Skip to main content

Recommendation Systems and the Use of Machine Learning Methods

  • Chapter
  • First Online:
Apply Data Science

Abstract

Recommendation systems use the preferences of a user to provide him with individual content. For this purpose, information such as product features or product ratings is used to generate personalized recommendations. Recommendation systems thus represent a special form of personalization and offer enormous potential for companies, especially in connection with large information stocks. This article deals with an application-oriented presentation of the different concepts that can be used to create personalized recommendations. Each of these concepts contains an algorithm in its core, which can be implemented in many systems by means of machine learning. In this context, methods of machine learning for the creation of personalized recommendations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 18 April 2023

    The sequence of authors was incorrect in the initially published version. It has been corrected.

References

  1. Balabanović M, Shoham Y (1997) Fab: content-based, collaborative recommendation. Commun ACM 40(3):66–72

    Article  Google Scholar 

  2. Silveira T, Zhang M, Lin X, Liu Y, Ma S (2019) How good your recommender is? a survey on evaluations in recommendation. Int J Mach Learn Cybern 10(6):813–831

    Article  Google Scholar 

  3. Schafer JB, Konstan J, Riedl J (1999) Recommender systems in e-commerce. In: Feldman S, Wellman M (Hrsg) EC‘ 99: Proceedings of the 1st ACM conference on Electronic commerce. Denver, S 158–166

    Google Scholar 

  4. Gomez-Uribe CA, Hunt N (2015) The Netflix recommender system: algorithms, business value, and innovation. ACM Trans Manag Inf Syst 6(4):13:1–13:19

    Google Scholar 

  5. Association of Computing Machinery Conference Series on Recommender Systems (ACM RecSys). https://recsys.acm.org/. Access: 20. Sept. 2022

  6. Oard DW, Kim J (1998) Implicit feedback for recommender systems. AAAI Technical Report WS-98–08, 81–83

    Google Scholar 

  7. Nichols DM (1998) Implicit rating and filtering. In: Kovács L (Hrsg.) Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering. Budapest, S 31–36

    Google Scholar 

  8. Morita M, Shinoda Y (1994) Information filtering based on user behavior analysis and best match text retrieval. In: Croft WB, van Rijsbergen CJ (Hrsg) SIGIR’ 94: Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval, Dublin, S 272–281

    Google Scholar 

  9. Claypool M, Le P, Wased M, Brown D (2001) Implicit interest indicators. In: Sidner C, Moore J (Hrsg) IUI’ 01: Proceedings of the 6th international conference on intelligent user interfaces, Santa Fe, S 33–40

    Google Scholar 

  10. Goldberg D, Nichols D, Oki BM, Terry D (1992) Using collaborative filtering to weave an information tapestry. Commun ACM 35(12):61–70

    Article  Google Scholar 

  11. Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994) GroupLens: an open architecture for collaborative filtering of netnews. In: Smith JB, Smith FD, Malone TW (Hrsg.) CSCW’94: Proceedings of the 1994 ACM conference on Computer supported cooperative work, Chapel Hill, S 175–186

    Google Scholar 

  12. Linden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput 7(1):76–80

    Article  Google Scholar 

  13. Linden G, Smith B (2017) Two decades of recommender systems at Amazon.com. IEEE Internet Comput 21(3):12–18

    Article  Google Scholar 

  14. Breese JS, Heckerman D, Kadie C (1998) Empirical analysis of predictive algorithms for collaborative filtering. In: Cooper GF, Moral S (Hrsg.) UAI’98: Proceedings of the 14th conference on Uncertainty in artificial intelligence, Madison, S 43–52

    Google Scholar 

  15. Sarwar B, Karypis G, Konstan J, Riedl J (2000) Analysis of recommendation algorithm for E-Commerce. In: Jhingran A, Mason JM, Tygar D (Hrsg) EC’00: Proceedings of the 2nd ACM conference on Electronic commerce, Minneapolis, S 158–167

    Google Scholar 

  16. Hartigan JA (1975) Clustering algorithms. Wiley, Hoboken

    Google Scholar 

  17. Xue G-R, Lin C, Yang Q, Xi W, Zeng H-J, Yu Y, Chen Z (2005) Scalable collaborative filtering using cluster-based smoothing. In: Baeza-Yates R, Ziviani N (Hrsg) SIGIR’05: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, Salvador, S 114–121

    Google Scholar 

  18. Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Mach Lang 29(2):131–163

    MATH  Google Scholar 

  19. Miyahara K, Pazzani MJ (2000) Collaborative filtering with the simple bayesian classifier. In: Mizoguchi R, Slaney J (Editors) PRICAI’00: Proceedings of the 6th Pacific Rim international conference on Artificial intelligence, Melbourne, S 679–689

    Google Scholar 

  20. Bennett J, Lanning S (2007) The Netflix prize. In: Bennett J, Elkan C, Liu B, Smyth P, Tikk D (Hrsg) Proceedings of KDD Cup and Workshop 2007, San Jose, S 3–6

    Google Scholar 

  21. Koren Y (2009) The BellKor solution to the Netflix grand prize. https://www2.seas.gwu.edu/~simhaweb/champalg/cf/papers/KorenBellKor2009.pdf. Access: 20. Sept. 2022

