., Schwager, H., Leupold, J., Gude, M., Milwich, M., Neinhuis, C., Speck, T.: Biomimetic optimisation of branched fibre-reinforced composites in engineering by detailed analyses of biological concept generators. Bioinspiration & Biomimetics 11(5), 055005 (2016). https://doi.org/10.1088/1748-3190/11/5/055005.

  29. Mylo, M., Hesse, L., Masselter, T., Leupold, J., Drozella, K., Speck, T., Speck, O.: Morphology and anatomy of branch-branch junctions in Opuntia ficus-indica and Cylindropuntia bigelovii: A comparative study supported by mechanical tissue quantification. Plants 10(11), 2313 (2021). https://doi.org/10.3390/plants10112313.

  30. Menges A., Knippers, J. (Eds.).: Architecture Research Building: ICD/ITKE 2010-2020. Basel: Birkhäuser Verlag (2020)

    Google Scholar 

  31. Bodea, S., Mindermann, P., Gresser, G.T., Menges, A.: Additive Manufacturing of Large Coreless Filament Wound Composite Elements for Building Construction. 3D Printing and Additive Manufacturing, Ahead of Print, 2021. https://doi.org/10.1089/3dp.2020.0346.

  32. Gil Pérez, M., Zechmeister, C., Kannenberg, F., Mindermann, P., Balangé, L., Guo, Y., Hügle, S., Gienger, A., Forster, D., Bischoff, M., Tarín, C., Middenhoff, P., Schwieger, V., Gresse, G.T., Menges, A., Knippers, J.: Computational co-design framework for coreless wound fibre–polymer composite structures. J. Comput. Des. Eng., 9(2), 310–329 (2022). https://doi.org/10.1093/jcde/qwab081.

Download references

Acknowledgements

The cluster of excellence Living, Adaptive and Energy-autonomous Materials Systems (livMatS) is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2193/1—390951807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Speck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Speck, T., Schulz, M.E., Fischer, A., Rühe, J. (2023). Cluster of Excellence Living, Adaptive and Energy-Autonomous Materials Systems (livMatS). In: Dröder, K., Vietor, T. (eds) Future Automotive Production Conference 2022. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-39928-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-39928-3_18

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-39927-6

  • Online ISBN: 978-3-658-39928-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics