In Kapitel 5 haben wir die neuroökonomische Zusammenarbeit und ihre möglichen Nutzen für ihre Mutterwissenschaften Verhaltensökonomie und kognitive Neurowissenschaften betrachtet. Diese Zusammenarbeit findet in der wissenschaftlichen Gemeinschaft aber nicht nur Anhänger, auch Kritiker tragen zu der nicht geringen Zahl an Publikationen zum Thema Neuroökonomie bei. Die Gründe, die sie vorbringen, sind vielzählig: Manche Wissenschaftler sehen grundsätzliche Probleme, die immer verhindern werden, dass kognitive Neurowissenschaften und Verhaltensökonomie je zu einer fruchtbaren Kooperation zusammenkommen; andere sehen Probleme, die sich eventuell mit der Zeit lösen ließen, im Augenblick aber eine Zusammenarbeit erschweren.

In diesem Kapitel werden wir die Kritiken, die gegen die Neuroökonomie vorgebracht werden, systematisieren und genauer untersuchen.Footnote 1 Welcher Art sind diese Kritiken, woher rühren sie, und könnten die angesprochenen Probleme gelöst werden? An ihren Kritiken muss sich die Neuroökonomie messen lassen und die Frage nach der Lösbarkeit kann die Zukunft dieser noch jungen Wissenschaft stark beeinflussen.

Um sich besser mit den Kritiken auseinandersetzen zu können, teile ich sie in zwei Kategorien: Die erste Kategorie, die wir in Abschnitt 6.1 betrachten werden, beinhaltet solche Kritiken, die nicht systematische Grundlagenproblematiken ansprechen, sondern vor allem die angewandte Zusammenarbeit von kognitiven Neurowissenschaftlern und Verhaltensökonomen betreffen. Hier geht es um überzogene Versprechungen, die Neuroökonomen machen oder in der Vergangenheit gemacht haben, und die den Ruf der Neuroökonomie ungünstig beeinflusst haben. Zudem wird unzureichende technische Ausrüstung als Grund dafür genannt, dass neuroökonomische Erkenntnisse nicht belastbar sind. Auch neurowissenschaftliche Forschungsstandards geraten in die Kritik, da nach Ansicht mancher Ökonomen die Zahl der Probanden in neurowissenschaftlichen Experimenten zu niedrig sind, um repräsentative Schlussfolgerungen zuzulassen. Dieses Problem ist verbunden mit der Kritik, dass Neurowissenschaftler ihre Forschungsdaten nicht offenlegen, um Überprüfungen zuzulassen. In der fünften Kritik, die wir in dieser Kategorie betrachten werden, geht es um den zu wenig reflektierten Umgang der meisten Neurowissenschaftler mit reverse Inference. Wir werden sehen, wie diese Kritiken ausformuliert werden und wie ihnen von Seiten der Neuroökonomen begegnet wird, oder auch begegnet werden sollte. Bei dieser Art von Kritiken gibt es Hoffnung auf eine Lösung der Probleme.

Die zweite Kategorie, die in Abschnitt 6.2 behandelt wird, beinhaltet Kritiken grundlegender Art, die nicht zuerst die tägliche Arbeit der Wissenschaftler betreffen, sondern in den Eigenschaften der Mutterwissenschaften fußen. Hier sind mögliche Lösungen nicht so leicht gefunden. Es geht dabei um Kritiken, die vor allem von den Ökonomen Faruk Gul und Wolfgang Pesendorfer geäußert wurden. Sie beklagen, dass Neuroökonomen ökonomische Modelle und Theorien missverstehen und sie deshalb als schlecht geeignet ansehen. Ihrer Meinung nach sind ökonomische Definitionen und Modelle aber erfolgreich und wertvoll, weil sie sind, wie sie sind. Änderungen, die Neuroökonomen vorschlagen, sehen sie als nicht hilfreich. In einer zweiten Kritik argumentieren sie für die Irrelevanz neurowissenschaftlicher Erkenntnisse für die Ökonomie, was sie auf deren unterschiedliche Fragestellungen, Ziele, Instrumente und Datenquellen zurückführen. Da die Ökonomie keine Angaben über Gehirnfunktionen macht, können nach Gul und Pesendorfer ökonomische Modelle nicht durch Gehirndaten widerlegt werden. Diese Haltung wird unter anderem von Ökonomen als unnötig isolierend angesehen. Wir werden sehen, dass Guls und Pesendorfers Kritiken an der Neuroökonomie auf ihrer behavioristischen Konzeption von der Ökonomie als Wissenschaft beruht und unvereinbar ist mit der vollständig verschiedenen neuroökonomischen Konzeption der Ökonomie. Diese Differenzen haben fundamentale und unüberwindbare Konsequenzen für die Zusammenarbeit von Ökonomen und Neurowissenschaftlern, die sich nicht mit besserer Kommunikation und gemeinsamen Forschungsstandards lösen lassen.

Guls und Pesendorfers Behaviorismus wird allerdings bei weitem nicht von jedem Ökonomen geteilt und steht selbst seit Jahrzehnten in der Kritik. Doch auch wenn man mit ihrer Einstellung nicht übereinstimmen mag, so bleiben doch Kritiken an der Neuroökonomie, die auch Verhaltensökonomen mit Kooperationsinteresse nicht einfach aus dem Weg räumen können. Diese Probleme werden in der Wissenschaftstheorie seit Jahrzehnten immer wieder diskutiert, wir werden sie in Abschnitt 6.3 näher betrachten. Hier geht es um die Probleme, die bei einer Kooperation so verschiedener Wissenschaften wie Ökonomie und Neurowissenschaften aufkommen, also um Reduktionismus mit all seinen Schwierigkeiten und um Inkommensurabilität, wie Thomas Kuhn sie darlegt. Gerade die Frage, ob neurowissenschaftliche Erkenntnisse dabei hilfreich sind, Modelle zu entwickeln, die nicht einzelne Neuronen oder Neuronenverbände zum Inhalt haben, sondern das Verhalten des Menschen, wurde im 20. Jahrhundert bereits heftig diskutiert, unter anderem von Jerry Fodor, dessen Arbeit wir besonders betrachten werden. Das sind für Neuroökonomen heute relevante Themen, die sie kennen sollten, um sowohl mit Kooperation als auch mit Kritik erfolgreich umgehen zu können.

6.1 Die prozeduralen Kritiken

Im Folgenden werden wir uns drei Kritiken ansehen, die sich mit der täglichen wissenschaftlichen Arbeit, den verwendeten Instrumenten und der Einstellung der Neuroökonomen zur Leistungsfähigkeit der Neuroökonomie befassen. Beginnen wir mit Letzterem.

6.1.1 Die hohen Versprechungen der Neuroökonomen

Diese Kritik, die immer wieder und vor allem von Ökonomen geäußert wird, beanstandet die großen Versprechungen über die potenzielle und zukünftige Leistungsfähigkeit der Neuroökonomie.

Vor allem zu Beginn der neuroökonomischen Kooperation warben ihre Anhänger damit, die großen Fragen und Probleme der Ökonomie und Psychologie künftig lösen zu können und eine neue, umfassende Theorie über den Prozess der menschlichen Entscheidungsfindung aufzustellen. Besonders Colin Camerer, George Loewenstein und Drazen Prelec, die zusammen mehrere Publikationen zum Thema verfassten, zeigten sich so begeistert von der Neuroökonomie, dass sie deren Potenzial sehr optimistisch einschätzten. Sehen wir uns ein Beispiel an:

„In a strict sense, all economic activity must involve the human brain. Yet, economics has achieved much success with a program that sidestepped the biological and cognitive sciences that focus on the brain, in favor of the maximization style of classical physics, with agents choosing consumption bundles having the highest utility subject to a budget constraint, and allocations determined by equilibrium constraints. […] Of course these economic tools have proved useful. But it is important to remember that before the emergence of revealed preference, many economists had doubts about the rationality of choice. […] Jevons (1871) wrote, ‘I hesitate to say that men will ever have the means of measuring directly the feelings of the human heart. It is from the quantitative effects of the feelings that we must estimate their comparative amounts.’ The practice of assuming that unobserved utilities are revealed by observed choices – revealed preference – arose as a last resort, from skepticism about the ability to ‘measure directly’ feelings and thoughts. But Jevons was wrong. Feelings and thoughts can be measured directly now, because of recent breakthroughs in neuroscience. If neural mechanisms do not always produce rational choice and judgment, the brain evidence has the potential to suggest better theory.“ (Camerer et al. 2004, 555–556)

Camerer, Loewenstein und Prelec sehen den Grund dafür, dass die Ökonomie revealed Preference als grundlegendes Modell verwendet, in der letzten Rettung der Ökonomen vor dem Problem, dass sich Gefühle und Gedanken ökonomischer Agenten nicht direkt messen ließen. Das Gehirn wird in der Folge als Black Box behandelt, wodurch es nicht nötig ist, zu messen, was darin vorgeht. Das Modell von revealed Preference ist also laut Camerer, Loewenstein und Prelec lediglich eine Art Behelfsmittel, da die eigentlich erstrebte Einsicht in Gefühle und Gedanken der ökonomischen Agenten nicht zur Verfügung stand. Dieser wissenschaftshistorisch gewagten Hypothese würden einige moderne Ökonomen sicher nicht zustimmen (vgl. z. B. Gul et al. 2008). Für uns an dieser Stelle vor allem interessant ist aber die Behauptung der Autoren, Neurowissenschaftler seien nun aufgrund kürzlicher Durchbrüche in ihrer Wissenschaft dazu in der Lage, Gefühle und Gedanken direkt zu messen. Somit könnte der alte Missstand behoben und endlich ein Modell in der Ökonomie eingeführt werden, das die Befunde aus der Hirnforschung berücksichtigt.

Nun zeigen sich viele Wissenschaftler zwar gerne selbstbewusst, wenn es um die Leistungsfähigkeit ihrer Wissenschaft geht, aber Gefühle und Gedanken von Menschen direkt messen zu können, ist doch überzogen. Die Ökonomen Camerer, Loewenstein und Prelec sind sich aber im Jahr 2004 nicht nur sicher, dass das bereits möglich ist, sie sind auch überzeugt, dass diese Messungen das Potenzial haben, den Ökonomen eine bessere Theorie zu unterbreiten als diejenige, die seit vielen Jahrzehnten als einer der Grundpfeiler der Ökonomie gilt. Dass solche Ansichten vor allem unter Ökonomen Kritik hervorrufen würden, war absehbar. Allen voran Gul und Pesendorfer kritisieren solche Aussagen als nicht zutreffend und für die Ökonomie wenig hilfreich (Gul et al. 2008, 33).

Vielleicht haben auch Camerer und seine Koautoren eingesehen, dass ihre Aussage überzogen war, denn ein Jahr nach dem oben zitierten Artikel veröffentlichten sie einen weiteren, ganz ähnlichen, in dem sie Jevons’ Zitat noch einmal verwendeten, ihre darauffolgenden Ausführungen aber zurückhaltender formulierten (Camerer et al. 2005, 10):

„But now neuroscience has proved Jevons’s pessimistic prediction wrong; the study of the brain and nervous system is beginning to allow direct measurement of thoughts and feelings. These measurements are, in turn, challenging our understanding of the relation between mind and action, leading to new theoretical constructs and calling old ones into question.“

In dieser Version sind die Neurowissenschaften nach Ansicht der Autoren nicht bereits in der Lage, Gefühle und Gedanken direkt zu messen. Vielmehr fängt diese Entwicklung gerade erst an. Dass die direkte Messung von Gefühlen und Gedanken mithilfe der Hirnforschung künftig möglich sein wird, daran halten sie jedoch fest. Außerdem hat sich die Darstellung der neuroökonomischen Einflussmöglichkeiten auf ökonomische Grundlagen geändert. Hier sprechen die Autoren nicht mehr von einem direkten Weg der Erkenntnisse aus den Neurowissenschaften in die Ökonomie. Hier gehen sie einen Umweg über eine Veränderung unseres Verständnisses des Zusammenhangs von Geist und Handlung durch neue Erkenntnisse aus den Neurowissenschaften. Dieses neue Verständnis wiederum wird den Autoren zufolge zu neuen theoretischen Konstrukten führen, die die alten (ökonomischen) in Frage stellen.

Zwar klingt das immer noch so, als wollten Camerer und seine Kollegen mithilfe der Neuroökonomie eine Kuhn’sche Revolution in der Ökonomie anzetteln, ist aber bereits ein Beispiel dafür, dass die hohen Versprechungen nach den Anfangsjahren der Neuroökonomie flacher werden. Die Zeit der großen Motivationspublikationen, die, mitunter durch spektakuläre Versprechungen, möglichst viel Aufmerksamkeit generieren sollten, ist inzwischen vorbei (die genannten Artikel von Camerer und seinen Koautoren stammen immerhin bereits aus den Jahren 2004 und 2005). Das sieht offenbar auch Camerer selbst so, denn in einem Sammelbandbeitrag aus dem Jahr 2008 schreibt er (Camerer 2008a, 44):

„This chapter develops my latest view about grounding economic choice in neural details. This perspective is developing rapidly. As a result, viewpoints expressed only a couple of years ago are updated and informed by the latest data and perspective on methods. Revision of viewpoints, particularly the details of language and its sweep, is common and desirable in empirical science as new data and methods arrive. Early neuroeconomics papers that describe ideas and potential discoveries [e.g., Camerer, Loewenstein, and Prelec, 2005] should therefore not be viewed as logical conclusions derived from mathematical analysis. These early neuroeconomics papers should be read as if they are speculative grant proposals that conjecture what might be learned from studies that take advantage of technological advances.“

Es scheint, als hätten die Neuroökonomen die Kritiken zum Thema überzogene Versprechen verstanden und erkannt, dass sie diese Praxis nicht weiterverfolgen sollten. Was die Neuroökonomen jetzt liefern wollen, sind neue Erkenntnisse, die in täglicher Forschungsarbeit gewonnen werden und die Neuroökonomie nach vorne bringen sollen.

Ein weiteres Beispiel, das auch in diese Kategorie gehört, ist eine ambitionierte Formulierung der Ziele der Neuroökonomie. In einem Beitrag zu einem neuroökonomischen Sammelband aus dem Jahr 2009 schrieb der Neurowissenschaftler Paul Glimcher (Glimcher 2009c, 503): „The goal of neuroeconomics is an algorithmic description of the human mechanism for choice.“ Leider erläutert er nicht, was er unter einer „algorithmic description“ genau versteht, was gegen den Vorwurf überzogener oder schlecht formulierter Versprechungen nicht hilfreich ist. So bleibt den Lesern die Interpretation selbst überlassen. Offenbar sieht Glimcher den menschlichen Entscheidungsprozess als Verfahren, das sich in einzelnen Schritten beschreiben und durchführen lässt. Diese Ansicht kann man durchaus teilen und vielleicht haben die kognitiven Neurowissenschaften auch in mehr oder weniger naher Zukunft genügend Erkenntnisse über die Arbeit des menschlichen Gehirns gewonnen, um diese einzelnen Schritte identifizieren zu können. Dann bleibt aber noch die Frage, ob es den menschlichen Entscheidungsprozess überhaupt gibt. Das klingt, als basierten alle möglichen Entscheidungen auf einem immer gleich ablaufenden Prozess. Dabei werden Hirnprozesse doch gerade von den Kognitionswissenschaften in affektive und kognitive unterschieden, wodurch sich unterschiedliche Wege zu Entscheidungen ergeben, von unterschiedlichen Wegen von Informationen in und aus dem Gehirn ganz abgesehen. Wie sollen all diese feinen Unterschiede algorithmisch beschrieben werden, ohne eine ganze Bibliothek an Beschreibungen zu produzieren? Diese Idee ist jedenfalls erklärungsbedürftig und Glimcher hätte dies weiter ausformulieren sollen. So bleibt es eine schlecht beschriebene und missverständliche Zielformulierung, von der die Leser nicht wissen, wie sie einzuordnen ist. Wollen sich die Neuroökonomen des Vorwurfs erwehren, sie hätten die Ökonomie falsch verstanden und schätzten die Leistungsfähigkeit der kognitiven Neurowissenschaften weit zu optimistisch ein (Gul et al. 2008; Harrison 2008a), sind solche Publikationen nicht hilfreich. Zielformulierungen und Versprechungen wie diese sind nicht nur selbst schnell kritisiert, sie lassen auch Zweifel daran aufkommen, ob sich die Neuroökonomie nicht übernimmt und von vornherein zum Scheitern verurteilt ist. Dieses Bild sollten die Neuroökonomen vermeiden, da ihnen sonst die Unterstützung der Wissenschaftler wegbrechen könnte.

Glimchers Formulierung ist sicherlich ein einfacher Angriffspunkt. Allerdings habe ich diese Zielsetzung in keiner weiteren Publikation, früher oder später, wiedergefunden. Entweder hat er selbst gesehen, dass sie einen vermeidbaren Angriffspunkt bietet, oder er hat sie selbst gar nicht so ernst genommen. Das würde auch erklären, warum er sie (auch später) nicht weiter erläutert hat. Das ist zwar kein Beispiel für gute wissenschaftliche Publikationspraxis, untermauert aber den Verdacht, dass es sich bei Glimchers Aussage um seine persönliche Zielformulierung handelt und nicht um eine in Zement gegossene Zielsetzung einer neuroökonomischen Gemeinschaft.

Doch selbst wenn mehrere Neuroökonomen Glimchers Traum von einer algorithmischen Beschreibung der menschlichen Entscheidungsmechanismen teilten, wäre das ein so starker Kritikpunkt, dass die neuroökonomische Zusammenarbeit aufgegeben werden müsste? Nicht unbedingt. Wenn die Neuroökonomie ein schlecht formuliertes Großziel nicht erreicht, folgt daraus allein nicht, dass sie nicht durch das Erreichen von Zwischenzielen neue, für die Mutterwissenschaften relevante Erkenntnisse liefern kann. Das große Ziel eines Projekts erhält für gewöhnlich viel Aufmerksamkeit, aber auch die Fortschritte, die auf dem Weg dorthin gemacht werden, können selbst wertvoll sein. Kritiker sollten daher vorsichtig damit sein, die gesamte Neuroökonomie zu verwerfen, weil frühe Versprechungen von Zielen oder revolutionären Beiträgen zur Ökonomie überzogen oder schlecht formuliert waren. Ökonom Glenn Harrison spricht von „marketing bloopers“ (Harrison 2008a, 304), die mit einem akademischen Hype daherkommen und die man nicht zu ernst nehmen sollte und schließt (Harrison 2008a, 339):

„We can put the academic marketing of neuroeconomics aside. It almost seems unfair to put some of those claims on display, but […] they have taken hold in many quarters as knowledge claims when they are just ‘chloroform in print’.“

Kurzum, die Neuroökonomen haben in diesem Fall ihre Kritiker zur Kenntnis genommen und halten ihre anfänglichen Versprechen inzwischen selbst für überzogen. Daher sollte dieser Kritikpunkt kein mehr Grund sein, neuroökonomische Ideen rundheraus abzulehnen.

6.1.2 Unzureichende Technik

Die zweite Kritik aus dieser Gruppe beschäftigt sich mit den technischen Instrumenten, die kognitive Neurowissenschaftler für ihre Experimente verwenden. Es wird kritisiert, dass Neuroökonomen die Messtechniken als leistungsfähiger ansehen, als sie tatsächlich sind. Das bedeutet erstens, dass die in Experimenten gewonnenen Daten nicht die Rückschlüsse zulassen, die viele Forscher aus ihnen ziehen möchten und zweitens folgt für die Kritiker daraus, dass die veröffentlichten Experimentdaten und -ergebnisse nicht verlässlich genug sind.

Vor allem die Positronenemissionstomographie (PET) und die funktionelle Magnetresonanztomographie (fMRT) stehen in der Kritik. Wie wir weiter oben (Kap. 5) bereits betrachtet haben, basieren sie auf der Ermittlung hämodynamischer Veränderungen, also Veränderungen im Blutfluss zu aktivierten Neuronen. Da diese Veränderungen eine gewisse Zeit benötigen, um aufzutreten und wieder abzuklingen, haben die hämodynamischen Techniken den Nachteil einer relativ groben zeitlichen Auflösung von mehreren Sekunden. Das bedeutet, dass die Aktivierung, die durch einen erhöhten Blutfluss angezeigt wird, tatsächlich bereits vor einigen Sekunden geschehen ist. Das macht es schwieriger, die Aktivierungen den kognitiven Prozessen zuzuordnen, die in der Experimentaufgabe gefragt sind. Zuschreibungen von Aktivitätsmustern zu bestimmten kognitiven Leistungen könnten also zu ungenau oder gar fehlerhaft ausfallen.

Generell gelten die hämodynamischen Messtechniken aber als relativ genau, was die räumliche Auflösung betrifft, die sich im Rahmen weniger Millimeter bewegt. Doch auch hier sehen Kritiker die Gefahr falscher Zuordnungen (Cabeza et al. 2000, 2) durch die nach den Experimentdurchläufen notwendige Datenvorverarbeitung. Vor allem die Glättung kann dazu führen, dass die räumliche Auflösung zu grob wird, um Organisationen auf neuronalem Level beobachten zu können.Footnote 2

Darüber hinaus stellt sich für manchen Kritiker die Frage, ob die in Experimenten gewonnenen Aktivierungsmuster grundsätzlich aussagekräftig sind. Wie bereits oben beschriebenFootnote 3, liegen Messwerte für aktive Neuronen nur sehr wenig über denen für gerade nicht oder wenig aktive Neuronen, sodass leicht falsch positive Aktivierungen gemeldet werden können. Auch die Filterung von sogenanntem Noise ist nicht einfach zu bewerkstelligen, wie wir gesehen haben. Daten aus einem fMRT könnten also tatsächlich nicht genau genug sein, um Schlüsse über Aktivierungsmuster zuzulassen, meinen Kritiker (Ortmann 2008; Thirion et al. 2007). Der Ökonom Andreas Ortmann (Ortmann 2008, 441) bringt seine Ansichten auf den Punkt: „The colourful pictures suggest more precision than there is and hence invite overselling and hyperbole.“

Einen anderen Aspekt des Problems mit den Messtechniken zeigen die Neurowissenschaftler Roberto Cabeza und Lars Nyberg auf: Sie geben zu bedenken, dass hämodynamische Messtechniken nicht nur technische sondern auch methodische Schwächen besitzen, die die Forschung nicht ignorieren sollte (Cabeza et al. 2000, 3):

„[…] all these techniques have a general limitation: They identify brain regions associated with a certain cognitive process, but do not provide information regarding the functional relations between these regions.“

Daten aus einem fMRT-Computer zeigen die einzelnen Aktivierungen verschiedener Voxel an. Ob diese Aktivierungen aber in irgendeinem Zusammenhang stehen, und wenn ja, in welchem, lässt sich nur anhand dieser Daten nicht klären. Dabei sind Einsichten in die Zusammenhänge zwischen den Aktivierungen verschiedener Hirnregionen essentiell für ein Verständnis der Abläufe kognitiver Prozesse.

Zudem geben Cabeza und Nyberg (Cabeza et al. 2000, 2) zu bedenken, wie wichtig das Experiment-Design bei bildgebenden Verfahren ist. Von ihm hängt ab, ob die gesammelten Daten aussagekräftig sind oder nicht. Die dabei in frühen Zeiten oft verwendete Subtraktionsmethode (s. Abschn. 5.2) halten sie für nicht geeignet, aufgabeninduzierte Aktivierungen korrekt herauszufiltern.

Helfen uns die vielen fMRT-Studien also nicht, kognitiven Prozessen auf die Spur zu kommen? Sind die Aktivierungen, die so anschaulich in bunten Farben dargestellt werden, tatsächlich nur verschwommene und unzuverlässige Einblicke in die Durchblutung des menschlichen Gehirns und daher nicht für wissenschaftlichen Erkenntnisgewinn geeignet? Ganz so schlimm ist es sicher nicht. Sicher hat jede Technik ihre Nachteile und Schwächen. Diese sind den Neurowissenschaftlern und Psychologen auch seit Jahrzehnten bewusst, die meisten dieser Art von Kritiken stammen immerhin aus den Anfangsjahren der Verwendung bildgebender Verfahren. Heute werden bereits in der Einführungsliteratur in das experimentelle neurowissenschaftliche Arbeiten die technischen Nachteile und systematischen Probleme der einzelnen Messtechniken sowie Lösungswege aus der gängigen Praxis angesprochen.Footnote 4

Das Problem mit der relativ schlechten zeitlichen Auflösung ist charakteristisch für Verfahren, die auf dem BOLD-Effekt beruhen und kann daher nicht gänzlich ausgeschaltet werden. Doch seit Einführung der Scanner in die tägliche medizinische und neurowissenschaftliche Arbeit in den 1990er Jahren hat sich die Technik der Scanner, Computer und Softwares stark verbessert. Arbeitete man zu Beginn noch mit 1,5 T-Scannern, sind heute 12 T-Scanner keine Seltenheit. Das hat die Genauigkeit der Messergebnisse in den vergangenen zwanzig Jahren verbessert. Ob eine weitere Erhöhung der Feldstärke zu noch genaueren Ergebnissen führen wird, darüber wird noch debattiert, aber generell ist eine weitere Verbesserung der Technik in Zukunft zu erwarten. Mit der Verbesserung der Technik hat sich auch das Problem etwas entschärft, dass die Werte aktivierter Neuronen nur geringfügig höher sind als die nicht aktivierter Neuronen. Feinere Messungen erkennen die Unterschiede besser.

Das Gleiche gilt für die Frage nach der räumlichen Auflösung. Auch sie wurde durch die Verbesserung der Technik erhöht. Zudem ist die Datenvorverarbeitung heute ein durchdachter, standardisierter Prozess, der von Software gesteuert wird, die von professionellen Unternehmen zu diesem Zweck geschrieben wurde. Vermutlich war das zu Beginn der fMRT-Studien weniger der Fall, doch werden heute beispielsweise nur noch zwei Standardkoordinatensysteme für die Normalisierung (also die Übertragung der Daten in eine genormte GehirnschabloneFootnote 5) verwendet. Das schränkt die Variabilität der Normalgehirne zwischen Studien stark ein, was eines der kritisierten Probleme war. Auch für die statistische Analyse von Aktivierungsdaten zum intra- und intersubjektiven Vergleich gibt es inzwischen weltweit angewandte Standardverfahren. Dabei wird zwar kritisiert, dass das meistgenutzte, automatische Verfahren, die voxel-based Morphometry, nicht so akkurat ist wie das ältere, halbautomatisierte Verfahren, bei dem manuell alle Voxel einer interessierenden Region ausgewählt werden müssen, bei jedem Probanden und jedem Scannerdurchlauf. Die Menge an Daten, die moderne fMRT-Computer produzieren, würde jedoch eine Menge an manuell durchzuführenden Prozessen bedeuten, die die Anwendung des halbautomatischen Verfahrens impraktikabel macht. Die automatische Analyse bietet dagegen eine oft angewandte, daher erprobte Alternative, die in den vergangenen Jahrzehnten weiterentwickelt wurde und die sich sicherlich auch zukünftig weiter verbessern wird. Inzwischen wird sie auch seit einigen Jahren in der medizinischen Diagnostik eingesetzt, was nicht ohne Genehmigungsverfahren eingeführt wurde. So schlecht scheint es also um ihre Akkuratesse nicht bestellt zu sein.

Generell sind Kritiken, die sich auf die Technik der Messinstrumente bezieht, eher wenig spannend. Technik wird ständig verbessert, bereits jetzt sind die bildgebenden Verfahren leistungsfähiger als in ihren Anfangsjahren und werden auch in Zukunft leistungsfähiger werden. Kritik an der Technik ist heute schwächer als damals und morgen vielleicht schon gar nicht mehr relevant. Interessanter sind da die genannten Bedenken von Cabeza und Nyberg, die sich mit methodischen Problemen bei Studien mit bildgebenden Verfahren befassen. Bildgebende Verfahren können lediglich Bilder von Aktivierungszuständen liefern, aber keine Aussage über funktionale Zusammenhänge aufzeigen. Auch dieses Problem lässt nicht gänzlich ausräumen, aber abschwächen. In den vergangenen zwanzig Jahren haben neurowissenschaftliche und psychophysiologische Forscher viel Erfahrung im Umgang mit bildgebenden Verfahren gesammelt. Sommer (Sommer 2010, 240) berichtet, dass zu Beginn der bildgebenden Studien noch gar nicht viel darüber bekannt war, wie genau das gemessene Signal zustande kam oder welche neuronalen Prozesse ihm zugrunde liegen. Hinzu kam, dass die anfänglichen Studien nicht sehr theoriebasiert waren und trotzdem hohe Publikationszahlen bekamen. Es kamen daher bald Vorwürfe auf, die kognitiven Neurowissenschaftler produzierten bedeutungslose Farbbilder, die sie nicht einmal selbst interpretieren konnten; sogar Vergleiche mit der Phrenologie wurden laut. Diese Vorwürfe konnten in der wissenschaftlichen Gemeinschaft inzwischen entschärft werden. Nicht nur sind die Grundlagen des BOLD-Effekts und der Vielzahl an zellphysiologischen Veränderungen bekannt, die das Signal im fMRT ausmachen, auch sind die Studien heute in ihrem wissenschaftlichen Standard und Anspruch gestiegen.

Natürlich können fMRT-Bilder keine Abhängigkeiten oder Kausalitäten aufzeigen, aber das allein ist kein Problem. Problematisch ist es, wenn trotzdem Schlüsse aus fMRT-Studien allein gezogen werden, die Aussagen über funktionelle Zusammenhänge machen. Die angesprochenen Erfahrungen im Umgang mit bildgebenden Verfahren und die Standardisierung von Studien hat dazu geführt, dass sich die neurowissenschaftliche Gemeinschaft der Vor- und Nachteile dieser Verfahren bewusst ist und heute anders an Studien herangeht als noch vor zwanzig Jahren. Dabei hat sich eben auch herausgestellt, dass es für die Erforschung bestimmter Fragen sinnvoll sein kann, mehr als ein Messinstrument für eine Studie zu verwenden. Daten von bildgebenden Verfahren können beispielsweise erweitert werden um Daten aus Läsionsstudien. Das kostet Zeit und Geld, erhöht aber die Leistungsfähigkeit der Studien. Allerdings können auch mehr Experimente mit mehr Messinstrumenten diesen grundlegenden Nachteil von fMRT-Geräten nicht beheben. Die Scanner können keine funktionellen Organisationen im Gehirn ermitteln und dürfen dafür auch nicht verwendet werden.

Die gewachsene Erfahrung im Umgang mit fMRT-Studien hilft auch, das Problem mit der Subtraktionsmethode zu beheben: Heute sind sich die Forscher sicher, dass sie für den Einsatz in fMRT-Studien nicht geeignet ist und haben andere Methoden entwickelt, den durch die Experimentaufgabe ausgelösten Aktivierungen auf die Spur zu kommen. Beispiele dafür sind das in Abschnitt 5.2 besprochene faktorielle oder parametrische Experimentdesign. Dieses Problem besteht heute also nicht mehr und mit weiterer Erfahrung werden auch hier noch weitere Ideen auf den Tisch kommen.

Insgesamt können die systematischen Nachteile und Grenzen der bildgebenden Verfahren ein Problem und Anlass zu Kritik sein, wenn sich die Forscher dieser Grenzen nicht bewusst sind oder sie bewusst überschreiten. Eine grundlegende Aufklärung über die Funktionsweise und methodischen Stärken und Schwächen der Instrumente ist ohne Frage geboten, am besten gleich während des Studiums. Gleichzeitig sind Kontrollen untereinander in der wissenschaftlichen Gemeinschaft wichtig, um ungestützte Schlussfolgerungen oder inadäquate Experimentdesigns nicht zu fördern. Das bringt uns zum nächsten Set an Kritiken, das sich mit den wissenschaftlichen Methoden und Standards beschäftigt, die Neurowissenschaftler in ihren Studien befolgen.

6.1.3 Neurowissenschaftliche Forschungsstandards

Neben den Bedenken, die die Technik betreffen, fragen vor allem Ökonomen nach der Qualität der Verfahren und Standards, die in neuroökonomischen Experimenten Anwendung finden.

Die Kritik betrifft die Anzahl an Probanden, die für gewöhnlich für Studien mit bildgebenden Verfahren, vor allem fMRT, rekrutiert werden. Harrison (Harrison 2008a, 311) hat mehrere Studien betrachtet und kommt zu dem Schluss: „It is common to see studies where the sample size is less than 10, and rarely does one see much more than a dozen or so.“ Es ist nicht erstaunlich, dass er als Verhaltensökonom das als eine geringe Zahl empfindet, arbeiten ökonomische Experimente doch meist mit einer viel größeren Zahl an Versuchspersonen. Die Frage, die sich daher vor allem Verhaltensökonomen stellen, ist, ob sich aus einer so geringen Zahl an Versuchspersonen überhaupt Daten gewinnen lassen, die Schlussfolgerungen zulassen, wie Neuroökonomen sie ziehen? Könnten nicht kleine Unterschiede in den funktionellen Aktivierungsmustern so übersehen oder unterschätzt werden? (Vgl. Ortmann 2008, 438–439). Nicht selten reagieren Neuroökonomen auf diese Kritik mit der Aussage, dass mehr Versuchspersonen keinen positiven Effekt auf die Schlussfolgerungen haben (vgl. Bhatt et al. 2005, 432). Tatsächlich findet sich eine ähnlich lautende Einschätzung auch in Lehrbüchern zum Experimentieren mit bildgebenden Verfahren (Sommer 2010, 254–255):

„Eine letzte Frage bei der Planung einer fMRT-Studie betrifft die notwendige Stichprobengröße. Aufgrund der relativ hohen Kosten einer fMRT-Messung möchte man diese natürlich so gering wie möglich halten, ohne Gefahr zu laufen, einen vorhandenen Effekt nicht nachweisen zu können. Bei einer Größe von 20–25 Personen erreichen sowohl die Reliabilität, also die Verlässlichkeit der Messung, als auch die Effektstärken ein befriedigendes Maß, die mit größeren Stichproben nur noch langsam zunehmen.“

Eine Zahl an Versuchspersonen, wie Ökonomen sie aus ihrer eigenen experimentellen Forschung gewohnt sind, scheint also in Studien mit bildgebenden Verfahren kein Segen zu sein. Beachtet man aber die im Zitat empfohlene Anzahl von 20 bis 25 Versuchspersonen, so übersteigt sie die von Harrison berichteten Zahlen von zehn oder selten mehr als ein Duzend deutlich. Die Studie von Zaki und Mitchell (Zaki et al. 2011), die wir in Kapitel 5 betrachtet hatten, startete mit 19 Teilnehmern, wobei die Daten von 4 davon nicht modelliert werden konnten, sodass Analyse und Diskussion auf den Daten von 15 Versuchspersonen beruhen. Andere Stichproben zeigen zum Teil zwischen 14 und 19 Probanden.Footnote 6 Es finden sich aber auch Studien mit 20 oder 30 Versuchspersonen.Footnote 7 Sind das nun ausreichend viele, damit Reliabilität und Effektstärken der Messungen ein befriedigendes Maß erreichen, wie Sommer es fordert? Es stellt sich die Frage, wie Sommer auf die Empfehlung von 20 bis 25 Versuchspersonen kam. Der zitierte Text gibt darüber keine weitere Auskunft. Auf Anfrage erläutert Sommer,Footnote 8 dass frühere Studien tatsächlich teilweise nur sechs Teilnehmer umfassten, was aus seiner Sicht Stichprobenfehler sehr wahrscheinlich macht. Seine Empfehlung von 20 bis 25 Versuchspersonen beruht zum einen auf einzelnen Studien, die unter anderem durch Simulationen solche Werte nahelegten. Zum anderen beschreibt er die Empfehlung als eine Art gewachsene und in der wissenschaftlichen Fachgemeinschaft akzeptierte Größe. Dabei spielen die hohen Kosten für Messungen in Scannern eine Rolle. Auch wenn sie theoretisch kein Faktor bei der Festlegung der Probandenzahl sein sollten, sind sie es in seinen Augen wegen der begrenzten Mittel in der Praxis aber durchaus. Erfahrungsgemäß, sagt Sommer, sollten große, bedeutende Effekte bei Studien mit 25 Versuchspersonen aufgetaucht sein. Tatsächlich beobachtet er aktuell einen Trend zu größeren Stichprobengrößen, was er auch im Zusammenhang mit der Replikationskrise der jüngsten Zeit sieht. Dazu wurden gerade einige Studien veröffentlicht, die die Auswirkungen der Stichprobengröße auf die Effektstärke und Leistungsfähigkeit von fMRT-Studien untersuchen. Eine solche Studie von Geuter et al. (Geuter et al. 2018) untersucht das auf Grundlage der Daten von knapp 500 Probanden, die aus dem Human Connectome Project (HCP)Footnote 9 stammen. Auch die Autoren berichten von großen Diskussionen in den vergangenen Jahren, inwiefern Studien mit kleinen Stichprobengrößen die Reliabilität neurowissenschaftlicher Studien unterminieren. Für ihre eigene Studie ziehen sie funktionelle Daten aus mehreren Tasks des HCP heran. Die ursprünglichen Studien des HCP hatten die Probanden Aufgaben zum Arbeitsgedächtnis, motorische Aufgaben, Emotionsverarbeitung und Glücksspiel in fMRT-Scannern durchführen lassen. Mit den Daten von mindestens 471 ProbandenFootnote 10 als Population untersuchten Geuter et al. die Fähigkeit kleiner Stichprobengrößen, die Effekte, die in der Gesamtpopulation beobachtet wurden, ebenfalls zu erfassen. Dazu nahmen sie K = 100 verschiedene Stichproben aus der Gesamtpopulation mit den Größen: N = 10, 20, 40, 60, 80 und 100. Diese Größen sollten typische Stichprobengrößen von fMRT-Studien nachempfinden. Für die verschiedenen Experimentaufgaben (Arbeitsgedächtnis, Motorik, Emotionsverarbeitung und Glücksspiel) wurde über die festgelegten Stichprobengrößen berechnet, welche Anzahl an Probanden mindestens nötig ist, um eine empirische Leistungsfähigkeit von 50%, 80%, 90% und 95% zu erreichen. Die empirische Leistungsfähigkeit wurde veranschlagt als der Bruchteil von K = 100 Wiederholungen der Stichprobengröße N, bei dem ein gegebenes Voxel bei p = 0.001 signifikant war. Dieser letzte Wert stammt offenbar vom Signifikanzniveau α = 0.001 des einseitigen Einstichproben-t-Test, mit dem die Autoren die Leistungsfähigkeit statistisch berechneten. Die Ergebnisse für die Aufgaben zu Arbeitsgedächtnis, Motorik und Emotionsverarbeitung ähnelten sich darin, dass der größte Anstieg an Leistungsfähigkeit zwischen einer Stichprobengröße von N = 20 und N = 40 verzeichnet wurde. Für N > 40 stieg die Leistungsfähigkeit stetig an. Eine Leistungsfähigkeit von 50% wurde für manche Hirnregionen bereits zwischen N = 10 und N = 20 errechnet. Mit steigender Stichprobengröße erhöhte sich auch die Zahl über den Schwellenwert hinaus aktivierter Voxel, was bedeutet, dass Aktivierungen in manchen Hirnregionen erst bei höheren Stichprobengrößen erfasst wurden. Für manche Hirnregionen wurde eine Leistungsfähigkeit von 90% bei Stichprobengrößen zwischen N = 60 und N = 100 erreicht. Das gilt besonders für das Arbeitsgedächtnis-Experiment. Die Ergebnisse für die Studie mit der Glücksspielaufgabe weichen von denen der übrigen Aufgabentypen ab. Hier sind viel größere Stichprobengrößen nötig, um eine für die Autoren akzeptable Leistungsfähigkeit zu erreichen. Manche Hirnregionen erreichen 80% Leistungsfähigkeit mit einer Stichprobengröße von N > 20, während andere, wie das ventrale Striatum, bei einer Größe von N > 40 eine Leistungsfähigkeit von 50% erreichen. Erst bei N > 100 werden 80% und mehr Leistungsfähigkeit erreicht. Für Neuroökonomen sollten diese Ergebnisse besonders interessant sein, da sich ihre Experimentaufgaben zumeist um Spiele drehen. Geuter et al. Relativieren diese hohen Zahlen jedoch mit der Annahme, dass, da gerade das ventrale Striatum als Schlüsselregion für Value Learning angesehen wird, die niedrigen Werte für Leistungsfähigkeit wahrscheinlich mit dem im ursprünglichen Glücksspiel-Experiment verwendeten Block-Design zusammenhängen. Warum oder inwiefern sie bei beispielsweise einem Event-related-Design andere Ergebnisse erwarten würden, sagen die Autoren leider nicht. Generell schließen sie, dass für individuelle fMRT-Studien eine Stichprobengröße von N = 40 empfehlenswert ist, wenn man sowohl die Reliabilität als auch die Kosten betrachtet. Das sind deutlich mehr Probanden, als in den in dieser Arbeit betrachteten Studien rekrutiert wurden. Neuroökonomen sollten diese Kritik also ernst nehmen. Dafür hilft eine konsequente Kontrolle der Publikationen nicht nur durch Peer-Reviewer, sondern auch durch die wissenschaftliche Gemeinschaft, die schlechte Forschungsqualität nicht zum Wohle spannender Ergebnisse unter den Tisch fallen lassen darf. Immerhin lässt sich sagen, dass die Neurowissenschaften dieses Problem offenbar inzwischen selbst sehen und Studien in diese Richtung betreiben, um klare statistische Richtwerte zu erhalten. Umsetzen, allerdings, müssen sie die guten neuen Vorsätze auch.