  22. Töscher A, Jahrer M (2009) The BigChaos solution to the Netflix grand prize. https://www.asc.ohio-state.edu/statistics/statgen/joul_aut2009/BigChaos.pdf. Access: 20. Sept. 2022

  23. Piotte M, Chabbert M (2009) The pragmatic theory solution to the Netflix grand prize. https://www.asc.ohio-state.edu/statistics/statgen/joul_aut2009/PragmaticTheory.pdf. Access: 20. Sept. 2022

  24. Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 42(8):30–37

    Article  Google Scholar 

  25. Stohr EA, Viswanathan S (1999) Recommendation systems: decision support for the information economy. Emerging Information Technologies. Sage Publication, Thousand Oakes, S 21–44

    Google Scholar 

  26. Vijayarani S, Ilamathi J, Nithya S (2015) Preprocessing techniques for text mining – an overview. Int J Comput Sci Commun Netw 5(1):7–16

    Google Scholar 

  27. Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM 18(11):609–664

    Article  MATH  Google Scholar 

  28. Wang B, Wang A, Chen F, Wang Y, Kuo C-C (2019) Evaluating word embedding models: methods and experimental results. APSIPA Transactions on Signal and Information Processing 8:19:1–19:13

    Article  Google Scholar 

  29. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representation in vector space. In: Bengio Y, LeCun Y (Hrsg) International Conference on Learning Representations 2013, Scottsdale, S 1–12

    Google Scholar 

  30. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (Hrsg) NIPS’13: Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, S 3111–3119

    Google Scholar 

  31. Word2Vec. https://code.google.com/archive/p/word2vec/. Access: 20. Sept. 2022

  32. Le Q, Mikolov T (2014) Distributed representation of sentences and documents. In: Xing EP, Jebara T (Hrsg) ICML’14: Proceedings of the 31st International Conference on Machine Learning, Bejing, S 1188–1196

    Google Scholar 

  33. Lu Y-T, Yu S-I, Chang T-C, Hsu JY-j (2009) A content-based method to enhance tag recommendation. In: Kitano H (Hrsg) IJCAI’09: Proceedings of the 21st international joint conference on Artificial Intelligence, Pasadena, S 2064–2069

    Google Scholar 

  34. Ghani R, Fano A (2002) Building recommender systems using a knowledge base of product semantics. In: de Bra P, Brusilovsky P, Conejo R (Hrsg) AH’02: Proceedings of the 2nd International Conference on Adaptive Hypermedia and Adaptive Web Based Systems, Malaga

    Google Scholar 

  35. Rich E (1989) Stereotypes and user modeling. User Models in Dialog Systems 18:35–51

    Article  Google Scholar 

  36. Rich E (1979) User modeling via stereotypes. Cogn Sci 3(4):329–354

    Article  Google Scholar 

  37. Smyth B (2007) Case-based recommendation. The adaptive web: methods and strategies of web personalization. Springer, Berlin, S 342–379

    Google Scholar 

  38. Burke R (2000) Knowledge-based recommender systems. Encyclopedia of Library and Information Systems 69 (Supplement 32):180–200

    Google Scholar 

  39. Burke R (2002) Hybrid recommender systems: survey and experiments. User Model User-Adap Inter 12(4):331–370

    Article  MATH  Google Scholar 

  40. Mobasher B, Jin X, Zhou Y (2004) Semantically enhanced collaborative filtering on the web. In: Berendt B, Hotho A, Mladenic D, van Someren M, Spiliopoulou M, Stumme G (Hrsg) Web Mining: from web to semantic web: first European web mining sorum. Cavtat-Dubrovnik, S 57–76

    Google Scholar 

  41. Portugal I, Alencar P, Cowan D (2018) The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst Appl 97:205–227

    Article  Google Scholar 

  42. Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H (2016) Wide & deep learning for recommender systems. In: Karatzoglou A, Hidasi B, Tikk D, Sar-shalom O, Roitman H, Shapira B, Rokach L (Hrsg) DLRS 2016: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston, S 7–10

    Google Scholar 

  43. Gupta U, Wu C-J, Wang X, Naumov M, Reagen B, Brooks D, Cottel B, Hazelwood K, Hempstead M, Jia B, Lee H-HS, Malevich A, Mudigere D, Smelyanskiy M, Xiong L, Zhang X (2020) The architecture implications of Facebook’s DNN-based personalized recommendation. In: Tullsen D, Esmaeilzadeh H (Hrsg) IEEE International Symposium on High Performance Computer Architecture (HPCA). San Diego, S 488–501

    Google Scholar 

  44. Amazon DSSTNE: Deep Scalable Sparse Tensor Network Engine. https://github.com/amazon-archives/amazon-dsstne. Access: 20. Sept. 2022

  45. Jannach D, Moreira G, Oldridge E (2020) Why are deep learning models not consistently winning recommender systems competitions yet? In: Andrade N, Anelli W, Delic A, Smith J, Scottocornola G (Hrsg) ReySys Challenge’20: Proceedings of the Recommender Systems Challenge. Brazil, S 44–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peuker, A., Barton, T. (2023). Recommendation Systems and the Use of Machine Learning Methods. In: Barton, T., Müller, C. (eds) Apply Data Science. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-38798-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-38798-3_6

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-38797-6

  • Online ISBN: 978-3-658-38798-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics