Skip to main content

Durchschnitte, Zerlegungen und Sichtbarkeit

  • Chapter
  • First Online:
Algorithmische Geometrie

Zusammenfassung

In diesem Kapitel werden einige geometrische Probleme behandelt, die zu den Klassikern der Algorithmischen Geometrie zählen. Fast alle haben mit der Bildung von Durchschnitten zu tun, mit geschickten Zerlegungen geometrischer Objekte oder mit Sichtbarkeit in einfachen Polygonen. Die Probleme lassen sich leicht formulieren, aber trotzdem sind die Lösungen oft überraschend und keineswegs selbstverständlich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. H. Abelson, A. A. diSessa. Turtle Geometry. MIT Press, Cambridge, 1980.

    Google Scholar 

  2. M. Abrahamsen, A. Adamaszek, T. Miltzow. The art gallery problem is ∃ IR-complete. In Proc. 50th Annu. Sympos. Theory Comput., S. 65–73, 2018.

    Google Scholar 

  3. H.-K. Ahn, E. Oh, L. Schlipf, F. Stehn, D. Strash. On Romeo and Juliet problems: minimizing distance-to-sight. Comput. Geom., 84:12–21, 2019.

    Google Scholar 

  4. K. Appel, W. Haken. Every planar map is four colourable, part I: discharging. Illinois J. Math., 21:429–490, 1977.

    Google Scholar 

  5. Y. Bahoo, B. Banyassady, P. Bose, S. Durocher, W. Mulzer. Time-space trade-off for finding the k-visibility region of a point in a polygon. Theor. Comput. Sci., 789:13–21, 2019.

    Google Scholar 

  6. T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete Comput. Geom., 16:361–368, 1996.

    Google Scholar 

  7. B. Chazelle. An optimal convex hull algorithm and new results on cuttings. In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., S. 29–38, 1991.

    Google Scholar 

  8. B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485–524, 1991.

    Google Scholar 

  9. V. Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4:233–235, 1979.

    Google Scholar 

  10. K. L. Clarkson, K. Mehlhorn, R. Seidel. Four results on randomized incremental constructions. Comput. Geom. Theory Appl., 3(4):185–212, 1993.

    Google Scholar 

  11. R. Cole, M. T. Goodrich. Optimal parallel algorithms for polygon and point-set problems. Algorithmica, 7:3–23, 1992.

    Google Scholar 

  12. M. de Berg. Efficient algorithms for ray shooting and hidden surface removal. Dissertation, Dept. Comput. Sci., Utrecht Univ., Niederlande, 1992.

    Google Scholar 

  13. M. de Berg, O. Cheong, M. van Kreveld, M. Overmars. Computational Geometry: Algorithms and Applications. Springer-Verlag, 3. Ausgabe, 2008.

    Google Scholar 

  14. A. Fournier, D. Y. Montuno. Triangulating simple polygons and equivalent problems. ACM Trans. Graph., 3(2):153–174, 1984.

    Google Scholar 

  15. A. Gilbers, R. Klein. A new upper bound for the VC-dimension of visibility regions. Comput. Geom., 47(1):61–74, 2014.

    Google Scholar 

  16. R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters, 1:132–133, 1972.

    Google Scholar 

  17. S. Har-Peled. Geometric Approximation Algorithms, Band 173 von Mathematical Surveys and Monographs. American Mathematical Society, 2011.

    Google Scholar 

  18. D. Haussler, E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput. Geom., 2:127–151, 1987.

    Google Scholar 

  19. H. Haverkort. Finding the vertices of the convex hull, even unordered, takes Ω(n log n) time — a proof by reduction from ε-closeness. CoRR (arXiv.org), abs/1812.01332, 2018.

    Google Scholar 

  20. C. Icking, R. Klein. The two guards problem. Internat. J. Comput. Geom. Appl., 2(3):257–285, 1992

    Google Scholar 

  21. B. Joe. On the correctness of a linear-time visibility polygon algorithm. Internat. J. Comput. Math., 32:155–172, 1990.

    Google Scholar 

  22. B. Joe, R. B. Simpson. Correction to Lee’s visibility polygon algorithm. BIT, 27:458–473, 1987.

    Google Scholar 

  23. D. G. Kirkpatrick, R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput., 15:287–299, 1986.

    Google Scholar 

  24. B. Korte, J. Vygen. Combinatorial Optimization. Springer-Verlag, 2000.

    Google Scholar 

  25. D. T. Lee. Visibility of a simple polygon. Comput. Vision Graph. Image Process., 22:207–221, 1983.

    Google Scholar 

  26. D. T. Lee, F. P. Preparata. An optimal algorithm for finding the kernel of a polygon. J. ACM, 26(3):415–421, Juli 1979.

    Google Scholar 

  27. J. Matoušek. Lectures on Discrete Geometry, Band 212 von Graduate Texts in Mathematics. Springer-Verlag, 2002.

    Google Scholar 

  28. K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  29. J. I. Munro, M. H. Overmars, D. Wood. Variations on visibility. In Proc. 3rd Annu. ACM Sympos. Comput. Geom., S. 291–299, 1987.

    Google Scholar 

  30. J. O’Rourke. Art Gallery Theorems and Algorithms. The International Series of Monographs on Computer Science. Oxford University Press, New York, NY, 1987.

    Google Scholar 

  31. F. P. Preparata, M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.

    Google Scholar 

  32. N. Robertson, D. Sanders, P. Seymour, R. Thomas. A new proof of the four-color theorem. Electron. Res. Announc. Amer. Math. Soc., 2:17–25, 1996.

    Google Scholar 

  33. F. Schulz. Zur Berechnung des Kerns von einfachen Polygonen. Diplomarbeit, Fern-Universit¨at Hagen, Fachbereich Informatik, 1996.

    Google Scholar 

  34. R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl., 1(1):51–64, 1991.

    Google Scholar 

  35. R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete Comput. Geom., 6:423–434, 1991.

    Google Scholar 

  36. R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, Hrsg., New Trends in Discrete and Computational Geometry, Band 10 von Algorithms and Combinatorics, S. 37–68. Springer-Verlag, 1993.

    Google Scholar 

  37. P. Valtr. Guarding galleries where no point sees a small area. Israel J. Math., 104:1–16, 1998.

    Google Scholar 

  38. J. J. Verkuil. Idual: Visualizing duality transformations. Technischer Bericht, Dept. Comput. Sci., Univ. Utrecht, Niederlande, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Klein .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klein, R., Driemel, A., Haverkort, H. (2022). Durchschnitte, Zerlegungen und Sichtbarkeit. In: Algorithmische Geometrie. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-37711-3_4

Download citation

Publish with us

Policies and ethics