6.1.4 Schlechtes Forschungsdatenmanagement

Diese Kritik dreht sich um die Veröffentlichungspolitik der Neurowissenschaftler bezüglich der Rohdaten ihrer Experimente. Ökonomen beklagen, dass Neurowissenschaftler ihre Messdaten nicht preisgeben und so die Nachvollziehbarkeit ihrer Experimente verringern.

Forscher wie Ortmann (Ortmann 2008) und Harrison (Harrison 2008a) sehen es als skandalös, dass Neuroökonomen ihre Rohdaten nicht veröffentlichen, auch nicht auf Nachfrage. Harrison (2008a, 315) berichtet seine Erfahrungen:

„A serious issue arises, however, from one of the dark secrets of this field: no neural data is apparently ever made public. For some years requests were made to prominent authors in neuroeconomics, particularly economists with significant and well-earned reputations in experimental economics. Not one has provided data. In some cases the economist could not get the neuroscience co-author to release data, perhaps reflecting traditions in that field. […] In many cases the economist in question gladly provided any ‘behavioural’ non-image data, although there are several prominent publications for which even those data are being withheld ‘pending further analysis and publications’.“

Dabei sieht Harrison in dieser Intransparenz ein größeres Problem, das die Vertrauenswürdigkeit der gesamten Neuroökonomie gefährdet. Denn ohne Datenveröffentlichung keine Reproduktionsmöglichkeit und ohne Reproduktionsmöglichkeit keine Nachprüfbarkeit der Daten und Schlüsse. Daher kann auch kein Vertrauen in Daten, Wissenschaftler, ja die gesamte Neuroökonomie entstehen (Harrison 2008b, 539):

„Maybe we need to spell out why data sharing is such an issue. Trust in the results of a field arises through replication of inferences, and without sharing of data there can simply be no replication. And here we mean ‘replication of inferences under alternative structural and stochastic statistical assumptions’, not replication in the sense of one neuroeconomist thinking he gets the same finding as another. This is, after all, the problem with data privacy: the rest of us are unable to critically examine the importance of statistical assumptions in driving results.“

Auch die Antwort von Neuroökonomen auf diese Kritik findet er nicht hilfreich (Harrison 2008b, 539):

„Camerer (2008[b]) does not deny the data privacy problem, but still asks us to trust that results and interpretations wouldn’t change if we looked at the data ourselves. Unacceptable.“

Nicht nur aus Harrisons Sicht ist dieser Vorschlag tatsächlich inakzeptabel. Allein auf die korrekte Arbeit der Wissenschaftler zu vertrauen, ist keine Lösung, zumal für jemanden, der ihren Schlussfolgerungen nicht traut (siehe unten). Zudem werden Replikationen ja nicht in erster Linie dazu genutzt, die Vertrauenswürdigkeit der Wissenschaftler zu überprüfen, sondern experimentelle Phänomene zu reproduzieren und Auswirkungen kleinerer oder größerer Änderungen am Experimentdesign zu untersuchen. Das ist ein wichtiges Hilfsmittel, um die Experimentergebnisse und Schlussfolgerungen zu stützen oder falsifizieren. Ganz klar sind solche Vorhaben jedoch hinfällig ohne Vergleichsdaten und das könnte, da hat Harrison recht, ein Problem für die Neuroökonomie werden.

Es ist allerdings auch nicht der Fall, dass gar keine Daten veröffentlicht werden. Denn es werden durchaus Daten veröffentlicht, heute mehr als noch vor ein paar Jahren, was sicher mit der steigenden Zahl an Wissenschaftsförderern zu tun, hat, die Open-Data-Mandate in ihre Förderrichtlinien integrieren, wie beispielsweise die EU-Kommission. Schon länger relativ detailliert veröffentlicht werden die vorgenommenen Schritte der Datenvorverarbeitung, das haben wir auch in Kapitel 5 gesehen. Diese sind genauso wichtig wie die Messdaten selbst, nicht nur, weil nur so nachvollziehbar wird, was mit den Daten passiert ist und ob sie nach den geltenden, akzeptierten Standards verarbeitet wurden, sondern auch, weil gerade die Datenvorverarbeitung, wie wir gesehen haben, Anlass zu Kritik über die Zuverlässigkeit der Analysen gibt. Ob sie allerdings ausreichen für potenzielle Replikationsstudien, bei denen die Daten neu analysiert oder ganz neu erhoben und verglichen werden können, ist eine andere Frage. Hierfür sind die genauen Messergebnisse des Experiments interessant, um eigene Messungen vergleichen zu können, oder auch mit demselben Datensatz neue Analysen zu neuen Fragestellungen durchzuführen, wie Geuter et al. in ihrer Studie (Geuter et al. 2018, s. o. Abschn. 6.1.3). Replikationen sind in etablierten Experimentalwissenschaften Normalität und ein probates Mittel, um Hypothesen und Theorien weiter auszutesten. Daher wäre eine Null-Publikations-Politik hinderlich für die Neuroökonomie auf dem Weg zur anerkannten Wissenschaft. Allerdings müssen für Datenpublikationen die rechtlichen Rahmenbedingungen stimmen. Bei neuroökonomischen Studien fallen sensible persönliche Daten an, die unbedingt ausreichend anonymisiert werden müssen, bevor sie veröffentlicht werden können. Außerdem müssen Vorgaben von Geldgebern bedacht werden. Nicht alle Förderer erlauben oder gar fordern eine Veröffentlichung von Daten. Gerade bei privatwirtschaftlichen Geldgebern sollen aus Studienergebnissen für gewöhnlich vermarktbare Produkte entstehen, was durch die Veröffentlichung von Forschungsdaten gefährdet werden könnte. Vermutlich will auch kein privater Geldgeber die kostenintensiv generierten Daten veröffentlicht wissen, bevor sie nicht auf eine mögliche Verwertung für weitere Forschungszwecke analysiert worden sind. Vielleicht lassen sich mit einem Datensatz auch noch andere Forschungsfragen beantworten und Publikationen generieren. Daher ist es nicht verwunderlich, wenn Harrison unter vielen Artikeln den Hinweis findet, dass die Daten nicht veröffentlicht werden mit Rücksicht auf mögliche zukünftige Publikationen. Damit will ich sagen: Es ist nicht ausgeschlossen, dass einige Forschungsteams ihre Daten veröffentlichen würden, es aber nicht dürfen.

Dieses gesamte Themengebiet um Veröffentlichung von Forschungsdaten ist in jüngster Zeit stark in Bewegung gekommen. Große Forschungsförderer wie die Deutsche Forschungsgemeinschaft DFG fordern in ihren Leitlinien zum Umgang mit Forschungsdaten, diese „in der eigenen Einrichtung oder in einer fachlich einschlägigen, überregionalen Infrastruktur“ (DFG 2015, 1) für mindestens 10 Jahre zu archivieren. Damit sind sowohl ganze Einrichtungen als auch einzelne Forscher gezwungen, sich über ihr Forschungsdatenmanagement Gedanken zu machen und die bisher nicht selten anzutreffende Praxis der Selbstarchivierung auf USB-Sticks in der Schreibtischschublade zu ersetzen. Die Zahl der Institutionen und Fachbereiche, die solche fachspezifischen Datenrepositorien anbieten, wächst derzeit rasch, was immer mehr Forschern aus immer mehr Fachgebieten die Möglichkeit gibt, ihre Daten professionell zu archivieren, um sie auch in zehn Jahren noch abrufen zu können. Das ist eine Voraussetzung dafür, die Daten in einem zweiten Schritt zur Nachnutzung durch dritte Forschungseinrichtungen zur Verfügung zu stellen. Dazu bedarf es dann nicht nur fachkundiger Rechenzentren mit großen Speicherkapazitäten. Momentan gibt es vereinzelt Wissenschaftler, die ihre Forschungsdaten aus Experimenten selbst auf ihrer eigenen Webseite veröffentlichen. Das birgt natürlich nicht nur die Frage nach der Auffindbarkeit der Daten, vor allem rechtliche Fragen sind derzeit ein Problem, gerade bei personenbezogenen oder personenbeziehbaren Erhebungen. Denn niemand möchte Patientendaten in Repositorien zur freien Verfügbarkeit für jeden interessierten Forscher sehen. Besonders DNA-Sequenzen sind hier ein stark diskutiertes Thema. Solche Probleme können auch Daten aus neurowissenschaftlichen Experimenten betreffen. Kurzum: In der Problematik mit nicht zugänglichen, nicht überprüfbaren Experimentdaten sind die Gegebenheiten gerade sehr in Bewegung, die Forschungslandschaft verändert sich stark hin zu mehr Transparenz und Zugänglichkeit. Es sind allerdings noch rechtliche Fragen zu klären, bevor sich jeder Interessierte die Rohdaten von neuroökonomischen Experimenten herunterladen und selbst beurteilen kann.

Harrison (Harrison 2008b, 539) beklagte auch, dass es durch eine Geheimhaltung der Daten unmöglich wird, zu beurteilen, welchen Wert die statistischen Annahmen haben, die Schlussfolgerungen zugrunde liegen („[…] the rest of us are unable to critically examine the importance of statistical assumptions in driving results.“). Das mag schon stimmen. Wenn man als Leser dem statistischen/logischen Vermögen oder der wissenschaftlichen Integrität des Forschungsteams nicht traut, dann scheinen Messdaten eine relevante Informationsquelle. Diese Überlegung übersieht aber die Tatsache, dass, wie wir in Abschnitt 5.2, S. 115–118, gesehen haben, die statistische Auswertung der Messdaten heute automatisiert von Softwares spezialisierter internationaler Anbieter durchgeführt wird. Die Versiertheit des Forschungsteams im Berechnen statistischer Größen hat also keinen sehr großen Einfluss auf die statistische Auswertung der Rohdaten, denn welche Werte wie bewertet werden, ist in der Software festgelegt. Das Forschungsteam sollte daher immerhin eine für ihre Zwecke passende Software auswählen. Für welche sie sich entschieden haben, ist normalerweise relativ detailliert in den zur Studie gehörenden Publikationen beschrieben (siehe beispielsweise Zaki et al. 2011) und kann daher von allen Lesern eingesehen und beurteilt werden.

6.1.5 Reverse Inference als gängige Praxis?

Neben den Bedenken, Neurowissenschaftler könnten ihre Daten nicht korrekt verwerten, gibt es Kritiken, die Neurowissenschaften pflegten eine Kultur der logisch falschen Schlüsse.

Der kognitive Psychologe Russell Poldrack weist in einem Artikel auf ein Problem hin, das mit der Praxis der reverse Inference einhergeht und von den Nutzern bildgebender Verfahren stärker beachtet werden sollte.

Wie reverse Inference in bildgebenden Studien funktioniert, erklärt Poldrack (Poldrack 2006, 59) so:

„Functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI) provide a measure of local brain activity in response to cognitive tasks undertaken during scanning. These data allow the cognitive neuroscientist to infer something about the role of particular brain regions in cognitive function. However, there is increasing use of neuroimaging data to make the opposite inference; that is, to infer the engagement of particular cognitive functions based on activation in particular brain regions. […]

The usual kind of inference that is drawn from neuroimaging data is of the form ‘if cognitive process X is engaged, then brain area Z is active’. Perusal of the discussion sections of a few fMRI articles will quickly reveal, however, an epidemic of reasoning taking the following form:

  1. (1)

    In the present study, when task comparison A was presented, brain area Z was active.

  2. (2)

    In other studies, when cognitive process X was putatively engaged, then brain area Z was active.

  3. (3)

    Thus, the activity of area Z in the present study demonstrates engagement of cognitive process X by task comparison A.

This is a ‘reverse inference’, in that it reasons backwards from the presence of brain activation to the engagement of a particular cognitive function.“

In vielen Studien sieht Poldrack die reverse Inference informell verwendet, um das Auftreten unerwarteter Aktivierungen in einer bestimmten Hirnregion mit Verweis auf andere Studien zu erklären, in denen eine Aktivierung derselben Region aufgetreten war. Allerdings sieht er auch viele Studien, in denen die reverse Inference ein zentrales Merkmal ist. Auf die eine oder andere Weise verwendet beinahe jede bildgebende Studie reverse Inference. Poldrack weist darauf hin, dass diese Form der Schlussfolgerung deduktiv nicht gültig ist und tatsächlich einen logischen Fehlschluss begeht. Das obenstehende Schlusssystem wäre deduktiv gültig, würde (2) aussagen, dass Hirnregion Z dann und nur dann aktiv war, wenn der kognitive Prozess X beteiligt war. Davon kann aber nicht ausgegangen werden.

Neben diesem logischen Problem sieht Poldrack (Poldrack 2006, 60, 63) die reverse Inference aber auch als ein nützliches Hilfsmittel bei der Entdeckung neuer Fakten über die den kognitiven Prozessen zugrundeliegenden neuronalen Mechanismen. Reverse Inference könnte neue Hypothesen anregen, die dann in weiteren Experimenten getestet werden könnten. Allerdings sollte sie mit Vorsicht angewandt werden, wie eine Veranschaulichung anhand des Satzes von Bayes zeigt (Poldrack 2006, 60):

figure a

where COGX refers to the engagement of cognitive process X and ACTZ refers to activation in region Z. (It should be noted that the prior P(COGX) is always conditioned on the particular task being used, and should more properly be termed P(COGX|TASKy); however, for the purposes of simplicity I have omitted this additional conditionalization.)“

Die Wahrscheinlichkeit, dass eine mit reverse Inference nach oben zitiertem Schema (1) bis (3) geschlussfolgerte kognitive Funktion X vorliegt, wird hier also als bedingte Wahrscheinlichkeit berechnet: Die Wahrscheinlichkeit, dass der kognitive Prozess X vorliegt, gegeben eine Aktivierung in Hirnregion Z. Diese berechnet sich nach Bayes als Division mit dem Produkt aus der bedingten Wahrscheinlichkeit für eine Aktivierung in Hirnregion Z gegeben der kognitive Prozess X, und der Anfangswahrscheinlichkeit für das Auftreten des kognitiven Prozesses X als Dividend. Der Divisor ist die Summe aus der bedingten Wahrscheinlichkeit für eine Aktivierung in Hirnregion Z gegeben kognitiver Prozess X multipliziert mit der Anfangswahrscheinlichkeit für das Auftreten von X, und der bedingten Wahrscheinlichkeit für eine Aktivierung in Hirnregion Z gegeben das Nicht-Vorhandensein des kognitiven Prozesses X multipliziert mit der Anfangswahrscheinlichkeit für das Nicht-Auftreten von X. Der Divisor kann auch zusammengefasst werden zur Basiswahrscheinlichkeit P(ACTZ), also der Wahrscheinlichkeit für das Auftreten einer Aktivierung in Hirnregion Z.

Poldrack verdeutlicht mit dieser Aufstellung, dass aus COGX → ACTZ nicht einfach ACTZ → COGX gefolgert werden kann. Um die reverse Inference dennoch als Hilfsmittel einsetzen zu können, schlägt Poldrack also vor, sich nach der Wahrscheinlichkeit zu richten, mit der die reverse Inference zutrifft, also mit der bedingten Wahrscheinlichkeit für den kognitiven Prozess X gegeben die Aktivierung in Hirnregion Z. Nach Poldrack hängt der Grad der Überzeugung in einer reverse Inference sowohl von der Selektivität der neuronalen Antwort (d. h. dem Verhältnis einer prozess-spezifischen Aktivierung zu der allgemeinen Wahrscheinlichkeit einer Aktivierung dieser Hirnregion über alle Aufgaben) ab, als auch von der A-priori-Überzeugung in die Beteiligung des kognitiven Prozesses X gegeben die Manipulation durch die Experimentaufgabe [P(COGX)].

Die Darstellung in Bayes Formel vereinfacht Poldrack die Aufstellung zweier Möglichkeiten, wie das Vertrauen in die reverse Inference verstärkt werden kann (Poldrack 2006, 62–63): Erhöhe die Selektivität der neuronalen Antwort der interessierenden Hirnregion, oder erhöhe die A-priori-Wahrscheinlichkeit des fraglichen kognitiven Prozesses. Die Selektivität liegt außerhalb der Kontrolle der Forschungsteams, obwohl Poldrack eine Schätzung immerhin für möglich hält. Auch die Analyse eines Sets an Hirnregionen, die als Netzwerk funktionieren, könnte eine größere Selektivität bieten, ebenso wie eine kleiner gewählte interessierende Hirnregion mehr Zutrauen bieten könnte.

Die A-priori-Wahrscheinlichkeit für die Beteiligung der interessierenden Hirnregion dagegen unterliegt zumindest zu einem gewissen Grad der Kontrolle der Forschungsteams. Sie können oft Experimentaufgaben so auswählen, dass diese Wahrscheinlichkeit maximiert wird. So wird auch die Wahrscheinlichkeit für das Zutreffen der reverse Inference erhöht. Poldrack schränkt aber ein, dass diese Strategie eher für Studien anwendbar ist, die darauf zielen eine spezifische reverse Inference zu erreichen, als für solche, bei denen die reverse Inference verwendet wird, um post hoc eine Erklärung für ein bestimmtes Ergebnis zu liefern.

Grundsätzlich ist Poldrack ein Befürworter der Verwendung von reverse Inference in bildgebenden kognitiven Studien. Er hält sie für nützlich, um neue Hypothesen aufzustellen, denen in weiteren Studien nachgegangen werden kann. Trotzdem warnt er beim Umgang mit reverse Inference zur Vorsicht, vor allem dort, wo die A-priori-Wahrscheinlichkeit für die Beteiligung eines kognitiven Prozesses und die Aktivierungs–Selektivität einer Hirnregion niedrig sind. Dann ist die Gefahr, aus einer Abduktion einen Fehlschluss zu machen, besonders hoch.

Harrison (2008b, 536–538) seinerseits sieht ebenfalls den Wert und die Nützlichkeit, den solches Schließen für das Fortkommen der Neurowissenschaften beziehungsweise der Neuroökonomie hat, hält diese Praxis der Wissensgenerierung über formelle Fehlschlüsse aber für keine gute Basis für die Neuroökonomie. Er befürchtet, dass die Praxis der reverse Inference in den einzelnen Fällen als harmlos angesehen wird, aber im Ganzen dann kein stabiler Wissensfortschritt entsteht, wie es die Neuroökonomen planen, sondern der Verlust an Logik sich aufsummiert, sodass die Daten generell an Verlässlichkeit einbüßen. Er sieht zwar eine Aufmerksamkeit für und Auseinandersetzung mit diesem Problem in den kognitiven Neurowissenschaften, in der neuroökonomischen Literatur findet er diese Problematik jedoch oft beschönigt, statt beachtet. Hier sollten die Neuroökonomen von den Neurowissenschaftlern lernen und dieselbe Vorsicht walten lassen, die Poldrack anmahnt.

An dieser Stelle schließe ich mich Harrison an. Natürlich ist es keine gute Idee, reverse Inference als allgemein gültige Schlussmöglichkeit einzusetzen und die Ergebnisse als Grundlage, nicht Ausgangspunkt, weiterer Forschungen zu verwenden. Gerade die Neuroökonomen müssen die wissenschaftlichen Praktiken mehrerer Mutterwissenschaften zusammenbringen, sodass auch andere Forscher aus den Mutterwissenschaften überzeugt werden können. Ich stimme mit Harrison überein, dass die Anwendung von reverse Inference in den jeweils einzelnen Studien als nicht Besorgnis erregend erscheinen mag, der Gesamtschaden aber erheblich sein kann. Poldrack ist also auf dem richtigen Weg, wenn er reverse Inference nicht als ausreichende Erkenntnisquelle für Post-hoc-Erklärungen von Aktivierungen sieht, sondern als Hilfsmittel für das Aufstellen und Überprüfen neuer Hypothesen. Dafür liefert er ein gutes theoretisches Hilfsmittel mit seiner Formulierung des Satzes von Bayes. Sie kann gut veranschaulichen, wie groß die Wahrscheinlichkeit für das Zutreffen der Schlussfolgerung aus einer reverse Inference in etwa ist und bietet damit eine Grundlage zur Einschätzung, ob man über sie zu neuer, wenn auch probabilistischer, Evidenz gelangen kann. Jeder Forscher muss sich über die Instabilität von reverse Inference im Klaren sein und bei Schlüssen aus reverse Inference in Publikationen klar darauf hinweisen, dass sie auf reverse Inference beruhen.

6.2 Die systematischen Kritiken

Nach den prozeduralen werden wir nun die systematischen Kritiken betrachten, mit denen sich die Neuroökonomie auseinandersetzen muss. Sie sind von substantiellerer Art und stellen alle mehr oder weniger gravierende Probleme für die Zusammenarbeit von Verhaltensökonomen, kognitiven Neurowissenschaftlern und Psychologen dar. Im Gegensatz zu den Kritiken, die wir gerade betrachtet haben, betreffen sie nicht nur die tägliche Arbeit der Neurowissenschaftler und Ökonomen. Ihre Wurzeln liegen vielmehr bereits in der Auffassung der verschiedenen Wissenschaftler darüber, wie ihre Wissenschaft funktioniert, beziehungsweise funktionieren soll. Mit ihren Gedanken darüber haben sich vor allem die Ökonomen Gul und Pesendorfer hervorgetan, die zum Teil harsche Kritik an der Neuroökonomie üben. Die im Folgenden besprochenen Kritiken stammen daher aus ihrem Artikel „The Case for Mindless Economics“ aus dem Sammelband „The Foundations of Positive and Normative Economics“ (Caplin et al. 2008).

6.2.1 Ökonomen sind keine Therapeuten

Generell kritisieren Gul und Pesendorfer die unterschiedliche Herangehensweise von Ökonomen und Neuroökonomen, wenn es um entscheidungstheoretische Fragen, Begriffe oder Konzeptionen geht. Als Beispiel zeigen sie eine neuroökonomische und eine ökonomische Definition von Risikoaversion (Gul et al. 2008, 5):

„‘Much aversion to risks is driven by immediate fear responses, which are largely traceable to a small area of the brain called the amygdala.’ [Camerer, Loewenstein, Prelec, 2004: 567]

‘A decision maker is (globally) risk averse, … if and only if his von Neumann-Morgenstern utility is concave at the relevant (all) wealth levels.’ [Ingersoll, 1987: 37]“

Gul und Pesendorfer machen darauf aufmerksam, dass beide Definitionen unterschiedliches, aber spezialisiertes Vokabular verwenden: Für Ingersoll ist Risikoaversion eine Einstellung gegenüber Lotterien, während Risikoaversion für Camerer, Loewenstein und Prelec ein viel breiterer Begriff zu sein scheint, der sich ebenso auf Entscheidungen anwenden ließe, bei denen es um Flugreisen geht. Gul und Pesendorfer betonen, dass es keinen Sinn macht, zu fragen, welche Definition das bessere Verständnis von Risikoaversion liefert, oder welche zutreffender sei. Es ist in ihren Augen wenig sinnvoll, darauf zu beharren, die ökonomische Auffassung von Risikoaversion sei falsch, während die psychologische richtig sei. Sie sind aber der Meinung, dass Neuroökonomen genau das tun. Das beziehen sie vor allem auf die neuroökonomische Kritik an der ökonomischen Wohlfahrtsanalyse, die Gul und Pesendorfer für charakteristisch für die Neuroökonomie halten. Für sie ist Neuroökonomie definiert als (Gul et al. 2008, 3):

„We identify neuroeconomics as research that implicitly or explicitly makes either of the following two claims:

Assertion 1: Psychological and physiological evidence (e.g., descriptions of hedonic states and brain processes) is directly relevant to economic theories. In particular, it can be used to support or reject economic models or even economic methodology.

Assertion 2: What makes individuals happy (“true utility”) differs from what they choose. Economic welfare analysis should use true utility rather than the utilities governing choice (“choice utility”).“

Mit Gul und Pesendorfers Kritik an Assertion 1 werden wir uns weiter unten noch beschäftigen, an dieser Stelle geht es vor allem um Assertion 2, die die neuroökonomische Einstellung zur ökonomischen Wohlfahrtsanalyse beschreibt. Sie widerspricht deutlich dem Revealed-Preference-Modell, einem der Grundpfeiler der neoklassischen Ökonomie. Es ist nicht verwunderlich, dass Gul und Pesendorfer das nicht begrüßen. Ihrer Meinung nach (Gul et al. 2008, 5) missverstehen die Neuroökonomen die ökonomische Definition von Wohlfahrt als eine Glückseligkeitstheorie. Und als eine solche Glücksseligkeitstheorie macht sie in den Augen der Neuroökonomen einen schlechten Job. Daher wollen sie gegen diese gängige ökonomische Definition der Wohlfahrtstheorie Beweise finden. Gul und Pesendorfer machen aber klar, dass die ökonomische Standarddefinition von Wohlfahrt adäquat ist, da die klassische Ökonomie keine, wie Gul und Pesendorfer es nennen, therapeutischen Ambitionen hat. Sie versucht ihrer Meinung nach nicht, die Entscheidenden zu verbessern, sondern versucht, zu bewerten, wie ökonomische Institutionen (wie Organisationsstrukturen oder Handelsmechanismen) das Verhalten von Agenten herbeiführen, gleichgültig ob dieses Verhalten psychologisch gesund ist oder nicht. Daher ist die ökonomische Wohlfahrtstheorie keine Theorie darüber, wie die Menschen Glückseligkeit erreichen können. Neuroökonomen aber erwarten offenbar, dass jüngste Entwicklungen in Psychologie und Neurowissenschaften alte philosophische Fragen danach, was Glück ist, beantworten könnten, wobei aus diesen Antworten eine neue Auffassung von Wohlfahrt entstehen soll. Damit, meinen Gul und Pesendorfer, wäre vielleicht Therapeuten oder Medizinern dabei geholfen, das Glück ihrer Patienten zu erhöhen, aber auf die Ökonomie sind sie nicht anwendbar. Die Neuroökonomen missverstehen in ihren Augen nicht nur die Wohlfahrtskonzeption der Ökonomen, sondern auch ihr Verhältnis zum ökonomischen Agenten (Gul et al. 2008, 6):

„Neuroeconomic welfare analysis assumes a relationship between the economist and economic agents similar to the therapist-patient relationship. Normative economics is therefore identified with effective therapy. […] Neuroeconomists seek a welfare criterion that is appropriate for an economist who is part social scientist and part advocate/therapist, someone who not only analyzes economic phenomena but also plays a role in shaping them.“

Sie nehmen also an, Neuroökonomen sehen Ökonomen als Helfer oder Betreuer bei der Steigerung der Wohlfahrt ökonomischer Agenten. Diese Rolle, oder auch nur die Intention, diese Rolle einzunehmen, weisen Gul und Pesendorfer aber weit von sich und allen Ökonomen. Sie sehen in der neuroökonomischen Verwerfung der ökonomischen Wohlfahrtstheorie sogar Tendenzen zur Paternalisierung der Beziehung von ökonomischen Institutionen zu Individuen. Das machen sie an einem Zitat von Kahneman fest (Gul et al. 2008, 6):

„For example, Kahneman [1994: 20] suggests that there is ‘a case in favour of some paternalistic interventions, when it is plausible that the state knows more about an individual’s future tastes than the individual knows presently.’ Hence, the goal of welfare economics and perhaps the goal of all economics is to affect changes that result in greater happiness to all.“

Um dieses Ziel zu erreichen, sehen Gul und Pesendorfer die Neuroökonomen bereit, die Hilfe des Staates einzuholen, der gegebenenfalls Fakten verbirgt und im Namen der zukünftigen Ichs der Individuen Entscheidungen trifft. Mit solchen Methoden, und der Rolle, in die sie die Ökonomie durch die Neuroökonomie gedrängt sehen, hat die tatsächliche Ökonomie ihrer Meinung nach nichts zu tun. In ihren Augen ist das Standard-Wohlfahrtskriterium der Ökonomen nicht dazu gedacht, die Befürwortung therapeutischer Interventionen zu erleichtern. Sie erläutern, dass die ökonomische Herangehensweise von einer Trennung der Rolle des Ökonomen als Sozialwissenschaftler von der Rolle als Berater oder Fürsprecher ausgeht, die manche Ökonomen einnehmen. Diese Trennung sehen sie als wertvoll, weil sie den Ökonomen ermöglicht, verschiedene Institutionen zu analysieren und zu vergleichen, ohne dass sie sich über schwierige philosophische Fragen (wie die oben erwähnte, danach, was Glück ist) einig sein müssen.

Gul und Pesendorfer kritisieren hier also zwei Dinge: Sie sehen bei den Neuroökonomen a) ein Missverständnis von Ökonomie als aktive, verändernde Therapie, und b) den Wunsch nach Paternalisierung der Beziehung von ökonomischen Institutionen zu Individuen. Für Gul und Pesendorfer sind Ökonomen nicht halb Sozialwissenschaftler, halb Therapeut, sie analysieren ökonomische Phänomene und formen sie nicht mit.

Die Kritik in a) kann man gelten lassen. An Universitäten und ähnlichen Einrichtungen forschende Ökonomen sehen es grundsätzlich nicht als ihre Aufgabe, mithilfe ihrer Wohlfahrtsanalyse ökonomischen Individuen in therapeutischer Weise dabei zu helfen, ihr Glück zu erhöhen. Die Rede von Therapie, die Gul und Pesendorfer hier ins Spiel bringen, ist allerdings ein bisschen polemisch. Zudem darf nicht vergessen werden, dass diese Kritik von Gul und Pesendorfer nur dann zutrifft, wenn die oben genannte Assertion 2 über die Neuroökonomie korrekt ist. Die stammt allerdings allein aus der Feder von Gul und Pesendorfer und entspricht lediglich ihrer Einschätzung der Neuroökonomie. Die Aussagen in Assertion 2 haben Gul und Pesendorfer nicht mit einem Text von Neuroökonomen belegt. Sie schaffen sich also die Grundlage für ihr eigenes Argument selbst, die dadurch nicht viel wert ist.

In Fall von Kritikpunkt b) legen Gul und Pesendorfer eine Belegstelle von Kahneman vor, in der er für die Anwendung paternalistischer Interventionen eintritt. Für solche Zwecke sehen die Autoren die Wohlfahrtskonzeption der Ökonomie nicht gedacht und nicht geeignet. Das ist nach ihrer Ansicht weder die Aufgabe noch die Kompetenz der Ökonomen und ihrer Wohlfahrtsanalyse. Allerdings frage ich mich an dieser Stelle, warum Gul und Pesendorfer dieses Kahneman-Zitat bringen. Es ist mir nicht bekannt, dass sich Kahneman als besonderer Verfechter der Neuroökonomie hervorgetan hätte, vor allem nicht 1994, als die Neuroökonomie noch höchstens ein entfernter Traum war. Sein Zitat steht auch in keinem zwingenden Zusammenhang mit neuroökonomischen Ideen. Was also haben sich Gul und Pesendorfer an dieser Stelle gedacht? Mir drängt sich der Eindruck auf, die Autoren bauen hier, beabsichtigt oder unbewusst, eine (extreme) Position zum Strohmann auf und bekämpfen ihn. Das beeindruckt vielleicht manche Leser, ist aber tatsächlich keine belastbare Kritik gegenüber der Neuroökonomie.

6.2.2 Neuroökonomie ist irrelevant für Ökonomie

In der folgenden Kritik geht es um Guls und Pesendorfers Argumentation für eine grundsätzliche Unvereinbarkeit von Neuroökonomie und Ökonomie, die sie auf die unterschiedliche Beschaffenheit der beiden Wissenschaften zurückführen. Sie halten die Unterschiede für so gravierend, dass sie unüberwindbar sind. Ihre Argumentation ist gegen die Assertion 1 gerichtet, die Gul und Pesendorfer der Neuroökonomie zuschreiben (siehe oben Abschn. 6.2.1, S. 152).

Gul und Pesendorfer stimmen nicht mit der darin beschriebenen Idee überein. Für sie ist klar, dass psychologische und physiologische Erkenntnisse aus den Neurowissenschaften oder der Psychologie keine direkte Relevanz für die Ökonomie haben und auch nicht dazu verwendet werden können, ökonomische Modelle oder Methoden zu stützen oder zu verwerfen. Gul und Pesendorfer halten die Neuroökonomie und ihre Ideen und Erkenntnisse vielmehr für irrelevant für die Ökonomie. Das machen sie an zwei Gründen fest: Erstens, die Neuroökonomie spricht keine ökonomischen Probleme an, und zweitens, die Ökonomie spricht keine neurowissenschaftlichen Probleme an. Der zweite Punkt ist vielleicht noch etwas interessanter als der erste, aber zusammen ergeben sie ein Bild von der Neuroökonomie und auch der Ökonomie, wie Gul und Pesendorfer sie sehen.

Beginnen wir mit dem ersten Aspekt: Die Neuroökonomie spricht die ökonomischen Probleme nicht an. Gul und Pesendorfer (Gul et al. 2008, 9–11) stellen klar, dass die Neuroökonomie und die Ökonomie unterschiedlichen Fragestellungen nachgehen, unterschiedliche Ziele verfolgen, dabei unterschiedliche Mittel anwenden und mit unterschiedlichen Quellen und Arten von Daten arbeiten. So sehen sie als zentrale Fragen der Neuroökonomie: Wie treffen Individuen ihre Wahlen? Wie effektiv sind sie darin, diejenigen Entscheidungen zu treffen, die ihr eigenes Wohlergehen steigern? Dagegen ist das zentrale Anliegen der Ökonomen ihrer Meinung nach, zu analysieren, wie die Entscheidungen verschiedener Individuen mit verschiedenen gegebenen Zielen innerhalb einer bestimmten institutionellen Umgebung interagieren. Diese unterschiedlichen Zielsetzungen verlangen laut Gul und Pesendorfer nach unterschiedlichen Herangehensweisen, Begriffsdefinitionen, Daten und Hilfsmitteln, die deshalb so unterschiedlich sind, weil sie sich in der jeweiligen Weise für die jeweilige Disziplin als nützlich herausgestellt haben. Gul und Pesendorfer sind aber der Meinung, dass Neuroökonomen das nicht einsehen oder verstehen. Ihrer Ansicht nach sehen die Neuroökonomen bei Psychologie, Neurowissenschaften und Ökonomie die gleichen Zielsetzungen. Als Beispiel dient ihnen ein Zitat aus einem Aufsatz von Camerer, Loewenstein und Prelec (Camerer et al. 2004, 572–573), in dem die Autoren von Studenten berichten, die sich erstaunt darüber zeigen, dass die gleichen Begriffe, beispielsweise “trust”, in unterschiedlichen Disziplinen unterschiedlich definiert sind. Sie erläutern darauf:

„It is possible that a biological basis for behavior in neuroscience, perhaps combined with all-purpose tools like learning models or game theory, could provide some unification across social sciences.“

Gul und Pesendorfer (Gul et al. 2008, 10–11) betonen, dass Ökonomie und Psychologie keine konkurrierenden Modelle liefern, man sie also auch kaum miteinander vergleichen kann. Die Spieltheorie ist für sie nicht, wie im Zitat genannt, ein Allzweckwerkzeug, sondern ein für Ökonomen nützlicher Formalismus, um all die strategisch irrelevanten Details von einem Kontext abzustreifen, die für Psychologen eine zentrale Rolle spielen. Was also für die eine Wissenschaft nützlich ist, muss es nicht auch für eine andere sein. Die Neuroökonomie, und auch andere kognitiven Wissenschaften arbeiten laut Gul und Pesendorfer mit physiologischen und psychologischen Daten, weil diese für sie nützlich sind. Für ihre Forschungsfragen ist es wichtig, in welcher Weise sich Hirnregionen funktionell spezialisieren oder miteinander interagieren. Für die Arbeit von Ökonomen ist das ihrer Meinung nach nicht wichtig. Informationen über die Stärke von Insula-Aktivitäten sehen sie als irrelevant für die Beurteilung des Verhaltens von ökonomischen Agenten. Die Daten, mit denen Ökonomen arbeiten, sind nicht physiologisch, die Mittel nicht bildgebend. Die Daten und Mittel der Neuroökonomen schon. Nach Gul und Pesendorfer bearbeitet die Neuroökonomie Fragen mit Mitteln, die für die Beantwortung ökonomischer Fragen nicht interessant, nicht relevant sind. Die Neuroökonomie kann den Ökonomen keine interessanten, verwertbaren Erkenntnisse liefern, so ihre Meinung. Ein von den Neuroökonomen Camerer, Loewenstein und Prelec (Camerer et al. 2004, 573) formuliertes Ziel, die direkte Messbarkeit von Präferenzparametern durch neurowissenschaftliche Mittel zu vereinfachen („asking the brain, not the person“), sehen sie als unrealistisch. Sie sind fest überzeugt, dass die Neuroökonomen kein Beispiel für die Beobachtung von Entscheidungsparametern durch die Anwendung bildgebender Verfahren vorweisen können und auch keine Ideen haben, wie das bewerkstelligt werden könnte. Es gibt ihrer Meinung nach keine Kriterien, um ein Gehirn beispielsweise bei einem Abschlagsfaktor von δ = 0,97 von einem Gehirn bei δ = 0,7 unterscheiden zu können.

Der Tenor bei Gul und Pesendorfer ist: Die Fragestellungen und Herangehensweisen der Neuroökonomie sind interessant und nützlich für die Neuroökonomie, aber für die Ökonomie haben sie keinen Nutzen, sie helfen Ökonomen bei ihren Fragestellungen nicht weiter. Schlimmer noch, selbst wenn Ökonomen Interesse an Gehirndaten zu ökonomischen Problemen hätten, könnten ihnen die Neuroökonomen keine brauchbaren Informationen liefern, die Neuroökonomie ist schlicht irrelevant für die Ökonomie. Das hat auch mit dem anfangs genannten zweiten Aspekt zu tun, dass Ökonomen keine neurowissenschaftlichen Probleme behandeln. Das ist ein zentrales Argument für Gul und Pesendorfer, das sich zu betrachten lohnt. Im Grunde lautet es zusammengefasst: Das ökonomische Standardmodell kann nicht mit physiologischen Gehirndaten widerlegt werden, denn die ökonomische Definition von Rationalität macht keinerlei Aussagen über physiologische Hirnprozesse. Oder, wie Gul und Pesendorfer (Gul et al. 2008, 21) es formulieren:

„Rationality in economics is not tied to physiological causes of behavior, and therefore, the physiological mechanisms cannot shed light on whether a choice is rational or not in the sense economists use the term. Brain mechanisms by themselves cannot offer evidence against transitivity of preferences or any other choice-theoretic assumption. Therefore, evidence that utility maximization is not a good model of the brain cannot refute economic models.“

Da Expected Utility Theory ausschließlich Vorhersagen über Entscheidungsverhalten macht, kann ihre Validität nach Gul und Pesendorfer auch ausschließlich anhand von Daten über Entscheidungen beurteilt werden. Physiologische Daten aus der Neuroökonomie sehen sie dafür als nutzlos. Daher können Neuroökonomen mithilfe ihrer neurowissenschaftlichen Studien auch nicht gegen ökonomische Modelle argumentieren. Anlass für dieses Argument sind Kritiken, die Gul und Pesendorfer bei Neuroökonomen finden, die sich darum drehen, dass das ökonomische Menschenbild unrealistisch ist, da sich die Prozesse, die es ökonomischen Agenten zuschreibt, nicht im Gehirn echter Menschen wiederfinden lassen. Sie beziehen sich auf zwei Textstellen von Rabin und Camerer. Rabin (Rabin 1998, 24) schreibt:

„Economists have traditionally assumed that, when faced with uncertainty, people correctly form their subjective probabilistic assessments according to the laws of probability. But researchers have documented many systematic departures from rationality in judgement under uncertainty.“

Während Rabins Textpassage keinen Bezug zu neurowissenschaftlichen Erkenntnissen nimmt (dafür ist sie auch bereits ein wenig zu alt), findet sich bei Camerer (Camerer 2005c, 1) die Idee zur Überprüfung ökonomischer Ideen durch die Neuroökonomie:

„For example, when economists think about gambling they assume that people combine the chance of winning (probability) with an expectation of how they will value winnig and losing (‘utilities’). If this theory is correct, neuroeconomics will find two processes in the brain – one for guessing how likely one is to win and lose, and another for evaluating the hedonic pleasure and pain of winning and losing and another brain region which combines probability and hedonic sensations. More likely, neuroeconomics will show that the desire or aversion to gamble is more complicated than that simple model.“

Gul und Pesendorfer sehen an dieser Textstelle wieder den Fehler der Neuroökonomen, die Herangehensweisen, Ziele und Mittel von Ökonomie und Neuroökonomie gleichzusetzen, um dann herauszufinden, welche Wissenschaft die korrekte Antwort liefert. Sie betonen, dass die Ökonomie aber nunmal keine Wissenschaft über das menschliche Gehirn ist (Gul et al. 2008, 4):

„The standard economic model of choice is treated as a model of the brain and found to be inadequate. Either economics is treated as amateur brain science and rejected as such, or brain evidence is treated as economic evidence to reject economic models.“

Die Ökonomie nach Gul und Pesendorfer macht keine Aussagen über das Gehirn, wie sie immer wieder betonen, und ist auch nicht dafür gedacht, Gehirnprozesse zu beschreiben oder zu erklären. Dass sich also die im ökonomischen Modell beschriebenen Prozesse nicht unbedingt 1:1 im menschlichen Gehirn wiederfinden lassen, finden Gul und Pesendorfer weder verwunderlich noch verwerflich. Rabin solle sich also nicht wundern, wenn das ökonomische Standardmodell kein gutes Modell des menschlichen Geistes ist, schließlich nehmen Ökonomen gar nicht an, dass Konsumenten in Wahrscheinlichkeiten denken oder den Satz von Bayes so gut kennen wie Wirtschaftsstudenten. Ökonomische Modelle sind ihrer Meinung nach durch ökonomische Variablen, Preise, Quantitäten und anderem mit der Realität verbunden, nicht über ihre Modellage des Entscheidungsprozesses von Individuen.Footnote 11 Die Validität der ökonomischen Modelle wird laut den Autoren ohnehin ausschließlich mit Daten über Entscheidungen belegt. Die behavioralen Prozesse der menschlichen Entscheidungsfindung auf Regionen und Prozesse im Gehirn zu kartieren, ist in ihren Augen die Aufgabe von Neurowissenschaftlern und nicht von Ökonomen. Nach Meinung von Gul und Pesendorfer muss sich die Ökonomie also keine Gedanken darüber machen, ob ihr Modell eine gute Abbildung der tatsächlich im Gehirn vorgehenden Prozesse ist. Selbst wenn Neuroökonomen diese Prozesse in der Zukunft detailliert darstellen könnten, brauchen sich Ökonomen nicht damit zu beschäftigen, da die Ökonomie sich nicht damit beschäftigt, was im Gehirn von Individuen vorgeht. Eines zwar räumen sie Neuroökonomen für die Zukunft ein: Sie sehen die Möglichkeit, dass Erkenntnisse aus der Neuroökonomie Ökonomen inspirieren könnten, andere Modelle zu erstellen, aber ökonomische Modelle verwerfen, können sie nicht.

Gul und Pesendorfer sprechen ein paar spannende Aspekte an und sind sehr klar in ihren Aussagen. Dabei tritt hervor, welche Vorstellung sie von der Neuroökonomie und, noch interessanter, von der Ökonomie haben. Beispielsweise sind sie davon überzeugt, dass physiologische Daten für die Ökonomie irrelevant, nutzlos sind. Das liegt ihrer Meinung nicht nur an einem geringen Erkenntnisstand in der Neuroökonomie, sondern ist ein grundsätzlicher Zustand, der sich auch in Zukunft nicht ändern wird. Er resultiert für Gul und Pesendorfer aus den unterschiedlichen Zielen, die Ökonomie und Neuroökonomie mithilfe unterschiedlicher Mittel, anhand unterschiedlicher Fragestellungen verfolgen. Ökonomen können mit physiologischen Daten, salopp gesagt, in ihren Augen einfach nichts anfangen. Diese Einstellung teilen nicht alle Ökonomen. Auch solche, die keine ausgesprochenen Anhänger der Neuroökonomie sind, warnen davor, mögliches Potenzial so einfach vom Tisch zu fegen. Harrison und Ross (Harrison et al. 2010, 194) beispielsweise sehen die Neuroökonomie zwar durchaus kritisch, finden Guls und Pesendorfers Haltung jedoch zu drastisch:

„We reject the view that neural data are irrelevant to economics as willfully and obstructively isolationist. But we also reject the free-disposablility view that any data are useful data until proven otherwise, implying that we should just collect the data anyway and decide later if they were useful. That is a poor model for advancement of study in any field. We welcome NE as a potential contributor to formal modeling of the processes by which agents make economic decisions, though we emphasize that this project is in its infancy […].“

Sie sehen durchaus nicht jede Datenquelle als nützlich, doch neuronale Daten von vornherein als nutzlos anzusehen, ist für Harrison und Ross eine hinderlich isolationistische Haltung. An einer anderen Stelle verwendet Harrison (Harrison 2008a, 339) in diesem Zusammenhang auch den Ausdruck „needlessly isolationist“. Tatsächlich bedeutet die Annahme, dass Neuroökonomie und Ökonomie unterschiedliche Fragestellungen, Mittel und Ziele haben, nicht notwendigerweise auch, dass die Ökonomie grundsätzlich niemals aus Erkenntnissen aus der Neuroökonomie wird profitieren können. Sicherlich gibt es eine Grenze zwischen Ökonomie und Kognitionswissenschaften und das nicht ohne Grund. Von vornherein aber Erkenntnisse aus dem jeweils anderen Gebiet als grundsätzlich und unveränderbar irrelevant zu behandeln, ist, da stimme ich mit Harrison überein, unnötig abweisend. Zwar räumen Gul und Pesendorfer in einem Halbsatz (Gul et al. 2008, 22; s. o. S. 159) ein, Erkenntnisse neuroökonomischer Art könnten Ökonomen dazu inspirieren, andere Modelle zu schreiben. Dieses Zugeständnis geht allerdings nicht so weit wie das theoretische Potenzial, das beispielsweise Harrison und Ross der Neuroökonomie zuschreiben. Es geht nicht einmal unbedingt von einer direkten Beeinflussung, einer direkten Nutzung gegenseitiger Erkenntnisse aus. Das ist zu schwach, um die Aussage von der Irrelevanz neurologischer Daten zu relativieren.

Diese Einstellung, keinen Einfluss aus den Kognitionswissenschaften zuzulassen, stimmt mit dem sich allgemein abzeichnenden Bild Guls und Pesendorfers von der Ökonomie überein. Sie lassen nicht nur keine neurologischen Daten als Erkenntnisquelle zu, sie sind auch der Meinung, dass es die Ökonomie im Grunde nicht zu interessieren braucht, warum handelnde Individuen die Präferenzen haben, die sie zeigen. Diese Ignoranz der Hintergründe zeichnet ein sehr konservativ neoklassisches Bild der Ökonomie, mit dem sich auch beispielsweise Friedman vor sechzig Jahren hätte identifizieren können.Footnote 12 Sie scheinen die gesamte Ökonomie als aus Standardökonomie, wie sie es nennen, bestehend zu sehen. Diese Sicht umfasst aber bereits seit Jahrzehnten nicht mehr die gesamte Wissenschaft Ökonomie, falls sie das jemals getan hat. Tatsächlich interessieren sich beispielsweise in der Verhaltensökonomie zahlreiche Ökonomen für die Frage, warum Individuen die Präferenzen zeigen, die sie zeigen, beziehungsweise welche Motive sie für ihre Entscheidungen haben. Mit dem Ausschluss solcher Fragen ignorieren Gul und Pesendorfer einen ganzen Teilbereich der Ökonomie, der nicht mit ihrer Auffassung von den Zielen, Mitteln und Daten zeitgenössischer Forschung übereinstimmt. Da Guls und Pesendorfers Argumentation, wie wir gesehen haben, aber auf diesen Annahmen, diesem Bild der Ökonomie aufbaut, können sie auch nicht für diejenigen Ökonomen sprechen, die in der Tat an solchen Fragen forschen. Stattdessen können sie nur diejenigen Ökonomen vertreten, die wie sie selbst einer konservativ neoklassischen Standardökonomie angehören, die an verhaltensökonomischen Zielen, Mitteln und Daten nicht nur nicht interessiert sind, sondern sie sogar ablehnen, da sie sie offenbar nicht als Teil der Ökonomie ansehen. Als ökonomischer Leser, der vermutlich die hauptsächliche Zielgruppe von Guls und Pesendorfers Artikel darstellt, kann man ihren Argumenten also zustimmen, muss es aber nicht. Man kann ihre Argumente mit Leichtigkeit nicht teilen, wenn man nicht mit ihren Prämissen, in diesem Fall ihrem Bild von der modernen Ökonomie, übereinstimmt. Welche gravierenden Folgen das für die neuroökonomische Zusammenarbeit hat, werden wir unten in Abschnitt 6.2.3 sehen.

Zunächst aber wenden wir uns noch einem anderen Punkt zu, der bei der Lektüre des Artikels auffällt und weitere Fragen aufwirft bezüglich der gewählten Argumentationsstrategie der beiden Autoren: Ein Grund, den Gul und Pesendorfer dafür nennen, dass physiologische Daten keine Relevanz für die Ökonomie haben, ist, dass die Standardökonomie andere Ziele mit anderen Mitteln verfolgt als die Neuroökonomie, und die Ökonomie keine physiologischen Annahmen macht. Das ökonomische Standardmodell macht keine Angaben darüber, was im Gehirn der handelnden Individuen vorgeht. Es wurde auch nicht auf physiologischen Überlegungen begründet und kommt ohne Informationen aus den Neurowissenschaften aus, was Gul und Pesendorfer auch als Grund dafür ansehen, dass neuronale Daten das ökonomische Modell nicht verwerfen können. Daher sagen sie:

„Rationality in economics is not tied to physiological causes of behavior, and therefore, the physiological mechanisms cannot shed light on whether a choice is rational or not in the sense economists use the term.“ (Gul et al. 2008, 21)

So weit, so bekannt. Interessanterweise sagen sie zu diesem Thema auch:

„Neuroscience evidence cannot refute economic models because the latter make no assumptions and draw no conclusions about the physiology of the brain. Conversely, brain science cannot revolutionize economics because the former has no vehicle for addressing the concerns of economics.“ (Gul et al. 2008, 4)

Die Kognitionswissenschaften haben kein „vehicle“, wie sie es nennen (Gul et al. 2008, 22), um die Probleme der Ökonomie anzusprechen. Diese Formulierung führen Gul und Pesendorfer nicht weiter aus, dabei wird es an dieser Stelle erst richtig interessant. Was meinen sie genau mit „vehicle“? Hier hätten sie grundsätzliche, wissenschaftstheoretische Probleme bei der Zusammenarbeit zweier oder mehrerer Wissenschaften ansprechen können, sogar für reduktionistische und antireduktionistische Bedenken wäre hier ein Ansatzpunkt gewesen. Sie sprechen in ihrem Aufsatz durchaus an, dass sie bei den Neuroökonomen den Wunsch nach einer „unification“ (Gul et al. 2008, 32) der Neurowissenschaften mit der Ökonomie sehen (Gul et al. 2008, 32–34). Daher sprechen sie wiederholt und vehement davon, dass die beiden Wissenschaften unterschiedliche Fragestellungen, Ziele und Mittel haben und unterschiedliche Daten verarbeiten müssen und es daher nie zu einer Unification kommen kann. Diese Argumentation bleibt aber nur an der Spitze des Eisberges, der erscheint, wenn man die Frage nach dem Vehicle stellt, mit dem die beiden Wissenschaften verbunden werden können. Gul und Pesendorfer argumentieren zwar in die Richtung ‚keine Reduktion der Ökonomie auf die Neurowissenschaften‘, aber sie stoßen diese Türe nicht auf. Sie sprechen nie von Reduktion und verwenden auch kein Vokabular aus diesem Bereich. Dabei wäre eine solche Diskussion nicht zu weit hergeholt, denn in seiner 2011 veröffentlichten Monografie Foundations of Neuroeconomic Analysis spricht Glimcher explizit über eine mögliche Reduktion der Ökonomie auf die Neurowissenschaften, am besten mithilfe von Brückengesetzen. Dieses Werk erschien zwar drei Jahre nach dem Artikel von Gul und Pesendorfer, die Idee wird jedoch nicht neu gewesen sein, vor allem, da Gul und Pesendorfer sie ja bereits Jahre zuvor in neuroökonomischen Aufsätzen entdeckt haben wollen. Es sollte eigentlich eine günstige Gelegenheit für alle Gegner der Neuroökonomie sein, wenn prominente Neuroökonomen selbst von Reduktionsmöglichkeiten sprechen und sogar schon nach Brückengesetzen suchen. Denn sollten Neuroökonomen im Reduktionismus mehr sehen als eine rein metaphysische Position, müssen sie sich auch mit den seit Jahrzehnten diskutierten Problemen des Reduktionismus auseinandersetzen. Um die neuroökonomischen Ideen von einer Unification und damit auch die Verwerfung ökonomischer Modelle durch neuroökonomische Erkenntnisse wirksam grundlegend zu kritisieren, hätten Gul und Pesendorfer also nicht ihre recht schwammige Argumentation von den unterschiedlichen Zielsetzungen vorbringen müssen. Altbekannte Argumente gegen den Reduktionismus hätten eine größere Wirkung erzielt.

Also warum haben Gul und Pesendorfer diese Möglichkeit nicht genutzt? Entweder sie sind über die reduktionistische Idee der Unification of the Sciences nicht sehr gut informiert oder sie wollten dessen Argumente absichtlich nicht verwenden. Bei letzterer Möglichkeit stellt sich natürlich die Frage, warum sie das nicht wollten. Da sie beide Ökonomen sind und ihr Publikum, dem Tonus des Aufsatzes nach zu schließen, vor allem ebenfalls aus Ökonomen besteht, wollten sie die Diskussion eventuell nicht auf eine den Ökonomen fremde wissenschaftstheoretische Ebene bringen. Diese Hypothese ist allerdings reine Spekulation. Der Grund für Gul und Pesendorfers Verzicht auf wissenschaftstheoretisches Vokabular ist aber nicht unwichtig, vor allem im Hinblick auf die folgenden Überlegungen.

6.2.3 No Brain in Economics

In diesem Abschnitt geht es nicht um ein bestimmtes Argument, das Gul und Pesendorfer gegen die Neuroökonomie vorbringen, sondern genauer als bisher um ihre allgemeine Sicht ihrer Wissenschaft. Das Verständnis davon, wie die beiden Ökonomen die grundlegende Konzeption ihrer eigenen Wissenschaft sehen, hilft wiederum dabei, die Probleme, die Meinungsverschiedenheiten zwischen Ökonomen und Neuroökonomen zu verstehen. Wir werden sehen, dass diese grundsätzlicher Natur sind und nur unter ganz bestimmten Umständen ausgeräumt werden können. Ökonomen wie Gul und Pesendorfer haben eine von den Neuroökonomen komplett verschiedene Ansicht davon, wie Ökonomie arbeitet und welchen Fragen sie nachgeht. Wie wir sehen werden, scheint es, als würden beide unter verschiedenen Paradigmen arbeiten und daher nicht zusammenfinden.

Gul und Pesendorfer vertreten, wie wir oben gesehen haben, eine Sicht der Ökonomie, die die Verwendung neurowissenschaftlicher Daten ablehnt und keinen Nutzen für Erkenntnisse aus den Kognitionswissenschaften für die Ökonomie ausmachen kann. Damit stehen sie in der Tradition von Ökonomen wie Friedman, der, wie wir in Abschnitt 2.2 gesehen haben, die Unabhängigkeit ökonomischer Modelle von unbeobachtbaren psychologischen Vorgängen in den Köpfen von Individuen als ihre große Stärke sieht und an dieser Art Modell festhalten will. Tatsächlich ist die Simplizität der Revealed-Preference-Axiome einer der Gründe, warum sie so erfolgreich und vielfältig anwendbar sind. Physiologische Erkenntnisse in ökonomische Modelle einzuarbeiten, könnte sie komplexer und damit komplizierter machen, noch dazu können weitere Annahmen die Falsifizierbarkeit erhöhen. In den Augen von Standardökonomen (übernehmen wir diese Vokabel) wie Gul und Pesendorfer wäre es also reichlich unnütz, das Standardmodell komplexer zu machen und sich nicht zuletzt der Problematik auszusetzen, dass die nicht direkt beobachtbaren Hirnprozesse von Individuen das Modell anfälliger für Fehler werden lassen. Wie aus ihrem Aufsatz klar wird, ist ihr Vertrauen in die Stärke der kognitiven Neurowissenschaften, zumindest derzeit, nicht sehr groß, sie sehen bei ihnen noch keine brauchbaren Erkenntnisse (Gul et al. 34; s. o. S. 157). In den Augen der Standardökonomen braucht die Ökonomie die Neuroökonomie und ihre Erkenntnisse nicht. Denn die Ökonomie kommt ihrer Meinung nach sehr gut (oder besser) mit der Annahme des menschlichen Gehirns als Black Box zurecht. Für ihre Arbeit sind die Präferenzen von Individuen wichtig, und um diese zu ermitteln, gibt es für Standardökonomen keine bessere Methode als das Revealed-Preference-Modell. Denn mit einer Black Box als Gehirn gibt es nicht mehr Informationen über Individuen einzusammeln als eine Liste ihrer Präferenzen. Mit dem Revealed-Preference-Modell klappt das nach Meinung der Standardökonomen ganz hervorragend. Die Black Box zu öffnen und schwer nachvollziehbare physiologische Daten mit in das Modell aufzunehmen, wäre daher nicht nur unnötig, es würde das Modell und damit die Leistungsfähigkeit der Ökonomie zum Schlechteren verändern. Diese Einstellung ist eindeutig behavioristisch. Methodologischer Behaviorismus zeichnet sich dadurch aus, dass er mentale Zustände nicht als Erkenntnisquelle für die Erforschung des Verhaltens von Individuen zulässt, da sie nicht von außen beobachtbare Entitäten sind. Das entspricht Guls und Pesendorfers Ansicht davon, wie Ökonomie als Wissenschaft funktioniert und weiterhin funktionieren soll. Erkenntnisse aus den Kognitionswissenschaften helfen der Ökonomie in ihren Augen nicht dabei, das Verhalten von Individuen zu modellieren. Kognitionswissenschaften dagegen, zu denen neben den kognitiven Neurowissenschaften auch die kognitive Psychologie gehört, sind in den vergangenen Jahrzehnten zu ihrer eigenen Erleichterung dem methodologischen Behaviorismus entwachsen und sehen von außen unbeobachtbare mentale Prozesse naturgemäß als wichtige Erkenntnisquelle zum Verständnis menschlichen Verhaltens. In diesen neu erschlossenen Möglichkeiten sehen sie ein großes Potenzial auch für die Ökonomie, das die Ökonomen in ihrer Meinung nach nicht ungenutzt lassen sollten. Es gibt also zwischen Neuroökonomen und Standardökonomen grundlegende konzeptionelle Verschiedenheiten, was die Anschauung der Ökonomie als Wissenschaft angeht. Die einen sehen neurologische Forschung als bedeutenden Meilenstein auch für andere Wissenschaften, während die anderen neurologische Erkenntnisse als Informationsquelle per se ausschließen. Diese Anschauungsunterschiede sind nicht miteinander vereinbar. Es würde in diesem Fall nicht helfen, gemeinsame Konventionen und Forschungsstandards festzulegen und die Kommunikation zu erhöhen. Solange die Standardökonomen an ihrer behavioristischen Sichtweise festhalten, werden sie eine Kooperation mit den Neurowissenschaften weder gutheißen wollen, noch können, denn für sie, in ihrer wissenschaftlichen Umgebung, sind die neurologischen Erkenntnisse nutzlos, ja sogar schädlich. Sie erkennen die Validität neuroökonomischer Daten und Erkenntnisse nicht an. Das bedeutet andererseits, dass diejenigen Ökonomen, die keine behavioristische Sicht auf die Ökonomie haben und die Validität kognitionswissenschaftlicher Erkenntnisse nicht bestreiten, durchaus grundsätzlich an einer ernsthaften Kooperation mit den Neurowissenschaften interessiert sein könnten, beispielsweise mit einer ähnlichen Einstellung wie Harrison und Ross. Die schlechte Nachricht dabei ist allerdings, dass Neuroökonomen bei denjenigen Ökonomen, die den Behaviorismus als einzig richtige Theorie für die Ökonomie sehen, nie auf Zustimmung werden stoßen können. Ihre Ansichten, ihre Art, Wissenschaft zu betreiben, sind inkompatibel und werden es bleiben. Dieses Problem kann nicht behoben werden, solange nicht eine der beiden Seiten ihren Standpunkt ändert. Das ist auch der Grund warum Ökonomen wie Gul und Pesendorfer die Neuroökonomie für eine nicht durchführbare, unverständliche Idee halten. Sie verstehen nicht, wie Neuroökonomen neurologische oder psychologische Daten für eine wissenschaftlich verwertbare Erkenntnisquelle halten können, ebensowenig wie Neuroökonomen verstehen, wieso manche Ökonomen diese vielversprechende neue Datenquelle nicht nutzen möchten. Diese Situation erinnert an Kuhn (Kuhn 1962) und seine Idee von der Inkommensurabilität wissenschaftlicher Theorien. Das ist eine kontroverse Idee, die aber dabei hilft, zu verstehen, was das Problem von Gul und Pesendorfer und aller Standardökonomen mit der Neuroökonomie ist. Da Inkommensurabilität auch ein Argument gegen Reduktionismus ist und ein wenig mehr Platz benötigt, als an dieser Stelle vorhanden ist, werden wir uns mit diesem Thema weiter unten in Abschnitt 6.3 (S. 180) eingehender befassen.

Die Erkenntnis, dass Gul und Pesendorfer eine behavioristische Auffassung von der Ökonomie vertreten und diese per Definition schon nicht mit Kognitionswissenschaften vereinbar ist, ist recht simpel. Sie ist weder schwer zu erkennen, noch zu verstehen. Daher kommt auch an dieser Stelle die Frage auf, warum Gul und Pesendorfer ihr Problem mit der Neuroökonomie nicht auch so klar formulieren. Damit könnten sie nicht nur ihre Probleme klar darstellen, sondern auch allen anderen Standardökonomen begreiflich machen, dass für sie eine Kooperation mit der Neuroökonomie schon konzeptionell gar nicht möglich ist. Diese einfache Darstellung des Problems haben sie ungenutzt gelassen. Warum? Haben sie diese Hypothese durchdacht und verworfen? Sehen sie sich nicht in behavioristischer Tradition? Das wird sich aber kaum bestreiten lassen. Oder ist ihnen die behavioristische Einstellung nicht bewusst? Vokabular aus diesem Bereich taucht jedenfalls in ihrem Aufsatz nicht auf (und soweit mir bekannt ist, auch in keinem späteren). Auf dieser Grundlage kann kein Urteil darüber gefällt werden, ob sie die wissenschaftstheoretischen Aspekte ihrer eigenen Arbeit nicht erkannt haben oder ob sie durchaus darum wissen, sich aber bewusst dagegen entschieden haben, auf dieser Grundlage zu argumentieren. Stattdessen haben sie sich dafür entschieden, auf 36 Seiten zu kritisieren, dass Neuroökonomen das ökonomische Wohlfahrtskriterium nicht verstanden haben und nicht einsehen wollen, dass sie andere Forschungsfragen verfolgen als Ökonomen. Das war nicht unbedingt die bessere Wahl, denn diese Argumente sind schwammiger und zeigen lediglich äußerlich sichtbare Symptome des darunterliegenden prinzipiellen Problems auf. Sie haben die Chance nicht genutzt, die komplexe Situation einfach zusammenzufassen. Dabei wäre damit die Grundlage der systematischen Kritiken geklärt, die davon handeln, dass die Neuroökonomie der Ökonomie nicht weiterhilft. Guls und Pesendorfers Argumente ließen sich auf diese Erkenntnis von der Unvereinbarkeit reduzieren.

Danach bliebe immer noch die große Frage, welche Seite die Ökonomie als Ganzes einnehmen sollte. Sollte sie an behavioristischen Methoden festhalten oder sich kognitionswissenschaftliche und eventuell weitere Erkenntnisse zunutze machen? Das ist allerdings keine spezifisch neuroökonomische Frage, sondern eine intern ökonomische, die die Ökonomie nun bereits seit Jahrzehnten beschäftigt, wie wir in den Kapiteln 2 und 3 gesehen haben. Über diese Frage werden sich Standardökonomen und Neuroökonomen vermutlich noch viele weitere Jahre streiten, allerdings sind Neuroökonomen nicht allein aufgrund ihrer spezifischen Eigenschaft als Neuroökonomen an diesem Streit beteiligt, sondern weil sie wie viele andere Ökonomen keine behavioristischen Ansichten teilen. Man muss nicht Neuroökonom sein, um sich gegen eine behavioristische Ausrichtung der Ökonomie, wie Gul und Pesendorfer sie vertreten, auszusprechen. Psychologische Forschung beispielsweise war in einem Großteil des 20. Jahrhunderts durch den Behaviorismus geprägt. Das mag zu einem Fortschritt auf dem Gebiet der Laborexperimente geführt haben, doch schränkte es die Forschungsmöglichkeiten von Psychologen massiv ein. Alles, was nicht direkt beobachtbar ist, war nicht als Datenquelle zugelassen. Gewisse Fragen, wie über Bewusstsein, konnten somit gar nicht bearbeitet werden. Nicht wenige Psychologen waren nicht traurig, als der Behaviorismus in der zweiten Hälfte des Jahrhunderts an Bedeutung verlor und sich ganz neue Felder wie die kognitive Psychologie etablieren konnten. Neue Erkenntnisquellen standen nun offen und haben neue Sichtweisen auf menschliches Handeln hervorgebracht, die unter behavioristischen Regeln nicht möglich gewesen und weiter unbekannt geblieben wären, hätte die wissenschaftliche psychologische Gemeinschaft weiterhin am Behaviorismus festgehalten. Ähnlich könnte es der Ökonomie ergehen, wenn sie am Behaviorismus festhält. Moderne Verhaltensökonomen wie Selten versuchen seit Jahrzehnten, diese Grundeinstellung unter Ökonomen aufzubrechen und neue Erkenntnisquellen zu etablieren (vgl. Güth et al. 1997, 4, 6). Damit haben sie heute mehr Erfolg als noch vor dreißig Jahren, aber noch immer gibt es Argumentationen wie die betrachtete von Gul und Pesendorfer, die sich tatsächlich als unnötig isolierend bezeichnen lässt. Es ist sicher ein einfaches und erfolgreiches Rezept, sich nur auf Datenquellen zu verlassen, die beobachtbare Daten liefern, statt Spekulationen auf Konstruktbasis anzustellen. Aus diesen Regeln Schranken zu machen, über die die ökonomische Forschung nicht hinaustreten darf, versperrt allerdings schnell den Weg zu weiteren, wertvollen Erkenntnissen.

Das heißt allerdings nicht, dass Guls und Pesendorfers Argumente gegen eine Zusammenarbeit von Ökonomen und kognitiven Neurowissenschaftlern verpuffen. Sie sprechen durchaus problematische Punkte an, die auch nicht an Brisanz verlieren, wenn man die behavioristische Einstellung der Autoren nicht teilt. Diese Probleme werden wir im folgenden Abschnitt 6.3 näher betrachten.

6.3 Wissenschaftstheoretische Kritiken an der Neuroökonomie

Wir haben uns mit den Kritiken von Gul und Pesendorfer beschäftigt, die sich vor allem mit grundlegenden systematischen Problemen zwischen Neuroökonomen und Standardökonomen auseinandersetzen. Solche Kritiken sind grundsätzlicher Natur und daher spannender als viele Kritiken, die sich vermutlich im Laufe der Zeit von allein entschärfen, wie beispielsweise die Kritik an zu schlechten Messtechniken aus Abschnitt 6.1.2. Gul und Pesendorfer sind zwei von wenigen Autoren, die solche systematischen Probleme besprechen. Mit ihren Aufsätzen zum Thema hauen sie, bildlich gesprochen, mit der Faust auf den Tisch. Das erzeugt großen Krach und viel Aufmerksamkeit, ist aber, auch das haben wir gesehen, eher schlecht gemacht. Sie lassen die ihren Argumenten zugrundeliegenden wissenschaftstheoretischen Konzeptionen außen vor und vertun damit die Chance, ihre Ideen und Bedenken auf argumentativ sichere Beine zu stellen. Denn die Probleme, von denen sie sprechen, wurden bereits vor Jahrzehnten, beziehungsweise auch heute noch, in wissenschaftstheoretischen Diskussionen behandelt. Statt die Probleme bei der Wurzel zu packen und ihre Ursachen zu klären, beschreiben sie lediglich deren Symptome. Das spricht gegen die Vorgehensweise von Gul und Pesendorfer; aber spricht es auch für die Neuroökonomie? Bedeutet die Einsicht, dass Gul und Pesendorfer ihre Kritiken nicht gut fundiert haben, auch, dass die Neuroökonomie jeder Kritik enthoben ist? Sind ihre Kritikpunkte damit ausgeräumt, bleibt nichts von ihnen übrig? Doch, tatsächlich bleiben Kritikpunkte bestehen, auch wenn Gul und Pesendorfer auf Chancen verzichtet haben, sie zu formulieren. Diese werden wir im Folgenden genauer betrachten. Vor allem die Frage nach der Einstellung der Neuroökonomen zum Reduktionismus ist einer genaueren Betrachtung wert. Wollen verschiedene Wissenschaften wie Ökonomie und Neurowissenschaften miteinander kooperieren und von gegenseitigen Erkenntnissen profitieren, sollten sie auf irgendeine Weise miteinander verknüpfbar, kompatibel sein. Ökonomische Modelle machen, wie Gul und Pesendorfer argumentieren, keine Aussagen über das menschliche Gehirn; sie kommen ohne solche Aussagen aus. Dennoch sollen sie in einer neuroökonomischen Zusammenarbeit von Erkenntnissen profitieren, die genau solche Aussagen trifft. Wie aber sollen ökonomische Modelle und Theorien, denen Gehirndaten fremd sind, diese Erkenntnisse überhaupt aufnehmen oder verarbeiten? Solche Probleme wurden von Anhängern des Reduktionismus so gelöst, dass beide Wissenschaften auf dieselbe Basis gebracht werden müssen, damit sie kompatibel sind oder eine Theorie aus einer anderen, basaleren abgeleitet werden kann. Zu diesem Thema gab es im vergangenen Jahrhundert viele Modelle und ebenso viel Kritik von betroffenen Wissenschaftlern und Wissenschaftstheoretikern. Diese Diskussionen sind im Umfeld der Neuroökonomie heute wieder relevant, denn vieles, was Gul und Pesendorfer ansprechen, wurde von Philosophen, Psychologen und Physikern damals bearbeitet. Daher werden wir uns im Folgenden mit ihren Kritiken und Diskussionen befassen, beginnend bei reduktionistischen Methoden und Problemen, denen sich heutige Neuroökonomen entgehen sehen. Dazu betrachten wir zunächst am Beispiel von Glimcher, wie ein bekannter Neuroökonom sich die wissenschaftstheoretisch nicht unproblematische Zusammenarbeit von Neurowissenschaftlern und Ökonomen vorstellt. Daran werden wir sehen, welchen Problemen sich seine Konzeptionen stellen müssen und dass diese sehr ähnlich den Problemen sind, die bereits von Ernest Nagel, Kenneth Schaffner, Paul Feyerabend und Fodor seit den 1960er Jahren verhandelt werden.

Wie oben bereits angesprochen, stellt Glimcher (Glimcher 2011) konkrete Überlegungen zur Verknüpfung von Ökonomie und Neurowissenschaften an.Footnote 13 Er stellt zunächst die Ideen von Nagel (Nagel 1961) und Vertretern des logischen Positivismus vor und erläutert ihre Vorstellungen von vollständiger Reduktion auf die Physik. Er macht klar, dass er sich in ontologischer Opposition zu einer vollständigen Reduktion der Ökonomie auf die Neurowissenschaften sieht (Glimcher 2011, 25):

„[…] I would describe my own stance as an ontological opposition to complete reductionism. […] I do not believe that all of economics can be reduced to neuroscience. This is actually a very important point, and it is why my own scholarly career has been devoted to the study of economics, psychology, and neuroscience.“

Damit distanziert sich Glimcher von der heute weithin als gescheitert erachteten reduktionistischen Idee von der Unity of the Sciences. Warum aber erst eine gescheiterte Idee vorstellen und sich dann von ihr distanzieren? Wenn er mit ihr ohnehin nicht übereinstimmt und sie auch heute nicht für anwendbar auf Ökonomie und Neurowissenschaften hält, warum sich überhaupt die Zeit nehmen, sie zu erläutern? Es drängt sich der Gedanke auf, dass Glimcher diesen Teil des Kapitels nicht nur als historischen Unterbau für seine folgenden Ausführungen benötigt, sondern auch den rhetorischen Kniff anwendet, eine heute abgelegte Idee als abwegig und gescheitert aufzubauen. Vor diesem Hintergrund könnte den Lesern seine Alternative dazu, die er darauffolgend vorstellt, als weitaus weniger abwegig erscheinen. Zusätzlich verortet er explizit Guls und Pesendorfers Argumente als Argumente gegen eine vollständige Reduktion (Glimcher 2011, 21). Distanziert er sich von dieser, distanziert er sich auch von Guls und Pesendorfers Argumenten. Doch wie wir sehen werden, entkommt er den Problemen des Reduktionismus nicht komplett, denn die von ihm vorgestellte Alternative übernimmt doch mehr von Nagels Ideen, als er seinen Lesern verrät. Betrachten wir sein weiteres Vorgehen:

Glimcher hält fest, dass sich jeder reduktionistische Versuch, die Sozial- und die Naturwissenschaften zu verbinden, zwei entscheidenden Fragen stellen muss (Glimcher 2011, 30):

„Are all concepts at the level of economics homomorphic to concepts at the neurobiological level?

Are all concepts at the level of economics emergent, or is it the case that some concepts are reducible (as is, or after modification) while others are emergent?“

Glimcher betont, dass wir, auf einem metaphysischen Level die Antworten auf diese Fragen nicht kennen. Seiner Meinung nach kann man nicht mit absoluter Gewissheit sagen, dass in ferner Zukunft ein Teil der Biologie auf die Chemie reduzierbar sein wird. Andererseits könnte sich laut Glimcher auch alles als reduzierbar herausstellen. Wie sollte also weiter vorzugehen sein, will man Ökonomie und Neurowissenschaften auf reduktionistische Weise verbinden? Glimcher beantwortet diese Frage mit einem Verweis auf Fodor (Fodor 1974), der laut Glimcher argumentiert hatte, dass sich die Psychologie vermutlich nicht auf die Biologie reduzieren lassen werde, da sie im Kern eine emergente Wissenschaft ist.Footnote 14 Seiner Meinung nach könnten psychologische Konzepte wie Aufmerksamkeit, Emotionen und Grammatik nicht auf neurobiologische Arten („kinds“, Glimcher 2011, 30) übertragen werden. Glimcher betont, dass sich diese Vorhersagen Fodors inzwischen als falsch herausgestellt haben. Das macht er daran fest, dass Psychologen heute weltweit mit Gehirnscannern arbeiten. Aufmerksamkeit lässt sich nach Glimcher scheinbar leicht auf Hirnregionen kartieren, und Theorien aus Psychologie und Neurowissenschaften enthalten heute seiner Einschätzung nach viele gleiche logische Objekte und reduktive Verbindungen (Glimcher 2011, 31). Was das bedeutet, oder an welche Beispiele der dabei denkt, sagt er leider nicht. Er räumt zwar ein, dass die Kartierung von Emotionen auch heute nicht so einfach ist und sich auch Schlüsselkonzepte aus der Erforschung von Grammatik bisher einer Reduktion gänzlich entziehen. Aus diesem historischen Rückblick schließt Glimcher aber auf eine geeignete Vorgehensweise für die reduktive Verbindung von Ökonomie und Neurowissenschaften (Glimcher 2011, 31):

„This history, then, tells us something fairly clear that can guide us as we try to relate neurobiology, psychology, and economics. At an empirical level there almost certainly will be regularities that homomorphically map some economic kinds to neurobiological kinds. […] It also seems very likely that there will be emergent concepts in economics that resist reduction. What I am saying here is that the reductive relationship between neurobiology and economics (largely via psychology) will be incomplete – but only a real extremist could argue today that no such mappings of any kind will ever be found to exist. So far, every scientific discipline that has ever faced a reductive challenge (whether it be chemistry, biology, psychology, or anything else) has demonstrated at least a partial set of linkages to the more reduced disciplines. These partial reductions have also been influential; they have reshaped the logical kinds of the higher-level discipline. There is no reason to believe that economics will be different.“

Glimchers Meinung nach ermöglicht die Neuroökonomie den Aufbau einer interdisziplinären Synthese aus Ökonomie und Neurowissenschaften, die er nicht nur für prinzipiell möglich, sondern auch für höchstwahrscheinlich fruchtbar für die beteiligten Wissenschaften hält. Um eine Synthese erreichen zu können, sagt Glimcher, benötigt er reduktive Verbindungen („reductive linkages“, Glimcher 2011, 33), die in der gegenwärtigen und zukünftigen Forschung gesucht werden müssen. Leider sagt er nicht, was Verbindungen zu reduktiven Verbindungen macht. Allerdings sieht er hier das Problem, dass es keine reduktiven Verbindungen in der Welt gibt, die neurobiologisch, psychologisch und ökonomisch beobachtbare Phänomene direkt und ohne Modifikation verbinden. Daher gilt für Glimcher (Glimcher 2011, 32):

„[…] neuroeconomics would not be simply the linkage of three existing bodies of theory: neuroeconomics would be a revision of three existing bodies of theory into a more powerful linkable form.“

Denn (Glimcher 2011, 33):

„Our existing theoretical frameworks in all three disciplines are imperfect. That means that searching for alterations to each of those frameworks that allow linkages allows us to improve each of those sets of theories. If we believe partial reduction is possible in an ontological sense, then that means we can use knowledge gained in one field to constrain the structure of knowledge in the other fields. It means that knowing how the brain works, for example, will help us to constrain economic theory.“

Glimcher versucht also, reduktive Verbindungen zwischen drei Disziplinen zu finden. Diese drei Disziplinen verwenden unterschiedliches Vokabular und sind daher nicht ohne Weiteres reduktiv verbindbar. Glimcher appelliert daher (Glimcher 2011, 35):

„If we are trying to build principled linkages between these fields that will have real theoretical traction, we must do so in a serious manner. The critical idea here is that our goal must be to modify the theories of each of the parent disciplines so that they align toward a common endpoint and share as many reducible logical kinds as possible.“

Zusammengefasst beschreibt Glimcher hier als Ziel eine partielle Theorienreduktion, die er, im Gegensatz zur vollständigen Reduktion, in einem ontologischen Sinne für möglich hält. Dabei befinden sich Ökonomie, Neurobiologie und Psychologie in einer heterogenen Konstellation, da sie sich, wie Glimcher selbst feststellt, auf unterschiedliches Vokabular stützen. Die reduktiven Verbindungen zwischen den drei Wissenschaften sind also nicht trivial vorausgesetzt, sondern benötigen Brückengesetze. Glimcher erläutert in obigem Zitat die Idee, die Theorien aus Ökonomie, Psychologie und Neurowissenschaften auf eine Weise zu modifizieren, dass sie auf einen gemeinsamen Endpunkt ausgerichtet sind und so viele logical Kinds wie möglich gemeinsam haben. Mit dieser Idee hat er sich offenbar an Schaffner orientiert, der 1967 (Schaffner 1967) die Methode vorbrachte, die an einer Reduktion beteiligten Theorien zu modifizieren, um eine Ableitung der übergeordneten Theorie von der untergeordneten Theorie zu ermöglichen. Um diese Idee und damit auch Glimchers Idee besser verstehen zu können, betrachten wir Schaffners Konzept in groben Zügen ein wenig näher, bevor wir mit den Kritiken am Reduktionismus und damit auch an Glimchers Idee von der Neuroökonomie fortfahren. Dazu beginnen wir ein paar Jahre vor Schaffner mit einer Kritik von Feyerabend:

Mit seinen Überlegungen antwortete Schaffner auf den ein paar Jahre zuvor von Feyerabend (Feyerabend 1962) vorgebrachten Einwand, bei einer Reduktion würden nicht die Gesetze der zu reduzierenden Theorie abgeleitet, sondern etwas, das ähnlich aussieht, aber eine andere Bedeutung hat. Nach Feyerabend verändert der Reduktionsprozess die Bedeutung der theoretischen Begriffe und die Bedeutung wenigstens einiger der Beobachtungsbegriffe einer zu reduzierenden Theorie, was seiner Meinung nach gravierende Folgen hätte (Feyerabend 1962, 29):

„That is, not only will description of things and processes in the domain in which so far T’ [zu reduzierende Theorie] had been applied be infiltrated, either with the formalism and the terms of T [reduzierende Theorie], or if the terms of T’ are still in use, with the meanings of the terms of T, but the sentences expressing what is accessible to direct observation inside this domain will now mean something different.“ [Anmerkungen von mir, Hervorhebungen im Original]

Daher verknüpfen die Brückengesetze laut Feyerabend nicht wie intendiert die Begriffe von T mit denen von T’, sondern lediglich mit modifizierten Begriffen von T’, die ähnlich aussehen mögen, aber eine andere Bedeutung haben. Das wäre insofern problematisch, als dass bei einer dennoch durchgeführten Reduktion die zu reduzierende Theorie verfälscht würde. Die ursprünglichen Begriffe der zu reduzierenden Theorie verschwänden dann, da die aus der reduzierenden Theorie abgeleiteten Begriffe eine andere Bedeutung hätten.

Dieses Problem konnten die Anhänger der Reduktion nicht ignorieren. Schaffner stellt sein Konzept von Reduktion vor, in dem die zu reduzierende Theorie modifiziert wird, um reduzierbar zu werden. In groben Zügen funktioniert das folgendermaßen: T2 sei eine sekundäre, zu reduzierende Theorie, und T1 sei eine primäre Theorie, auf die T2 reduziert werden soll. Nun muss von T2 eine Theorie T2* abgeleitet werden. Das Verhältnis der beiden soll eine starke Analogie im Sinne einer starken Ähnlichkeit sein. Zudem soll T2* T2 korrigieren, indem sie akkuratere, in Experimenten verifizierbare Vorhersagen trifft und offenlegt, warum T2 nicht korrekt war. Alle Begriffe aus T2* müssen von Brückengesetzen durch die Begriffe aus T1 definiert werden. Auf diese Weise kann T2* deduktiv aus T1 abgeleitet werden, wenn T1 mithilfe einer Anzahl an Brückengesetzen verbunden wird, die Schaffner „reduction functions“ (Schaffner 1967, 142) nennt.

In diesem Konzept muss die zu reduzierende Theorie modifiziert werden, damit eine Reduktion überhaupt möglich ist. Der Punkt dabei ist, dass T2* so formuliert werden soll, dass sie nur Begriffe enthält, die auch in der reduzierenden Theorie T1 plus den Brückengesetzen enthalten sind, wodurch die Reduktion vereinfacht wird, weil die Reduction Functions einfacher Identitäten zwischen den Begriffen aus T2* und T1 abbilden können. Schaffner (Schaffner 1969) wendet dieses Konzept beispielsweise auf den Versuch an, die klassische Genetik auf die molekulare zu reduzieren. Der Sinn und der Erfolg einer solchen Reduktion sind bis heute umstritten.

Auf dieses Konzept Schaffners scheint auch Glimcher mit seiner Vorstellung von einer Reduktion der Psychologie und Ökonomie auf die Neurowissenschaften zu bauen. An den oben dargelegten Ausführungen lässt sich erkennen, wie weit Glimcher seine Leser bereits in das Feld der Reduktion hineingeführt hat, ohne die Probleme der Reduktionisten, die auch seine Ideen beeinflussen, dargestellt zu haben. Zwar hat er Fodors bekannten Aufsatz von 1974 erwähnt, indem er kurz dessen Argument von der Psychologie als emergente, und daher nicht auf die Neurowissenschaften reduzierbare, Wissenschaft vorstellt (ein Begriff übrigens, mit dem Glimcher selbst ein paar Seiten zuvor gegen die vollständige Nagel-Reduktion argumentiert hatte). Doch die vielen weiteren Einwände, die bereits allein in demselben Aufsatz zur Sprache kamen, ignoriert Glimcher, obwohl sie auch auf sein Konzept zutreffen. Natürlich ist er nicht verpflichtet, die Wirkung seiner sorgfältig ausgearbeiteten Theorie durch die Auseinandersetzung mit allerlei Kritikpunkten zu schmälern. Doch sind die Kritikpunkte nicht neu, es ist relativ vorhersehbar, dass Gegner der Neuroökonomie ihm genau diese vorhalten werden. Dadurch, dass er selbst keine Stellung dazu nimmt, werden seine Ausführungen zu einem guten Ansatzpunkt für Kritiker. Schade, dass Gul und Pesendorfer diesen Ansatzpunkt nicht genutzt haben, denn wie gesagt, Glimchers hier zitiertes Buch erschien zwar drei Jahre nach Guls und Pesendorfers Aufsatz, die Ideen sind unter Neuroökonomen aber sicher nicht ganz plötzlich entstanden. Im Folgenden werden wir weitere von Fodors Argumenten gegen wissenschaftliche Reduktionen betrachten, die er vor allem in seinem bekanntgewordenen und von Glimcher zitierten Aufsatz von 1974 veröffentlicht hatte. Wir werden sehen, dass nicht nur die Emergenz ein Problem für Reduktionsvorhaben ist. Fodor kommt auch auf die Form und Wirksamkeit von Brückengesetzen zu sprechen und fordert eine strenge Autonomie der Psychologie von den Neurowissenschaften. Hier wird auch schon das Problem mit Inkommensurabilität angesprochen, die von Kuhn noch stärker als grundsätzliches Hemmnis gegenüber Reduktionsansätzen jeglicher Art angesehen wird. Diese Argumentation werden wir im Anschluss an Fodors Ausführungen betrachten, wodurch wir zwar kein vollständiges, aber ein für unsere Zwecke ausreichendes Bild von den Problemen von Reduktionen generell erhalten.

Auch wenn Gul und Pesendorfer nicht weiter darauf eingegangen sind, ist die Reduktionsthematik noch immer ein Problem für Neuroökonomen, selbst wenn sie nicht so explizite Reduktionsgedanken hegen wie Glimcher. Denn es ist durchaus berechtigt, mit Gul und Pesendorfer zu fragen, wie eine Wissenschaft wie die Ökonomie, die kein neurowissenschaftliches Vokabular verwendet und für ihr traditionelles Modell auch keine natural Kinds aus den Kognitionswissenschaften benötigt, durch ebensolche Wissenschaften bereichert werden sollte. Wie soll die Ökonomie neurowissenschaftliche Erkenntnisse implementieren, wenn doch bereits das Vokabular nicht in ihre Umgebung passt? Als sprächen sie verschiedene Sprachen, ein Problem, auf das wir weiter unten beim Thema Inkommensurabilität noch zu sprechen kommen, können Ökonomen in der Vorstellung von Reduktionsgegnern mit neurowissenschaftlichen Theorien, salopp gesagt, schlichtweg nichts anfangen, sie passen nicht in ökonomische Theorien, wie ein falsches Puzzleteil nicht zu den anderen passt. Eine perfekte Reduktion würde diese Hindernisse theoretisch beheben, das Problem ist jedoch, dass es keine perfekte Reduktion gibt, Reduktionen funktionieren praktisch nicht. Fodor ist nur einer der bekanntesten Autoren, die diese Meinung verteidigen.

Eines der Probleme mit wissenschaftlichen Reduktionen, die Fodor (Fodor 1974) beschreibt und das auch Glimcher erwähnt, ist die Emergenz. Der Begriff sollte in der Philosophie des Geistes und in der Psychologie das Problem beschreiben, dass das menschliche Gehirn offensichtlich aus rein materiellen Bestandteilen besteht und gleichzeitig immateriell erscheinende Bewusstseinsprozesse hervorbringt. Fodor verwendet den Emergenzbegriff nun, um zu verdeutlichen, dass generell ein aus einzelnen Teilen bestehendes System Eigenschaften zeigen kann, die seine Einzelteile in separater Betrachtung nicht aufweisen. Darum macht es nach Fodor auch wenig Sinn, die Einzelteile des menschlichen Gehirns, also einzelne Neuronen und ihre Verbünde zu untersuchen, um psychologische Phänomene zu erklären. Denn die Betrachtung der Einzelteile kann seiner Meinung nach nicht ihr Verhalten im kompletten System erklären. William Bechtel (Bechtel 1988, 95) erläutert das Problem anschaulich:

„It will not always be true that the properties we discover by studying the lower level entities in isolation will be the ones that are critical to explaining their performance in a complex system. For example, in studying a transistor taken out of a radio we may not attend to those of its properties that enable it to serve its function in the radio. Similarly, although studying the properties of amino acids in isolation may reveal their primary bonding properties, it may not reveal to us those binding properties that give rise to secondary and tertiary structure when the amino acids are incorporated into protein molecules.“

Um eine ähnliche Situation könnte es sich bei der Forschung an neuronalen Strukturen handeln. Für Bechtel steht zu befürchten, dass sich Wissenschaftler nur dann derjenigen Eigenschaften neuronaler Systeme gewahr werden, die ihnen erlauben, kognitive Tätigkeiten auszuführen, wenn sie die Systeme untersuchen, während sie kognitive Tätigkeiten ausführen, und nicht etwa, wenn sie sie isoliert betrachten. Auf neurowissenschaftlicher Ebene wäre es demnach gar nicht möglich, diejenigen Eigenschaften des Gehirns zu untersuchen, die die Psychologie erforscht. Bei einer Reduktion würde diese Möglichkeit, die menschliche Psyche zu erforschen, verloren gehen. Die psychologischen Methoden würden durch neuroökonomische abgelöst und würden nicht mehr praktiziert werden können, alles wäre nur noch neurowissenschaftliche Forschung. Ein Weg, dieses Problem zu umgehen, könnte sein, bei einer Reduktion die reduzierende Theorie so zu verändern, dass sie die Eigenschaften von Entitäten, die dann zutage treten, wenn sie in übergeordneten Theorien eingebettet sind, selbst beinhaltet. Das würde allerdings zu der Frage führen, wie stark die untergeordnete Theorie verändert werden darf oder sollte, um eine Reduktion möglich zu machen. Sie könnte an viele Eigenschaften übergeordneter Theorien angepasst werden. Doch dann besteht die Gefahr, dass sie so stark aufgeweicht werden, dass eine Reduktion eine triviale Angelegenheit würde. Zu sehr dürfte die reduzierende Theorie also nicht modifiziert werden, aber welches Maß an Modifikation angemessen und welches zu groß ist, darüber herrscht auch unter Reduktionisten keine Einigkeit.Footnote 15

Bei einer Reduktion der Psychologie auf die Neurowissenschaften entstünde also die Gefahr, dass Eigenschaften von Systemen in der Forschung nicht erkannt würden. Das würde den Erkenntnisgewinn stark behindern. Zudem bestünde ganz generell das Problem, dass Errungenschaften der übergeordneten Theorie verloren gingen, da psychologische Theorien natürliche Arten anders klassifizieren als neurowissenschaftliche Theorien, da die Psychologie andere Arten von Relationen abbilden möchte als die Neurowissenschaften und dabei anderes Vokabular verwendet (Fodor 1974, 101–106). Bechtel illustriert das Problem mit einer Analogie (Bechtel 1988, 77): Man stelle sich unsere Begriffe für Farbe (blau, rot, grün, …) und Größe (groß, klein, …) vor. Grundsätzlich korrespondiert eine Farbklassifikation nicht mit einer Größenklassifikation, das heißt, es gibt große und kleine rote Objekte und große und kleine blaue, obwohl alle farbigen Objekte auch hinsichtlich ihrer Größe beschrieben werden können. Bechtel ist der Meinung, Fodor sehe eine ähnliche Situation zwischen der psychologischen Terminologie und dem neurowissenschaftlichen Vokabular. Trifft das zu, so sind keine Brückengesetze zwischen den Vokabularien der beiden Disziplinen möglich und somit auch keine Reduktion der Gesetze der einen Theorie auf die der anderen. Die beiden Vokabularien könnten nicht über Gesetze miteinander verbunden werden, weil sie unterschiedliche Relationen und Klassifikationen abbilden, die unter Umständen nichts miteinander zu tun haben und nicht vergleichbar sind. Es wäre, als müssten Äpfel zu Birnen modelliert werden, die Vokabularien lassen sich nach Fodor einfach nicht gegenseitig übersetzen, sie sind inkommensurabel. Daher lassen sich keine Brückengesetze bilden, wodurch an eine Reduktion der Psychologie auf die Neurowissenschaften, nicht zu denken ist. Denn ohne Brückengesetze gibt es in einer heterogenen Reduktionssituation keine Reduktion.

Diese Achillesferse des Reduktionismus nutzt Fodor (Fodor 1974) weiter aus, indem er die Möglichkeit von Brückengesetzen zwischen Psychologie und Neurowissenschaften noch aus einem weiteren Grund ausschließt, der multiplen Realisierbarkeit. Dieses Argument hat die Annahme zur Basis, dass die Eigenschaften einer übergeordneten Theorie nicht immer direkt mit Eigenschaften der untergeordneten, reduzierenden Theorie übereinstimmen:

„S1x → S2x“ sei ein Gesetz einer Spezialwissenschaft X, die reduziert werden soll.

„Pix → Pj*x“ sei ein Gesetz einer Wissenschaft, die Wissenschaft X reduzieren soll (mit i = 1, 2, 3, …, n; j = 1, 2, 3, …, m).

Die Eigenschaften der verschiedenen Wissenschaften seien verbunden durch Brückengesetze:

  1. (1)

    „S1x⇔P1x v P2x … Pnx“

  2. (2)

    „S2x⇔P1*x v P2*x … Pm*x“

Es lässt sich leicht sehen, dass die Eigenschaften S1 und S2 der speziellen Wissenschaft X nicht nur eine sondern mehrere Korrespondenten in der reduzierenden untergeordneten Wissenschaft haben. Genau hier liegt das Problem: Die Relation von Pn zu S1 beziehungsweise Pm* zu S2 ist nicht eins zu eins, sondern viele zu eins. Das heißt, die Eigenschaften S1 und S2 sind multipel realisierbar. Fodor verwendet zur Veranschaulichung ein Schaubild, an welches das folgende Schaubild angelehnt ist (nach Fodor 1974, 109):

Fig. 6.1
figure 1

Multiple Realisierbarkeit

Das Bild veranschaulicht, dass es in der reduzierenden Theorie mehrere Möglichkeiten gibt, die Eigenschaft S1 der speziellen Wissenschaft abzubilden. Ebenso gibt es mehrere Möglichkeiten, die Eigenschaft S2 in der reduzierenden Wissenschaft abzubilden. Problematisch ist das, wenn man versucht, das Gesetz der speziellen Wissenschaft „S1x → S2x“ mit den Prädikaten der reduzierenden Theorie auszudrücken: Die Prädikate P1x … Pnx müssen über Konditionale mit den Prädikaten P1*x … Pm*x verbunden werden. Aber welche mit welchen? Ist „P1x → P1*x“ die richtige Verbindung, um das ausdrücken zu können, was „S1x → S2x“ in der speziellen Wissenschaft ausgedrückt hat? Oder muss es „P1x → P4*x“ lauten? Oder doch „P1x → P18*x“? Nach Fodor lässt sich das nicht herausfinden. Hat etwas zu einem bestimmten Zeitpunkt die Eigenschaft Pn, dann hat es zu diesem Zeitpunkt auch die Eigenschaft S1. Ebenso gilt, wenn etwas zu einem bestimmten Zeitpunkt die Eigenschaft Pm* hat, so hat es zu diesem Zeitpunkt auch die Eigenschaft S2. Das heißt auch, dass es n Wege gibt, in der untergeordneten Wissenschaft die Eigenschaft S1 zu realisieren und m Wege, S2 zu realisieren. Jede der untergeordneten Eigenschaften wird diese eine korrespondierende übergeordnete Eigenschaft realisieren. Wenn man also weiß, dass etwas die Eigenschaft S1 besitzt, ist nicht entscheidbar, welche der n P-Eigenschaften es in der untergeordneten Wissenschaft zeigt, oder welche P*-Eigenschaft es zeigt, wenn es Eigenschaft S2 besitzt. Elliott Sober (Sober 1999, 545–546) liefert ein Beispiel, das in unserem Fall gut passt: Nehmen wir an, verschiedene Formen physischer Systeme können einen Geist haben. So ein Geist kann aus Neuronen gebaut sein, oder aus Silikonchips. Ein individueller Geist hat seine psychologischen Eigenschaften wegen der, und korrespondierend zu den, physiologischen Eigenschaften des Systems. Ein anderer Geist kann die gleichen psychologischen Eigenschaften haben, aber das bedeutet nicht, dass diese beiden Geister auch physikalische Eigenschaften teilen; den gleichen psychologischen Eigenschaften könnten ganz verschiedene physische Eigenschaften zugrunde liegen. Die schiere Beobachtung der gleichen psychologischen Eigenschaften lässt keine Schlüsse auf die physische Realisierung zu. Ein etwas praktischerer Zugang zu diesem Beispiel wären beispielsweise Robo Advisors: Nehmen wir einen Bankkunden, der eine Anlage tätigen möchte. Er verwendet das Online-Banking-Portal seiner Bank und gibt in einen Fragebogen einige Angaben dazu ein, wieviel Geld er in welcher Risikoklasse für welchen Zeitraum anlegen möchte. Als Antwort von der Bank erhält er einige Vorschläge, sein Geld in einem börsengehandelten Fonds (ETF) anzulegen. Der Kunde stimmt zu und beauftragt die Bank, eine Anlage zu eröffnen, zu handeln und bei Veränderungen mit Verlegungen seiner Einlage gemäß seiner Risiko- und anderer im eingänglichen Fragebogen genannter Präferenzen zu reagieren. Die Dienstleistung, die der Kunde hier gebucht hat, kann die Bank von einem menschlichen Bankberater ausführen lassen oder von einem Robo Advisor. Für den Kunden sehen beide Möglichkeiten gleich aus, er wird nicht unterscheiden können, ob ein Mensch oder ein Computer seinen Auftrag ausführt. Wir sehen an diesem Beispiel die beiden Aspekte, die für Fodors Argument gegen den Reduktionismus wichtig sind: Erstens ist die Dienstleistung der Bank multipel realisierbar, in Fleisch und Blut, oder in Silikon. Zweitens ist von außen (für den Kunden) nicht erkennbar, welche Realisierung vorliegt, also ob seine Anlage nun von einem Roboter verwaltet wird oder von einem menschlichen Bankmitarbeiter. Nocheinmal zurück zu unserer Reduktion von „S1x → S2x“: Es gibt erstens jeweils mehrere Möglichkeiten, die Eigenschaften S1 und S2 mithilfe von Prädikaten der reduzierenden Wissenschaft auszudrücken und es ist zweitens nicht klar, welches dieser Prädikate mit welchem verbunden werden muss, um das gleiche auszusagen wie „S1x → S2x“. Fodor schließt daher als Konsequenz aus der multiplen Realisierbarkeit, dass Gesetze der übergeordneten Wissenschaft nicht durch Gesetze der untergeordneten Wissenschaft erklärt werden können. Es wird seiner Meinung nach nicht gelingen, „S1x → S2x“ jemals durch die Prädikate P1x … Pnx und P1*x … Pm*x auszudrücken. Das kommt von der disjunktiven Form des untergeordneten Gesetzes, das entsteht, wenn die disjunktiven Prädikate der reduzierenden Wissenschaft über ein Konditional verbunden werden (vgl. Fig. 6.1):

  1. (3)

    „P1x v P2x v … v Pnx → P1* v P2* v … v Pm*“

Nach Fodor (Fodor 1974, 108–110) können Gesetze nicht disjunktiv sein. Denn (3) hat die Form eines Arguments mit den Prämissen (P → R) und (Q → S), aus denen die Konklusion (P v Q) → (R v S) folgt. Das heißt, man argumentiert von „es ist ein Gesetz, dass P R hervorbringt“ und „es ist ein Gesetz, dass Q S hervorbringt“ zu „es ist ein Gesetz, dass (P oder Q) (R oder S) hervorbringen“. Nach Fodors Ansicht wird das aber niemand wollen, auch er nicht (Fodor 1974, 109):

„I think, for example, that it is a law that the irradiation of green plants by sunlight causes carbohydrate synthesis, and I think that it is a law that friction causes heat, but I do not think that it is a law that (either the irradiation of green plants by sunlight or friction) causes (either carbohydrate synthesis or heat).“

Daher kann (3) kein Gesetz sein. Ebensowenig können (1) und (2) Gesetze sein. Damit sind auch Brückengesetze keine Gesetze. Das bringt uns wieder an den Punkt, dass es ohne Brückengesetze keine heterogene Reduktion gibt. Die Bedingungen für eine Reduktion können also nicht erfüllt werden.

Eine Reduktion der Psychologie auf die Neurowissenschaften ist für Fodor also nicht möglich. Sie ist von ihm auch nicht gewollt: Aus der Unmöglichkeit von Brückengesetzen und der oben besprochenen Unterschiedlichkeit der Vokabulare und KlassifikationenFootnote 16 macht Fodor eine starke Autonomie der übergeordneten Wissenschaft Psychologie von den untergeordneten Neurowissenschaften aus. Aufgrund dieser Autonomie können die beiden Wissenschaften nicht voneinander lernen und müssen sich getrennt voneinander entwickeln. Damit erteilt er bereits der Idee einer Reduktion eine Absage. Für dieses Postulat strenger Autonomie erntete Fodor allerdings auch heftige Kritik, beispielsweise von Robert Richardson (Richardson 1979), der daran erinnert, dass auch Nagel kein Eins-zu-Eins-Mapping von übergeordneten Begriffen zu untergeordneten gefordert hatte, sondern dass auch das Nagel-Modell multiple Realisierungen derselben übergeordneten Eigenschaft zuließ, solange erklärt werden konnte, warum die verschiedenen untergeordneten Eigenschaften dieselbe höhergeordnete erklären (Bechtel 1988, 79). Auch Bechtel warnt, dass es gefährlich sein könnte, die Psychologie von den Erkenntnissen der Neurowissenschaften abzugrenzen und hat auch eine Vorstellung davon, wie diese hilfreich für Psychologen sein könnten (Bechtel 1988, 82):

„Neuroscience research can at least show that the operations proposed in a particular psychological theory do not correlate with processes that are performed in the brain. This provides at least prima facie reason for looking for an alternative psychological theory that treats a different kind of function as basic. There are even further contributions that neuroscience might make. Information about the type of processes occurring in the brain when specific cognitive activity is being performed may suggest information processing models psychologists might usefully investigate. Thus, it seems plausible, if not likely, that information from neuroscience may be crucial in developing and evaluating psychological theories. To insist on the strong autonomy of psychology is to cut oneself off from such useful guidance and valuable information.“ [Hervorhebung im Original]

Wie wir uns erinnern, hatten auch Gul und Pesendorfer ganz ähnlich eine strenge Autonomie der Ökonomie von den Neurowissenschaften verlangt. Von Harrison wurden sie dafür als unnötig isolierend kritisiert. Die Frage, ob Psychologie oder Ökonomie von den Neurowissenschaften lernen können, ist eine heikle Glaubensfrage. Für Fodor oder Gul und Pesendorfer ist es so etwas strukturell unmöglich, während Leute wie Bechtel oder Harrison eher der Meinung sind, dass die Idee von der gegenseitigen Befruchtung nicht verworfen werden sollte, bevor man ihr nicht wenigstens probehalber nachgegangen ist.

Fodor jedenfalls sieht die Autonomie von speziellen Wissenschaften als unausweichlich und als guten Grund gegen eine Reduktion der Psychologie auf die Neurowissenschaften. Das würde auch die Reduktion der Ökonomie auf die Neurowissenschaften betreffen, denn zumindest in Glimchers dahingehenden Ideen spielt die Psychologie eine Rolle, wie wir gesehen haben.Footnote 17 Fodors Argumente, die er sein Forscherleben lang gegen den Reduktionismus vorgebracht hat, sind berühmt geworden und haben ihre Wirkung nicht verfehlt. Aber sie sind nicht die einzigen Argumente, die gegen Theorienreduktion vorgebracht wurden. Mit einem weiteren, der Inkommensurabilität, werden wir uns noch beschäftigen, da es nicht nur in diesem Zusammenhang wichtig ist, sondern auch Guls und Pesendorfers Unverständnis für die Hinzuziehung neurowissenschaftlicher Erkenntnisse in die Ökonomie veranschaulicht.

Die Inkommensurabilität als anti-reduktionistisches Argument findet sich vor allem bei Feyerabend (Feyerabend 1962) und Kuhn (Kuhn 1962). Wir werden uns im Folgenden vor allem auf Kuhns Konzeption von Inkommensurabilität konzentrieren, da sie Aspekte umfasst, denen wir weiter oben begegnet sind, als es darum ging, dass Behavioristen und Neuroökonomen grundsätzlich zu keiner Einigung gelangen können.Footnote 18

Kuhn hat eine ganz andere Vorstellung von Theoriensukzession als durch Reduktion. Er ist vermutlich der bekannteste Vertreter der Idee, dass das Verhältnis zweier Theorien nicht Reduktion ist, sondern Replacement. Dabei wird eine Theorie, nach Phasen der Normalwissenschaft, über wissenschaftliche Revolutionen durch eine andere abgelöst. Kuhn verwendet den Begriff Inkommensurabilität vor allem zur Charakterisierung des Verhältnisses zweier solcher Theorien, er stammt aber bereits aus der griechischen Antike, wie Sharrock und Read (Sharrock et al. 2002, 141–142) erläutern und wurde dort offenbar vor allem von den Pythagoräern verwendet (Sharrock et al. 2002, 141): „Literally, incommensurability means the impossibility or unavailability of a common system of measure.“ Dinge, die inkommensurabel sind, können also nicht mit gleichem Maß gemessen werden. Die Mathematiker um Pythagoras verwendeten den Begriff für das Verhältnis der Längen der Katheten und der Hypothenuse eines rechtwinkligen Dreiecks. Da die eine eine rationale, die andere eine irrationale Zahl ist, konnten sie nicht mit gleichem Maß gemessen werden, waren also inkommensurabel. Bei Kuhn bedeutet die Inkommensurabilität insofern die Abwesenheit eines gemeinsamen Maßes, dass zwischen den beiden Theorien keine direkten Punkt-für-Punkt Vergleiche möglich sind, was aber nicht bedeutet, dass überhaupt keine Vergleiche möglich sind. Die Inkommensurabilität besteht nach Hoyningen–Huene (Hoyningen–Huene 1989) aus drei verschiedenen Aspekten, von denen vor allem der zweite und dritte für unseren Kontext interessant sind. Der erste Aspekt betrifft Definitionen und Normen der von einer Revolution betroffenen Wissenschaften selbst. Hoyningen–Huene (Hoyningen–Huene 1989, 203) erläutert:

„Mit einer wissenschaftlichen Revolution ändern sich der Bereich der notwendigerweise als auch der Bereich der legitimerweise zu bearbeitenden wissenschaftlichen Probleme. Probleme, deren Beantwortung für die ältere Tradition von zentraler Bedeutung war, können als veraltet oder unwissenschaftlich verschwinden; Fragen, die für die ältere Tradition nicht existierten oder deren Beantwortung trivial war, können große Wichtigkeit erlangen.“

Das ist ein interessanter Punkt, für uns aber nicht ganz so relevant wie die nächsten beiden Punkte, weshalb wir dieses Thema an dieser Stelle hinter uns lassen und gleich zu Aspekt 2 der Inkommensurabilität weitergehen. Dieser zweite Aspekt bezieht sich auf die in der Wissenschaft verwendeten Begriffe und deren Verwendungsweisen. Hoyningen–Huene (Hoyningen–Huene 1989, 204):

„Nach einer Revolution werden viele zur vorangehenden normalwissenschaftlichen Tradition gehörenden Verfahrensweisen und Begriffe zwar weiterhin, aber auf modifizierte Weise verwendet. Besondere Wichtigkeit kommt dabei […] der Änderung von Begriffen bzw. der Verwendungsweise von Begriffen zu, der sogenannten Begriffsverschiebung [meaning change].“

Da neue Paradigmen aus alten entstehen, wird vieles an Vokabular und auch Laborausrüstung in die neue Theorie übernommen. Die von Hoyningen–Huene erwähnte Begriffsverschiebung hat zur Folge, dass alte Ausdrücke zwar noch verwendet werden, jedoch auf andere Weise und in einem anderen Zusammenhang. Die Sprache der Wissenschaftler hängt davon ab, unter welchem Paradigma sie arbeiten. Hoyningen–Huene identifiziert eine extensionale und eine intensionale Seite der Begriffsverschiebung. Die extensionale beinhaltet, dass Objekte aus der Extension eines Begriffs in die Extension eines anderen Begriffs übergehen. Dabei sind die Extensionen der Begriffe verschieden. Kuhn (Kuhn 1962, 128–129) gibt dazu das Beispiel eines Astronomen, der vom ptolemäischen zum kopernikanischen Weltbild wechselt und nun die Erde als Planeten bezeichnet, den Mond oder die Sonne, die früher als Planeten bezeichnet wurden, dagegen nicht mehr. Der intensionale Aspekt der Begriffsverschiebung beinhaltet, dass sich die Bedeutung der Begriffe ändert, da sich die Eigenschaften der Objekte ändern, die mit dem Begriff bezeichnet werden. Das betrifft aber nur solche Begriffe, bei denen sich Eigenschaften ändern, die in der Definition des Begriffs vorkommen. Hoyningen–Huene (Hoyningen–Huene 1989, 206) ist allerdings der Meinung, dass diese Forderung Kuhns nicht zu erfüllen ist. Seiner Meinung nach müssten auch bestimmte Änderungen von Eigenschaften von Extensionselementen eine Änderung des Begriffs nach sich ziehen (das ist für uns momentan nicht von besonderer Wichtigkeit, weshalb wir nicht weiter darauf eingehen).

Der dritte Aspekt der Inkommensurabilität ist für Kuhn auch der fundamentalste. Er besagt, dass die Vertreter konkurrierender Theorien in verschiedenen Welten arbeiten. Zwar arbeiten die Wissenschaftler während einer Revolution mit den gleichen Instrumenten wie in der Zeit der normalen Wissenschaft, sehen jedoch bei Ihren Experimenten neue und andere Dinge. Eines von Kuhns Beispielen (Kuhn 1962, 118–119) sind ein Aristoteliker und Galilei, die beide einen schweren Körper an einer Kette hin- und herschwingen sehen. Der Aristoteliker sieht darin einen Körper, der gehemmt fällt. Da er von der Kette gehalten wird, kann er erst nach einiger Zeit und mühsamen Bewegungen am niedrigsten Punkt zur Ruhe kommen. Galilei dagegen sieht in dem schwingenden Körper ein Pendel, dem es beinahe gelingt, die immer gleiche Bewegung unendlich auszuführen. Die beiden Vertreter unterschiedlicher Paradigmen schauen aus dem gleichen Blickwinkel auf den gleichen Vorgang und sehen doch etwas anderes. Kuhn (Kuhn 1962, 111) spricht sogar recht drastisch über diese Veränderung des Wahrgenommenen:

„It is rather as if the professional community had been suddenly transported to another planet where familiar objects are seen in a different light and are joined by unfamiliar ones as well. Of course, nothing quite that sort does occur: there is no geographical transplantation; outside the laboratory everyday affairs usually continue as before. Nevertheless, paradigm changes do cause scientists to see the world of their research-engagement differently.“

Zusammengefasst ändern sich bei einem Paradigmenwechsel die Bedeutungen von Begriffen und Beobachtungen. Mehr noch: Mit einer Theorie kommt auch ein ganzes Bündel an Wissen und Begriffen, im Grunde eine ganze Weltsicht. Bei einem Theorienwechsel verändern sich auch sie, bis zu dem Maß, dass die Forschenden das Gefühl bekommen, sich in einer ganz anderen Welt wiederzufinden. Sie verwenden zwar dieselbe Laborausrüstung wie zuvor, doch während und nach einem Paradigmenwechsel sehen sie damit neue und andere Dinge. Das bedeutet, und das ist hier ganz wichtig, eine Abhängigkeit der Beobachtungen, die Wissenschaftler bei ihrer Arbeit machen und die in die Gesetze einfließen, die sie formulieren, von dem Paradigma, unter dem sie forschen. Beobachtungen und Begriffe sind nicht neutral bei Kuhn, sie sind theoriengeladen. Diese Theoriegeladenheit macht die Inkommensurabilität zu einem interessanten Argument gegen Reduktionismus. Denn wie können Theorien, die offenbar so verschieden sind, reduziert werden? Wie können Identitäten zwischen Begriffen gefunden werden, wenn sich ihre Bedeutung verändert? Dieses Problem ist besonders schwerwiegend, da Wissenschaftler die Änderung in den Bedeutungen von Begriffen laut Kuhn nicht einmal unbedingt bemerken müssen. Sie können annehmen, dass die Sprache, die ein Kollege aus einer anderen Theorie spricht, dieselbe ist, die sie auch sprechen. Es ist gut möglich, dass sie Begriffe mit unterschiedlichen Bedeutungen verwenden und deshalb das, was ihr Gegenüber sagt, eigentlich falsch verstehen. Folglich könnten die Forscher, die Brückengesetze formulieren, ebenso Begriffe und Bedeutungen falsch verstehen, auch ohne es zu bemerken, und dadurch falsche Identitäten zwischen den Theorien aufstellen. Das führt zu einer fehlerhaft oder überhaupt nicht funktionierenden Reduktion. Solche Missverständnisse können, wenn sie unbemerkt bleiben, heillose Konsequenzen haben, wenn Forscher mit den so entstandenen neuen Theorien arbeiten, weil sie auf falschen Annahmen beruhen. Unter solchen Umständen wären Theorienreduktionen fahrlässige Unternehmen. Daher ist die Inkommensurabilität verschiedener Wissenschaften ein starkes Argument gegen Reduktionismus, auch Fodor bezieht sich auf eine solche Idee bei seinem obenFootnote 19 besprochenen Argument von verschiedenen Klassifikationssystemen und Vokabularien zwischen den Wissenschaften.

An dieser Stelle wird auch klar, warum Gul und Pesendorfer mit vollkommenem Unverständnis darauf reagieren, dass manche ihrer Kollegen neurowissenschaftliche Erkenntnisse in ökonomische Modelle aufnehmen möchten. Sie arbeiten unter einem anderen Paradigma, in dem Erkenntnisquellen, wie sie in den kognitiven Neurowissenschaften üblich sind, nicht nur keine Rolle spielen, sondern auch keine Rolle spielen dürfen. Ihre Vorstellung von der Ökonomie als Wissenschaft ist inkommensurabel mit der Vorstellung der Verhaltensökonomen. Solange keine der beiden Seiten ihr Paradigma verlässt und zum jeweils anderen wechselt, werden sich die Probleme zwischen den verschiedenen Ökonomen nicht lösen lassen. Laut Kuhn können sie ja nicht einmal verständlich und verlässlich darüber diskutieren. Die Ökonomen werden also weiterhin uneins sein. Laut Kuhn ist das aber nicht schlimm, für ihn ist das eher eine Art natürlicher Lauf der wissenschaftlichen Forschung, dem schon viele wissenschaftliche Gemeinschaften ausgesetzt waren und noch viele ausgesetzt sein werden.

Wie man sieht, stammen die besprochenen Argumente bereits aus den 50er bis 70er Jahren und sind durchaus gründlich diskutiert worden. Bisher hat sich noch keine Lösung darüber aufgetan, ob die Psychologie, deren damalige Lage man in diesem Fall durchaus mit der heutigen Lage der Verhaltensökonomie vergleichen kann, auf die Neurowissenschaften reduziert werden kann oder sollte. Inzwischen wird wissenschaftlicher Reduktionismus von den meisten Wissenschaftstheoretikern als eher metaphysische Position betrachtet. Neuroökonomen sollten sich aber durchaus mit verschiedenen Konzeptionen des Reduktionismus und ihren Kritiken auseinandersetzen, denn sie müssen sich zurecht die Frage gefallen lassen, wie Erkenntnisse aus neuronalen Datenquellen Eingang in nicht neuronal basierte ökonomische Modelle finden sollen. Wie wir gesehen haben, scheint Glimcher eine durchaus differenzierte Vorstellung von partieller Theorienreduktion zwischen den beiden Wissenschaften zu haben. Wie wir aber auch gesehen haben, treffen auch auf seine Vorstellung diejenigen Kritiken zu, die bereits vor Jahrzehnten Reduktionskonzeptionen entgegengebracht wurden und die dazu geführt haben, dass Reduktionismus heute als eine metaphysische Position angesehen wird. Wie Gul und Pesendorfer sagtenFootnote 20, das Vehicle zwischen den beiden Wissenschaften fehlt, und meine Prognose ist, dass auch Glimcher dafür keine Lösung finden wird. Das wird Neuroökonomen nicht von ihrer Arbeit abhalten, jedoch sollten sie sich der Hintergründe und Problematiken bewusst sein, wenn sie versuchen, Erkenntnisse aus der einen Wissenschaft für Erkenntnisse in der anderen zu nutzen. Naivität im Umgang mit den Problemen, die in diesem Unterkapitel besprochen wurden, könnte zu unsauberen Modellen und damit zum Scheitern der Neuroökonomie führen.